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Motor imagery (MI) electroencephalography (EEG) classification is an important part of the

brain-computer interface (BCI), allowing people with mobility problems to communicate

with the outside world via assistive devices. However, EEG decoding is a challenging task

because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an

end-to-end framework that fully extracts the high-level features of EEG signals remains

a challenge. In this study, we present a parallel spatial–temporal self-attention-based

convolutional neural network for four-class MI EEG signal classification. This study

is the first to define a new spatial-temporal representation of raw EEG signals that

uses the self-attention mechanism to extract distinguishable spatial–temporal features.

Specifically, we use the spatial self-attention module to capture the spatial dependencies

between the channels of MI EEG signals. This module updates each channel by

aggregating features over all channels with a weighted summation, thus improving

the classification accuracy and eliminating the artifacts caused by manual channel

selection. Furthermore, the temporal self-attention module encodes the global temporal

information into features for each sampling time step, so that the high-level temporal

features of the MI EEG signals can be extracted in the time domain. Quantitative

analysis shows that our method outperforms state-of-the-art methods for intra-subject

and inter-subject classification, demonstrating its robustness and effectiveness. In terms

of qualitative analysis, we perform a visual inspection of the new spatial–temporal

representation estimated from the learned architecture. Finally, the proposed method

is employed to realize control of drones based on EEG signal, verifying its feasibility in

real-time applications.

Keywords: motor imagery, EEG, BCI, spatial-temporal self-attention, deep learning

1. INTRODUCTION

Electroencephalography (EEG) has been widely used in many noninvasive brain–computer
interface (BCI) studies because it is simple, safe, and inexpensive (Kübler and Birbaumer, 2008;
Lotte et al., 2018). Among the different types of EEG signals, motor imagery (MI) is most commonly
used. When people imagine or execute a movement with their hands, both feet, or tongue, the
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power of the mu (8–12 Hz) and beta (16–26 Hz) rhythms
are suppressed or promoted in the sensorimotor region of the
contralateral and ipsilateral hemispheres (Pfurtscheller et al.,
1997; Pfurtscheller and Da Silva, 1999; Neuper and Pfurtscheller,
2001). Our goal is to classify these MI EEG associated brain
activities accurately to allow people with mobility problems to
communicate with the outside world via assistive devices.

Numerous studies have examined the classification of MI
EEG signals. These studies can be divided into two categories:
traditional methods and deep learning-based methods. Among
the traditional methods, the common spatial pattern (CSP)
algorithm (Müller-Gerking et al., 1999; Ramoser et al., 2000) and
its variants are widely used to extract the spatial distribution
of features from multi-channel EEG data. The fundamental
principle of CSP is to find a set of optimal spatial filters through
the diagonalization of a matrix, so as to maximize the difference
between the variance values of the two types of signals, and
thereby obtain a feature vector with higher discrimination. Filter
bank common spatial pattern (FBCSP; Ang et al., 2008) is
a variant of CSP that improves the classification accuracy by
performing autonomous selection of the discriminative subject
frequency range for bandpass filtering of the EEGmeasurements.
Jin et al. (2019) used Pearson’s correlation coefficient to
manually select the channel that contained the most correlated
information, and then employed the regularized common spatial
pattern (RCSP) to extract effective features and a support vector
machine (SVM) as a classifier. However, the feature selection
is heavily reliant on handcrafted features. In addition, because
MI EEG signals have limited spatial resolution, a low signal-to-
noise ratio (SNR), and highly dynamic characteristics, traditional
methods are unable to achieve high decoding accuracy.

Currently, deep learning (DL) exhibits excellent performance
in a variety of medical applications (Kumar A. et al., 2016;
De et al., 2017; Ma et al., 2017, 2018), and an increasing
number of BCI researchers are investigating the use of DL
models in MI classification tasks (Schirrmeister et al., 2017). The
majority of studies use either feature-based input networks or
original signal-based input networks. In the former case, the EEG
signals are first transformed from 1D feature vectors into 2D
manually specified feature maps by combining spatial, spectral,
and temporal information using conventional feature-extraction
methods (such as spectrograms and wavelets). The extracted
features are then fed into a classification network (Lu et al., 2016;
Tabar and Halici, 2016; Zhu et al., 2019). Kumar S. et al. (2016)
used CSP to extract features, which were fed into a multilayer
perceptron (MLP). Sakhavi et al. (2018) proposed a new feature
representation method that combined FBCSP and the Hilbert
transform to extract spatial and temporal features. Subsequently,
a 5-layer convolutional neural network (CNN) architecture was
used for classification. The work (Vaswani et al., 2017) is the
first to propose the self-attention mechanism to draw global
dependencies of inputs and applies it in machine translation,
attention modules are increasingly applied in many flied (Lin
et al., 2017; Shen et al., 2018; Fu et al., 2019). However, feature
information about the MI signals will be lost when a manually
specified feature extraction method is used, which has a negative
effect on performance.

Input networks based on the original signal, i.e., the
C (channel) × T (time point) matrices, obtain high-level
implicit representations from raw EEG signals without manual
feature selection. In such networks, the feature extraction and
classification steps are combined in a single end-to-end model
with (or without) minimal preprocessing. EEGNet (Lawhern
et al., 2018) is a successful network that uses relatively few
parameters to achieve good performance on various EEG
classification tasks. Azab et al. (2019) proposed a novel weighted
transfer learning approach that improves the accuracy of MI
classification in BCI systems. Song et al. (2019) improved
the classification performance with limited EEG data by
combining the representation module, classification module, and
reconstruction module into an end-to-end framework. Sakhavi
et al. (2018) introduced a new data representation using a
spatial–temporal DL model architecture that is designed to
learn temporal information from the original input signals.
Amin et al. (2019) used a multilayer CNN model that fuses
different characteristics of the raw EEG data from the spatial
and temporal domains. Zhao et al. (2019) developed a new
3D representation of EEG, a multibranch 3D CNN, and a
corresponding classification strategy. Their approach achieved
good performance and significantly improved the classification
accuracy for different subjects.

Although DL has made remarkable progress in MI
classification, it still faces many challenges. First, previous
methods mainly select signal channels in motor regions such as
C3, Cz, and C4, but MI for different body parts may activate
different functional regions of the brain (Ehrsson et al., 2003;
Gong et al., 2018). All brain functional areas will have certain
effects on the different MI tasks, not only the motor regions.
Because the strength of the MI EEG signals varies from person
to person, it is impossible to determine exactly which brain
regions are most associated with MI (Ma et al., 2020). Second,
MI signals are temporally continuous with low SNR and are
susceptible to a variety of biological affects (e.g., eye blinks
and muscle activity) or environmental artifacts (e.g., noise).
Dynamic changes to the EEG signal in the time domain often
contain valuable information about the raw MI EEG signals,
although these are often neglected by traditional methods,
making feature extraction more complicated. The combination
of these factors means that previous methods have a limited
ability to extract general representations and suffer from low
classification accuracy.

To overcome these problems, we propose an end-to-end
parallel spatial–temporal self-attention-based CNN for four-
class MI EEG signal classification based on the raw MI
EEG signals. The proposed method assumes that motor-
dependent channels and sampling time steps should be assigned
higher weight values than motor-independent channels and
sampling time steps during brain activity. The weight values are
calculated based on the proposed parallel spatial–temporal self-
attention mechanism, which captures high-level distinguishable
spatial–temporal features and defines a more accurate compact
representation in the space and time domains of the rawMI EEG
signal data. Our CNN is capable of modeling high-level, robust,
and salient feature representations hidden in the raw EEG signal
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streams, and can capture complex relationships within data via
the stacking of multiple layers of information processingmodules
in a hierarchical architecture. The major contributions of this
study can be summarized as follows:

• In the spatial domain, each channel is recorded from each
electrode in various brain areas. We use the spatial self-
attention module to capture the potential spatial links between
any two channels of the MI EEG signals. The features in a
certain channel are updated by aggregating the features over
all channels with a weighted summation, where the weights are
automatically learned by the feature similarities between the
corresponding channels. This module defines a new learned
spatial representation of the raw MI EEG data that choose
the best channels by automatically assigning higher values
to motor-dependent channels and lower values to motor-
independent channels. This verifies our assumption that when
people think about an action, any channel with similar motor-
dependent characteristics can promote mutual improvement,
regardless of its spatial location in the brain. As a result, this
module improves the classification accuracy and eliminates the
artifacts caused by the manual selection of signal channels.

• In the temporal domain, we know that MI EEG signals are
continuous with low SNR, which means that there must
be a correlation between each time step. Therefore, we use
the temporal self-attention module to capture the temporal
dependencies between any two sampling time steps, and
update each sampling time step using a weighted sum of all
sampling time steps. This module defines a new temporal
representation of the raw MI EEG data that enhances the
temporal representation by encoding the relevant continuous
dynamic changes into the global temporal features of each
sampling step in the time domain. This is superior to a
single-valued representation. In other words, instead of a
single sampling value, a new automatically learned temporal
representation of the signal is used to extract high-level
temporal features from theMI EEG signals in the time domain.
Through this module, we assign more weight to the sampling
points related to MI and reduce the weight of sampling points
that are not related to MI. It is generally believed that there is
little useful information in the artifacts, so the temporal self-
attention module effectively reduces the interference caused
by artifacts.

• The proposed model is evaluated on two challenging
datasets to validate its robustness against data variations.
The corresponding results demonstrate that our method
outperforms several traditional methods (11.09% better on
average) and DL-based methods (4.14% better on average)
for four-class MI EEG classification by combining spatial and
temporal features via the proposed parallel spatial–temporal
self-attention architecture. To intuitively verify the rationality
of the self-attention mechanism from physiological signals,
we plot topographic maps of MI EEG data to illustrate that
MI not only activates channels C3, C4, and Cz, but also
affects different signal channels. In addition, a BCI application
experiment is performed in which we train a model using the
data collected in our laboratory and apply it to a drone’s online

control system based on AirSim (Shah et al., 2018), which is an
open source simulator developed by Microsoft.

The remainder of this paper is organized as follows. Section 2
describes the datasets and discusses the details of our method.
Experimental results are then presented and use EEG MI to
control a drone in section 3. In section 4, we discuss the
experimental results from the EEG topographic map. Finally,
section 5 presents our conclusions and provides some suggestions
for future work.

2. MATERIALS AND METHODS

2.1. Overview
In this study, we employed two widely used public EEG MI
datasets for evaluation. The main differences between them are
the number of channels, trials, subjects, tasks, and sampling rates.

The first dataset is the BCI Competition IV dataset 2a
(BCIIV2a) (Tangermann et al., 2012), which recorded a four-
class MI task (left hand, right hand, both feet, and tongue)
performed by nine subjects across 25 channels (22 EEG and 3
electrooculogram) with a 250 Hz sampling rate. Each channel
was preprocessed with a bandpass filter of 0.5–100 Hz. For
each subject, two sessions were recorded on different days. Each
session comprised six runs separated by short breaks. One run
consisted of 48 trials (12 for each of the four possible classes),
yielding a total of 288 trials per session. We used one session as
the training set, with the other session used to test the classifier
and evaluate the performance. Thus, the training set consisted of
the 288 trials from the first session and the test set consisted of
the 288 trials from the second session. In addition, each trial was
extracted using the same time window of [−0.5, 4s] on the MI
phase of the signals over all 22 EEG channels. Hence, the input
signal of our method consists of time series from 22 channels
containing 1, 125 sampling points (22× 1, 125).

The second dataset is the high gamma dataset (HGD)
(Schirrmeister et al., 2017), recorded during a four-class MI task
across 44 EEG channel signals by 14 healthy subjects performing
4-s trials of certainmovements, with 13 runs per subject. The four
classes of movements involved the left hand, the right hand, both
feet, and rest (no movement). For each subject, the training set
consisted of approximately 880 trials (all runs except the last two
runs), and the test set consisted of approximately 160 trials (the
last two runs). The sampling rate for HGD was 500 Hz. For a fair
comparison with BCIIV2a, HGD was resampled to 250 Hz and
used the same 4.5-s time window, so that 44× 1, 125 data points
were obtained for each trial.

We performed basic preprocessing of the MI EEG data, such
as frequency filtering and normalization. A low-pass filter of 38
Hz and a high-pass filter of 0 Hz were applied to BCIIV2a, and
a low-pass filter of 38 Hz and a high-pass filter of 4 Hz to HGD
(Schirrmeister et al., 2017). We performed exponential moving
standardization to compute the exponential moving means and
variances for each channel, and used these to standardize the
continuous data.

The network architecture, as illustrated in Figure 1,
consists of two phases: a feature extraction layer and a
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FIGURE 1 | Schematic illustration of the proposed method. The orange, blue, and green cuboids are feature maps in different modules; their corresponding sizes are

indicated in the annotation. The convolution and pooling operations are indicated by the arrow lines. (A) Parallel spatial–temporal self-attention architecture-based

feature extraction phase. The spatial and temporal self-attention modules are denoted by orange and blue rectangles, respectively. (B) Feature classification phase. F

is the number of feature maps, and H and W are the height and width of the input signal, respectively, which means 22 sampling channels with 1, 125 time steps.

feature classification layer. We first describe the feature
extraction layer, which contains a parallel spatial–temporal
self-attention architecture that extracts distinguishable
features in the space and time domains. We then describe
how to concatenate the extracted spatial–temporal features
for the classification of the MI task and its corresponding
training strategy. The code for our model is available in
https://github.com/Shenyonglong/Spatial-Temporal-attention-.

2.2. Construction of Self-Attention Module
2.2.1. Spatial Self-Attention Module

Traditional approaches usually select EEG channels manually,
or assume that each channel plays an equal role. However,
the active brain regions for the same MI action are different
for different people, which means that the strength of the MI

signal varies from subject to subject, as well as for different
trials by the same subject. This variation results in low
classification accuracy. Therefore, to automatically select the
most useful signal channel for extracting discriminant feature
representations for subjects and eliminate the artifacts caused
by manual selection of signal channels, we propose a spatial
self-attention module.

Consider the orange rectangle in Figure 1 and its network
parameters in Table 1. Let M ∈ R

H×W be the raw data of
height (H) 22 and width (W) 1,125. We first feed these data
into two convolution layers (Conv11 and Conv12) to generate
feature maps s11 and s12, where s11 and s12 belong to R

F×H×W

and F = 8 denotes the number of feature maps. Then, s11 and
s12 are reshaped (R11 and R12) to R

H×(F×W) and R
(F×W)×H ,

respectively, to enable matrix multiplication between them.
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TABLE 1 | Detailed architecture of the proposed spatial self-attention module.

Spatial-attention module

Input M(22, 1125) M(22, 1125) s11(8, 22, 1125) s12(8, 22, 1125) s21, s22 s3,M s4,M, λ1

Layer Conv11 Conv12 R11 R12 MMN MM ES

Output s11(8, 22, 1125) s12(8, 22, 1125) s21(22, 9000) s22(9000, 22) s3(22, 22) s4(22, 1125) S(22, 1125)

Feature maps 8 8 1 1 1 1 1

Kernel (1, 1) (1, 1) – – – – –

Stride (1, 1) (1, 1) – – – – –

MMN, Matrix multiplication + Normalization + Softmax; MM, matrix multiplication; ES, element-wise sum.

Finally, a softmax function is applied to obtain the spatial self-
attention weight map s3 ∈ R

H×H as:

s
ij
3 =

Func(si21, s
j
22)

∑H
j=1 Func(s

i
21, s

j
22)

(1)

where Func is the similarity function, which uses matrix dot

multiplication to calculate the similarity. s
ij
3 denotes the similarity

between the ith and jth channels, and ranges from 0 to 1 (with 0
indicating no similarity and 1 indicating complete similarity).

Matrix multiplication between s3 and MH×W is performed to
obtain the spatial predicted signal s4 ∈ R

H×W . Signal s4 is a
spatial predicted signal in which each channel is a weighted sum
of other channels from the raw data in the space domain. This
task automatically learns similar weights between channels and
updates each channel by adaptively aggregating spatial signal data
across all channels with the weighted summation. In addition, we
perform a residual block by multiplying a learnable parameter
λ1 by s4 and perform an element-wise sum operation with the
raw signal to obtain the final spatial feature signal (S ∈ R

H×W)
as follows:

S = λ1 × s4 +M (2)

where λ1 is initialized as 0 and is gradually updated to assign
more appropriate weights during the training of the whole
DL system (Zhang et al., 2019). S enhances the representative
capability of the inter-subject classification. This means that
when people think about an action, any channel with similar
characteristics promotes mutual improvement, regardless of its
spatial location in the brain.

2.2.2. Temporal Self-Attention Module

MI EEG signals are temporally continuous with a low SNR.
Therefore, we constructed a temporal self-attentionmodule (blue
rectangle in Figure 1) to generate a temporal predicted signal
that is the same size as the raw input data and model the
interdependencies between time steps so as to eliminate the
artifacts caused by subject and environmental artifacts. The
corresponding network parameters are listed in Table 2.

The largest difference between thismodule and the spatial self-
attention module is that we reshaped t11 and t12 (R13 and R14)
to R

W×(F×H) and R
(F×H)×W to enable matrix multiplication

between them. A softmax function is applied to obtain the
temporal self-attention weight map t3 ∈ R

W×W by:

t
pq
3 =

Func(t
p
21, t

q
22)

∑W
q=1 Func(t

p
21, t

q
22)

(3)

where Func is the similarity function, which uses matrix
dot multiplication to calculate the similarity. t

pq
3 denotes the

similarity between the pth and qth sampling time steps, and
ranges from 0 to 1 (with 0 indicating no similarity and 1
indicating complete similarity). Furthermore, we performmatrix
multiplication between the raw signal MH×W and t3 to obtain
the temporal predicted signal t4 ∈ R

H×W , which captures the
temporal dependencies between any two time steps and updates
each time step with a weighted sum of all time steps in the
time domain. Finally, a residual block is given by multiplying a
learnable parameter λ2 by t4 and performing an element-wise
sum operation with the raw signal MH×W to obtain the final
temporal feature signal (T ∈ R

H×W) by:

T = λ2 × t4 + R (4)

where T encodes the global temporal information into the
features of each time step, thus enhancing the representative
capability. Therefore, we can extract high-level temporal features
of the MI signal in the time domain, thus weakening the artifacts.

2.3. Feature Classification
In this section, we describe the concatenation of spatial and
temporal feature signals (S and T) from the raw MI data into the
spatial–temporal continuous feature (C1 ∈ R

(3×22×1125)) as:

C1 = {M, S,T} (5)

A convolution (Conv2) with kernel size 1 × 25 is implemented
in the time domain, and then C1 is fed into the classification
network (part b in Figure 1, Table 3). The shape of the
output (C2) is transformed from (3, 22, 1125) to (40, 22, 1101).
Furthermore, a convolution (Conv3) with kernel size 22 × 1
is applied to the extracted features (C2) in the space domain.
The corresponding shape of output C3 is (40,1,1101). Third, the
average pooling operation (AvgPooling) with kernel size 1 × 75
and stride 1× 15 is applied over C3 to generate a coarser feature
representation, with the output dimension reduced to (40,1,69).
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TABLE 2 | Detailed architecture of the proposed temporal self-attention module.

Temporal-attention module

Input M(22, 1125) M(22, 1125) t11(8, 22, 1125) t12(8, 22, 1125) t21, t22 M, t3 t4,M, λ2

Layer Conv13 Conv14 R13 R14 MMN MM ES

Output t11(8, 22, 1125) t12(8, 22, 1125) t21 (1125, 176) t22(176, 1125) t3 (1125, 1125) t4 (22, 1125) S(22, 1125)

Feature maps 8 8 1 1 1 1 1

Kernel (1,1) (1,1) – – – – –

Stride (1,1) (1,1) – – – – –

MMN, Matrix multiplication + Normalization + Softmax; MM, matrix multiplication; ES, element-wise sum.

TABLE 3 | Detailed architecture of the proposed temporal self-attention module.

Feature classification module

Input M,S,T C1(3, 22, 1125) C2(40, 22, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C4(40, 1, 69) C4(40, 1, 69) (4,1,1)

Layer Concatenate Conv2 Conv3 Batch normalization Square AvgPooling Log Conv4 LogSoftmax

Output C1(3, 22, 1125) C2(40, 22, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C3(40, 1, 1101) C4(40, 1, 69) C4(40, 1, 69) (4,1,1) (4,1,1)

Feature maps 3 40 40 40 40 40 40 40 4

Kernel – (1,25) (22,1) – – (1,75) – (1,69) –

Stride – (1,1) (1,1) – – (1,15) – (1,1) –

Additionally, the square nonlinear activation is used before the
AvgPooling operation and the log nonlinear activation is applied
to the output of the AvgPooling operation. All feature maps of
C4 are fed into the final convolution layer (Conv4), whose output
C5 has dimensions of (4, 1, 1). Finally, the LogSoftmax function
is used to perform multi-classification by converting C5 to the
conditional probability of the four labels.

2.4. Training Strategy
For the four-class MI classification, the NLLoss function in
Pytorch was defined as the loss function (Zhu et al., 2018).
All parameters in the network were initialized using the Xavier
algorithm (Glorot and Bengio, 2010). Adam (Sharma et al.,
2017) was employed for the optimization. The learning rate
was 0.0001 for the BCIIV2a dataset and 0.001 for HGD. The
batch size was 32. Because BCIIV2a and HGD have clearly
divided training and test datasets, the training datasets were
randomly divided into training (80%) and validation (20%) sets;
all test data were selected for the testing stage. This enables us
to use the early stopping strategy, developed in the computer
vision field, whereby the training set is split into training and
validation datasets and the first phase of training stops when the
validation accuracy does not improve for a predefined number
of epochs. Training then continues on the combined training
and validation datasets using the parameter values that led to the
best accuracy on the validation dataset. Training ends when the
loss function on the validation dataset drops to the same value
as that on the training dataset at the end of the first training
phase (Schirrmeister et al., 2017). The hyperparameter in the
dropout layer and the constant and weight decay rate in the batch
normalization layer were set to 0.5, 10−5, and 0.1, respectively. All
experiments were conducted in Ubuntu 16.04 on a 64-bit system
with a Core i9-9900k CPU and 128 GB RAM. Nvidia RTX 2080Ti

GPU was utilized for training and testing our model, which was
coded using Pytorch and MNE-Python (Gramfort et al., 2014).

2.5. Evaluation Metrics
The proposed method was evaluated on two public datasets,
BCIIV2a and HGD. The accuracy was used as the evaluation
metrics. The accuracy was calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (6)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.

3. RESULTS

To verify the performance and feasibility of our proposed model,
we conducted a series of experiments for MI classification on
two datasets. The intra-subject classification experiment was
intended to verify the performance of the proposed network for
an individual subject. The inter-subject transfer experiment was
conducted to verify the transfer ability of the proposed method.
In this experiment, EEG recordings from other subjects were
used to train amodel in advance. Next, thismodel was transferred
as the initial weight to further train the individual model.

3.1. Quantitative Evaluation of BCIIV2a for
Intra-Subject Classification
To confirm the effectiveness and accuracy of the proposed
method, we first conducted intra-subject classification using
BCIIV2a and compared the accuracy of our method with that
given by state-of-the-art DL-based methods [EEGNet (Lawhern
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TABLE 4 | Accuracy on BCIIV2a for intra-subject classification: comparison between proposed method and other state-of-the-art methods.

Accuracy (%)

Subject FBCSP DeepCNN M3DCNN LTICNN DMTLCNN MCCNN WTL EEGNet Proposed

1 76.00 76.50 77.39 87.50 83.50 90.21 90.00 71.88 82.99

2 56.50 50.60 60.14 65.28 49.00 63.40 55.00 51.04 56.25

3 81.25 85.00 82.92 90.28 92.70 89.35 93.00 79.17 93.06

4 61.00 67.60 72.28 66.67 74.90 71.16 60.00 57.99 84.03

5 55.00 72.40 75.83 62.50 71.30 62.82 68.00 64.58 68.75

6 42.25 55.10 68.98 45.49 63.70 47.66 60.00 51.04 58.34

7 82.75 71.70 76.03 89.58 80.08 90.86 73.00 66.32 88.20

8 81.25 74.40 76.85 83.33 80.00 83.72 98.00 74.31 88.20

9 70.75 79.20 84.66 79.51 81.70 82.32 83.00 72.57 86.81

AVG 67.42 70.28 75.01 74.46 75.21 75.72 75.56 65.43 78.51

Bold font indicates the best scores.

FIGURE 2 | Confusion matrices for the motor imagery (MI) task: (A) intra-subject classification of BCIIV2a, (B) inter-subject classification of BCIIV2a, and (C)

intra-subject classification of high gamma dataset (HGD).

et al., 2018), DeepCNN (Schirrmeister et al., 2017), M3DCNN
(Zhao et al., 2019), LTICNN (Sakhavi et al., 2018), DMTLCNN
(Song et al., 2019), MCCNN (Amin et al., 2019), WTL (Azab
et al., 2019)]; traditional FBCSP (Ang et al., 2012) was used as
a baseline method to recognize MI EEG data, and an SVM was
used as the classifier.

Table 4 lists the accuracy of the various methods for each
subject and the corresponding average accuracy for the BCIIV2a
dataset. Our method clearly outperforms the state-of-the-art DL-
based methods, obtaining an average accuracy of 78.51% for
the intra-subject classification. Furthermore, confusion matrices
for the MI task and the experimental results on the test sets
are given in Figure 2A. Although FBCSP provides the best
performance for MI signal classification, its average accuracy
over all subjects is only 67.42%, which is nearly 11.09% lower
than that of the proposed method. Thus, the proposed method
yields superior results compared with the traditional machine
learning method.

The DeepCNN model, which is widely used in MI
classification algorithms, contains four convolution–pooling
block modules. However, because this model is easily overfitted
when there are few labeled data for training, the average accuracy

of DeepCNN is 70.28%, which is far lower (by 8.23%) than that
of our method.

The other DL-based methods compared here are state-of-
the-art techniques with excellent representation and accuracy.
In this task, their average accuracy values range from 74.46
to 75.72%. LTICNN employs FBCSP as a data preparation
method and uses a CNN to extract features. However, because
of the need to change the parameters for different subjects, it
readily becomes overfitted, and thus achieves worse performance
than the proposed method, i.e., 4.05% lower on average. The
M3DCNN model combines a new 3D representation of EEG,
a multibranch 3D CNN, and a corresponding classification
strategy to enhance its resistance to overfitting on different
subjects. This model achieves the best results for two subjects
(5 and 6) and demonstrates better performance than LTICNN.
The greatest contribution of M3DCNN is to demonstrate that
a deeper and more complex representation of EEG can help
improve the performance. However, its accuracy of 75.01%
is 3.50% lower than that of our method. DMTLCNN and
WTL employ transfer learning techniques to yield a remarkable
increase in classification accuracy, reaching 75.21 and 75.56%,
respectively. Compared with this performance, our model is
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TABLE 5 | Intra-subject classification of 10-fold cross-validation results on the BCIIV2a.

Accuracy (%)

Subjects 1 2 3 4 5 6 7 8 9 AVG

Accuracy 93.93 75.33 97.74 86.46 89.94 78.32 99.14 94.43 96.02 90.15

TABLE 6 | Results of inter-subject transfer learning classification using the BCIIV2a dataset.

Accuracy (%)

Subjects 1 2 3 4 5 6 7 8 9 AVG

MCCNN 62.07 42.44 63.12 52.09 49.96 37.16 62.54 59.32 69.43 55.34

DeepCNN 78.80 51.80 86.80 71.60 68.70 64.60 82.30 80.90 75.40 73.40

DMTLCNN 80.30 50.30 85.50 70.60 66.20 60.60 83.00 82.80 78.4 73.10

Proposed 82.99 45.84 94.10 67.37 54.84 75.72 85.07 87.85 73.27 74.07

Bold font indicates the best scores.

3.30 and 2.95% more accurate, respectively. The MCCNN model
first fuses different CNN modules to prove that the spatial and
temporal features can improve the classification over handcrafted
features. Previously, MCCNN has achieved the highest accuracy,
reaching 75.72%. However, this model focuses on the spatially
invariant features of MI EEG signals, and does not consider
the interrelationship between the temporal features and spatial
features in depth. This interrelationship is the focus of this study.
Compared with MCCNN, our average accuracy is 2.79% higher.
In addition to the average accuracy, we achieved the best results
for three of the nine subjects (3, 4, and 9).

The above results show that the proposed method
outperforms all traditional (11.09% better on average)
and DL-based methods (4.14% better on average) for
four-class MI EEG classification by combining spatial and
temporal features via the proposed parallel spatial–temporal
self-attention architecture.

For the evaluations using 10-fold cross-validation, we
combined the training and testing set of BCIIV2a, and then
randomly divided into 10 equal parts. In each run, nine subsets
were used as training set and 1 subset was used as the testing
set. That means there are 518 trials for training, 58 trials for
testing. The final accuracy was obtained by averaging the best
values of the 10-fold. Compared with the 288 trials we used
for training and 288 trials for testing before, the 10-fold cross-
validation significantly increases the amount of the training set,
so it can achieve better accuracy (90.15% on average) in Table 5.

3.2. Quantitative Evaluation of BCIIV2a for
Inter-Subject Transfer Learning
Classification
One of the main contributions of the proposed method is to
improve the accuracy of inter-subject classification through the
parallel spatial–temporal self-attention architecture. This is the
first time the attention mechanism has been used to study the
relationship between channels. Here, by using transfer learning
techniques, we utilize the other subjects’ EEG data to train a
model on the BCIIV2a dataset, and then apply this model as the
initial weight of the network and load data from a new subject for

TABLE 7 | Intra-subject classification results using high gamma dataset (HGD).

Accuracy (%)

FBCSP DeepCNN MCCNN CPMixedNet MSFBCNN Proposed

90.90 91.40 95.40 93.70 94.40 97.68

Bold font indicates the best scores.

further training. In this way, we can consider the trained model
to integrate the information of other subjects, thus making it
more robust.

Table 6 presents the corresponding classification results for
each subject. Because of the large differences between subjects,
the results in Table 6 are not better than the intra-subject
results (listed in Table 4). Figure 2B shows the confusion
matrices for the BCIIV2a dataset inter-subject classification
results. Compared with other state-of-the-art DL-based methods
(MCCNN, DeepCNN, and DMTLCNN, which provided the
inter-subject comparison results), the proposed method obtains
the best average accuracy of 74.07%, with particularly good
results for five of the nine subjects (1, 3, 6, 7, and 8). The results
show that our method not only weakens the artifacts caused
by manually selecting a signal channel, but also automatically
provides a more robust and generic feature representation with
higher classification accuracy of MI EEG signals.

3.3. Quantitative Evaluation of HGD for
Intra-Subject Classification
To further verify the adaptability of the proposed method, we
conducted intra-subject classification evaluations on another
challenging dataset (HGD). In Schirrmeister et al. (2017), we set
the low cut-off frequency of HGD to 4 Hz. Because some state-
of-the-art methods only report average accuracy values for HGD,
we only list the average accuracy in Table 7.

Recall that the tasks used to construct HGD and BCIIV2a
are different. The tasks performed for BCIIV2a involve the left
hand, right hand, both feet, and tongue, which are different
from the four categories of HGD. Additionally, HGD contains
much more data than BCIIV2a. As we know, the amount
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FIGURE 3 | Live setup for real-time electroencephalography (EEG) signal decoding and unmanned aerial vehicle (UAV) control. PC–1 is a computer used to display

the paradigm. The subjects only looked at PC–1 during the experiment. PC–2 is a computer used to classify and control the UAV. The classification model was trained

in advance.

of data is an important factor affecting the performance of
DL. Thus, these data allow the proposed method to attain
evaluation results that are even more encouraging, with a
significant improvement over the other methods. The proposed
method reaches 97.68% accuracy, while the second-best method
(MSFBCNN; Wu et al., 2019) can attain 94.40% accuracy. The
final classification accuracy of MSFBCNN is lower than that of
our method because it focuses on multi-scale convolution in the
temporal domain, and ignores the spatial relationship between
channels. CPMixedNet (Li et al., 2019) also analyzes the time
domain, using regular and dilated convolution to extract the
temporal EEG information. The classification accuracy is 93.70%
after amplitude-perturbation data augmentation. However, there
is no analysis of the spatial distribution of EEG information,
so the accuracy is 3.98% lower than that of our method. These
experimental results demonstrate the capability of the proposed
network with data augmentation forMI EEG signal classification.
In Figure 2C, we show the accuracy for each class of HGD in the
form of confusion matrices.

3.4. Control of the Drone Based on EEG
Signal
We further tested and validated the real-time capability of the
proposed model through the online decoding of MI movements
from streamed EEG signals for virtual drone control. We used
a Greal 32-channel EEG amplifier developed by Neuroscan to
collect the MI EEG data. First, the subjects were asked to imagine
writing a Chinese character with their left or right hand according
to the paradigm of Qiu et al. (2017). At the beginning of a
trial (t = 0 s), a fixation cross appeared on the black screen.
At t = 2 s, the fixation cross was replaced by a picture of the
forearm and a Chinese character. Each subject had 6 s to perform
the MI task, in which hand movements followed the strokes of
the Chinese character on the screen. Subjects then had a short
break of 2 s. Second, a band-pass filter of 4–38 Hz was applied
to the EEG signals. Third, the preprocessed data were sent to
the trained network for classification. Finally, the AirSim-based
virtual unmanned aerial vehicle (UAV or drone) was directed to

move either left or right according to the decoded movement
from the EEG signals.

Figure 3 shows the whole process of how we used the data
collected in the laboratory to control the flight of the virtual
UAV. When the subjects imagined writing with their left hand,
the virtual UAV would fly to the left. Similarly, when the subjects
imagined writing with their right hand, the UAV would fly to
the right. A video of a successful live demo is available in the
Supplementary Materials.

4. DISCUSSION

This study has investigated the design and training of an
end-to-end neural network using raw EEG signals. This is
the first time that a new spatial–temporal representation of
raw EEG signals has been defined using the self-attention
mechanism for extracting the distinguishable spatial–temporal
features. Through intra- and inter-subject transfer learning
experiments on the BCIIV2a dataset and HGD, we demonstrated
that the proposed method outperforms several state-of-the-
art methods in terms of the classification accuracy. At the
same time, we visualized topographic maps of MI EEG
data to explain the rationality of our temporal and spatial
attention mechanism from the perspective of physiological EEG
characteristics. Finally, as reported later in this section, we
applied this method to control the flight of a UAV using MI
EEG data.

In Figure 4, we present a brain active correlation map
corresponding to our classification results for each subject
using four-class MI EEG signals from the BCIIV2a dataset.
As we know, when people imagine or execute movements
of their left or right hand, both feet, and tongue, the
power of the mu (8–12 Hz) and beta (16–26 Hz) rhythms
can decrease or increase in the sensorimotor region of the
contralateral and ipsilateral hemispheres. The red color indicates
a positive correlation, i.e., event-related synchronization
(ERS), with a deeper color denoting a stronger positive
correlation. In contrast, the blue color indicates a negative
correlation, i.e., event-related desynchronization (ERD), with
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FIGURE 4 | Brain active correlation map corresponding to our classification results for each subject using four-class motor imagery (MI) unmanned aerial vehicle (EEG)

signals from the BCIIV2a dataset. Twenty-two Ag/AgCl electrodes were used to record the EEG. (A–D) The MI of the left hand, right hand, both feet, and tongue for

each line in the picture. The electrode Cz is located on the center of the head. C3 and C4 are located on the left and right sides, respectively. These electrodes are

positioned directly over the motor cortex areas. Red indicates a positive correlation, i.e., increasing amplitude values (ERS), whereas blue indicates a negative

correlation, i.e., decreasing values (ERD).

a deeper color denoting a stronger negative correlation.
For example, the first row in Figure 4 shows the brain
activation pattern for MI data corresponding to left-hand
motion. Our classification results are for the MI EEG signals
of left-hand motion, and the corresponding brain active
correlation map shows the ERS and ERD in the left and
right hemispheres.

In addition, the evaluation results shown in Figure 4 prove
the validity of our assumption that when people think about an
action, any channel with similar motor-dependent characteristics
can promote mutual improvement, regardless of its spatial
location in the brain. Taking the left-hand MI as an example,
the traditional method often manually chooses C3, C4, and Cz as
inputs. However, as shown by the brain active correlationmap for
the left-hand MI of subject 1 in Figure 4, in neurophysiological
terms, channels FC3, FCz, FC2, C5, Cz, CP1, and CP4 all exhibit
the same ERS trend as channel C3, which is located in the motor
cortex area. Similarly, channels Fz, FC4, C2, CPz, and Pz exhibit
the same ERD trend as channel C4. This proves that our initial
hypothesis is correct.

Therefore, different from the traditional method, we use the
spatial self-attention module to capture the potential spatial
links between any two channels of the MI EEG signals. The
features within a certain channel are updated by aggregating the
features across all channels with a weighted summation, where
the weights are automatically learned according to the feature
similarities between the corresponding channels. This module
defines a new learned spatial representation of the raw MI EEG
data that chooses the best channels by automatically assigning
higher values to motor-dependent channels and lower values to
motor-independent channels. The evaluation results show that
our method effectively improves the accuracy of classification.

5. CONCLUSION

This paper has described a parallel spatial–temporal self-
attention CNN-based architecture for four-class MI EEG
classification. The self-attention mechanism is first introduced
for capturing robust and generic feature dependencies in the
spatial and temporal dimensions. As a result, we can extract
distinguishable spatial–temporal features of MI signals. The
experimental results on two public datasets show that the
proposed model outperforms several state-of-the-art methods.
Furthermore, successful real-time control of a virtual UAV was
achieved using the trained model. In the future, we plan to
explore the multi-task analysis of MI EEG signals.
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