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A novel operation scheme is proposed for high-density and highly robust neuromorphic
computing based on NAND flash memory architecture. Analog input is represented
with time-encoded input pulse by pulse width modulation (PWM) circuit, and 4-bit
synaptic weight is represented with adjustable conductance of NAND cells. Pulse width
modulation scheme for analog input value and proposed operation scheme is suitably
applicable to the conventional NAND flash architecture to implement a neuromorphic
system without additional change of memory architecture. Saturated current-voltage
characteristic of NAND cells eliminates the effect of serial resistance of adjacent cells
where a pass bias is applied in a synaptic string and IR drop of metal wire resistance.
Multiply–accumulate (MAC) operation of 4-bit weight and width-modulated input can
be performed in a single input step without additional logic operation. Furthermore,
the effect of quantization training (QT) on the classification accuracy is investigated
compared with post-training quantization (PTQ) with 4-bit weight. Lastly, a sufficiently
low current variance of NAND cells obtained by the read–verify–write (RVW) scheme
achieves satisfying accuracies of 98.14 and 89.6% for the MNIST and CIFAR10
images, respectively.

Keywords: neuromorphic, synaptic device, in-memory computing, NAND flash, deep neural networks, quantized
neural networks

INTRODUCTION

Recently, deep neural networks (DNNs) have achieved excellent performance for a variety of
intelligent tasks, such as natural language processing, computer vision, and speech recognition
(Truong et al., 2016; Nishani and Cico, 2017; Sainath et al., 2017). However, recent high-
performance DNNs require a vast network size and an enormous number of parameters and
computational capability, which demand very fast and power-hungry graphics processing units
(Scardapane et al., 2017; Khan et al., 2019). Furthermore, von Neumann architecture leads to
tremendous time and energy consumption due to the bottleneck between memory and processor.
To accelerate neural network computation, neuromorphic systems that can efficiently process
multiply–accumulate (MAC) operation have been proposed and developed utilizing memory
devices (Suri et al., 2011; Jackson et al., 2013).
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In prior research, resistive random access memories (RRAMs)
were mainly used as synaptic devices to implement the
neuromorphic system (Park et al., 2013; Tang et al., 2017;
Andri et al., 2018; Zhou et al., 2018; Guan and Ohsawa, 2019).
However, RRAMs require further research in terms of cell
characteristics variation, reliability, and integration of selectors
for large-scale integration (Woo and Yu, 2019). In addition, the
effect of metal wire resistance can cause inaccurate vector–matrix
multiplication (VMM) operation in a large array (Wang et al.,
2020). Furthermore, low on/off current ratio of RRAMs restricts
bandwidth to sum current of many RRAM devices (Sun et al.,
2018; Yu et al., 2020). The state-of-the-art algorithms typically
demand a huge parameter size. To satisfy this demand, NAND
flash memory can be a promising candidate for a synaptic device
to meet this requirement. NAND flash memory offers ultra-high
bit density for immense data storage and low fabrication cost
per bit, and it has been well known as a mature technology
(Yamashita et al., 2017; Kang et al., 2019; Huh et al., 2020).
However, NAND flash memory was not commonly used in
neuromorphic system because of the characteristics of the string
structure. In RRAM crossbar array, the input bias is applied
to word-lines (WLs), and output current is summed through
bit-lines (BLs). Therefore, VMM of the input voltage applied
to the WLs and the conductance of the RRAM can be easily
implemented. However, in NAND flash memory architecture, the
WL and source-line (SL) are shared by NAND strings in the
same block. Furthermore, read bias and pass bias are applied
to the selected layer and unselected layers, respectively, to read
the current of NAND cells of a selected layer. Therefore, it has
been considered difficult to implement VMM in NAND flash
memory architecture.

In this article, a novel neuromorphic architecture is proposed
for the quantized neural network (QNN) utilizing NAND
flash memory with a pulse width modulation (PWM) scheme.
Our scheme implements a high-density neuromorphic system
because two NAND cells having eight current levels (3-bit)
are used as one synaptic device, and a PWM circuitry can
represent the analog input values. Furthermore, our scheme
can process MAC of the analog input value and 4-bit weight
with only a single input step, which considerably decreases
power consumption and burden of peripheral circuits needed in
architectures in digital design. Utilizing saturated current-voltage
characteristics of NAND cells solves the problem arising from the
resistance of the pass cells where a pass bias is applied and metal
wire. Furthermore, the effect of quantization training (QT) on
inference accuracy is investigated compared with post-training
quantization (PTQ). Lastly, we show that sufficiently low current
variance of synaptic devices obtained by the read–verify–write
(RVW) method achieves satisfying accuracy.

MATERIALS AND METHODS

Neuromorphic System Using NAND
Flash
Figure 1 shows schematically an operation scheme of a
neuromorphic system utilizing a three-dimensional (3D) NAND

flash with PWM circuits. Input voltages with adjustable pulse
width from PWM circuits are imposed on string-select lines
(SSL), where cell current is added in the BLs, as shown in
Figure 1A. The NAND cells in the kth WL represent the
synapses in the kth synaptic layer of the neural network
shown in Figure 1B. The read bias (Vread) and pass bias
(VPASS) are imposed on a selected WL and unselected WLs,
respectively, as shown in Figure 1C. When Vread is imposed
on the WL sequentially along the synaptic string, the output
of each postsynaptic neuron is sequentially generated. Cells are
connected to a selected WL store weights, and each weight
determines the string-current of each string. In the proposed
scheme, the input voltage is simultaneously imposed on all SSLs.
The proposed operation scheme is different from that of the
conventional NAND flash memory architecture, as compared
in Table 1. The input bias corresponding to neuron activation
is applied to SSLs, and the current sum is read through
BLs in the proposed operation scheme. On the other hand,
the cell selected by the input address is read through BL in
the conventional NAND flash memory. Furthermore, SSLs are
simultaneously biased by input voltage in the proposed scheme,
whereas read bias is imposed sequentially on each SSL in
the conventional NAND flash memory. Therefore, this scheme
significantly reduces latency compared with conventional NAND
flash memory technology. The output current is read through
the BL in both schemes. In addition, the proposed synaptic
architecture utilizing NAND flash is different from the RRAM
crossbar array. In the RRAM crossbar array, the input bias is
applied to WLs, and the output current is summed through
BLs. The NAND cell array is composed of cell strings, and each
cell string has multiple cells connected in series. In the NAND
cell array, the WL and SL are shared by NAND strings in the
same block of NAND flash memory. In addition, to turn on
unselected cells, pass bias (VPASS) should be applied to WLs of
unselected cells. Therefore, in the proposed synaptic architecture,
the input is applied to SSLs, and the output current is read
in the BLs. Furthermore, cells in the kth layer in NAND flash
strings represent synapses in the kth layer synapse layer in neural
networks. Note that the proposed operation scheme can be
applied to both 2D and 3D NAND flash memory architectures.

Figure 2 represents VMM operation utilizing a string
array and neuron circuits. In the neuromorphic system, the
weight and input in the DNN algorithm are represented
by conductance and input voltage of synaptic devices,
respectively. In the DNN algorithm, weighted sum output
is linearly increased with input as shown in the equation;

O =
∑

WX (1)

where O, W, and X represent weighted sum output, weight, and
input, respectively. In the neuromorphic system, it is commonly
assumed synaptic devices have linear current (I) versus voltage
(V) characteristics (Kim T. et al., 2017). If synaptic devices
have linear I-V characteristics, the amplitude of input in a
DNN model can be simply represented by the amplitude of
input voltage of synaptic devices. Then, the weighted sum
current is represented by the product of input voltage and
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FIGURE 1 | (A) Operation scheme for synaptic string array utilizing NAND flash memory with PWM circuits. (B) Schematic diagram of neural networks. (C) Pulse
diagram applied to WLs with the time.

conductance of synaptic devices, as shown in the equation;

I =
∑

GV (2)

where I, G, and V represent weighted sum current, conductance,
and input voltage of devices, respectively. On the other hand,
the cell device of NAND flash memory has non-linear I-V
characteristics (Lee et al., 2018, 2019a), which means output
current has a non-linear relationship with the input voltage.

TABLE 1 | Comparison of proposed operation scheme with that of conventional
NAND flash memory.

Proposed operation
scheme

Conventional NAND
flash memory

Input Input bias corresponding to
neuron activation

Address of a selected cell

String select line Simultaneously biased Sequentially read

Output current Bit-line Bit-line

Thus, an analog amplitude of input pulse cannot represent the
amplitude of input in a DNN algorithm (Lee et al., 2019b). To
resolve the problem of the non-linear I-V characteristic of NAND
cells, the PWM scheme is proposed. In this scheme, the amplitude
of the input pulse is fixed, whereas the pulse width of the input
pulse varies in proportional to the amplitude of input in a DNN
algorithm. Then, the weighted sum output is represented by the
amount of charge accumulated in neuron circuits, whereas the
input voltage is applied as shown in the equation;

Q = V
∑

GT (3)

where Q, V, G, and T represent weighted sum charge, the constant
amplitude of input pulse, conductance of device, and pulse width
of the input pulse, respectively. Therefore, the weighted sum
in a DNN model can be correctly performed in neuromorphic
systems by using the PWM scheme despite the non-linear I-
V characteristics of cell devices. In addition, this scheme is
well fitted to conventional NAND flash memory architecture.
Two adjacent NAND cells are used for one synaptic device to
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FIGURE 2 | (A) Schematic diagram of synaptic string array consisting of synapses with positive weight (G+) and synapses with negative weight (G−). (B) Pulse
diagram of operation scheme and voltage of capacitor with the time. (C) Voltage of capacitor (VC) with difference of IEVEN and IODD.

represent negative weight value. Considering the negative weight,
the charge accumulated in the neuron circuit can be represented
by the equation;

Q = V
∑

T( G+ − G−) (4)

where G− and G+ represent negative and positive
weights, respectively.

By adopting two current mirrors and one capacitor as one
neuron circuit shown in Figure 2A, current summing in time
scale and subtracting between positive and negative weights are
carried out (Kim H. et al., 2017). In Figure 2A, synaptic devices
connected to even BL and odd BL have positive weight (G+)
and negative weight (G−), respectively. The k, j, and i in the
weighted sum equation of Figure 2A represent the kth synapse
layer, jth postsynaptic neuron, and ith synapse connected to jth
neuron, respectively. The current of even BL (IEVEN) accumulates
the charge in a capacitor, and the current of odd BL (IODD)
reduces the charge in a capacitor. Figure 2B represents the pulse
diagram of the operation scheme and voltage of the capacitor
(VC) in the case of positive weight as an example. Whereas Vread
is applied to selected WL during Tread, the VSSL1, VSSL2, and
VSSL3 are applied to SSL1, SSL2, and SSL3 during T1, T2, and
T3, respectively. Then, I1, I2, and I3 flow through NAND strings
1, 2, and 3, respectively. VC increases to V3, which equals to
(I1·T1+ I2·T2+ I2·T2)/C. Here, for simplicity of description, it is
assumed that the weights of cells to which read bias is applied are
the same. The VDD and ground limit the voltage of the capacitor.
Therefore, the relationship between VC and the difference of
IEVEN and IODD represents a hard-sigmoid function, which is
one of the activation functions, as shown in Figure 2C. Note that
VC linearly increases with the difference of IEVEN and IODD in a
specific current region where the difference of IEVEN and IODD
ranges from -(C·VDD)/(2·Tread) to (C·VDD)/(2·Tread). Here, for
simplicity of description, it is assumed that IEVEN and IODD are
constant during Tread. Therefore, this scheme can process MAC

of 4-bit weight and analog input pulse and implement neuron
activation in a single input step without any logic operation,
significantly reducing the burden of peripheral circuits required
for logic operation. The PWM circuits, current mirrors, and
capacitors are reused for all synapse layers (equivalently WLs)
in a synaptic string, which greatly reduces the area of peripheral
circuits. Note that the convolution operation and VMM in
multilayer neural networks are the same operations in principle
when a 2D convolution kernel is unrolled into a 1D column (Gao
et al., 2016). Therefore, the proposed scheme in this work can be
applied to the implementation of convolutional neural networks.

RESULTS

Measurement Results of NAND Flash
Cells
We measured floating-gate 2D NAND cells fabricated with
26-nm technology. One cell string is composed of 64 cells,
including a ground select line transistor, an SSL transistor, and
two dummy cells. The channel width and length are 20 and
26 nm, respectively. Figure 3 represents BL current (IBL) versus
BL voltage (VBL) curves with various weight levels at a VPASS of
6 V and WL voltage (VWL) of 0 V. Each cell has eight weight
levels giving eight current levels from 0 to 1.4 µA, and the current
difference between adjacent current levels is 200 nA. As one
synaptic device consists of positive and negative weight cells, the
synaptic device has a 4-bit weight. In the neuromorphic system,
the IR drop of metal wire causes inaccurate VMM operation, as
resistance in metal wire decreases effective voltage imposed on
synaptic devices. In addition, the channel resistance of adjacent
cells where pass bias is applied also results in inaccurate VMM
operation in NAND flash memory. To resolve these problems,
NAND cells are operated in the saturation region, eliminating
the problem caused by the resistance of the metal wire and the
pass cells in the unselected layers. IBL rarely changes despite the
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change of VBL in the saturation region, as shown in Figure 3, and
the minimum output resistance of a NAND cell, which operates
at a saturation region, is about 20 M�.

As VPASS is applied to pass cells during the inference process,
VPASS disturbance needs to be investigated. Figure 4 shows
the IBL–VWL curves with VPASS disturbance and 12-V program
bias (VPGM). Black square symbols represent the IBL–VBL curve
measured in a fresh cell. The red circle symbol represents the IBL–
VBL curve after applying VPASS of 6 V 104 times to the fresh cell.
As these two curves are nearly the same, the effect of VPASS is
negligible. The curves measured after a pulse with VPGM of 12 V
is applied to the cell 10 times and 20 times, which are depicted by
green triangle symbols and blue diamond symbols, respectively.
The inset shows the change of IBL (1IBL) after applying 104 VPASS

FIGURE 3 | IBL–VBL characteristics with various weight levels at a VPASS of
6 V and a VWL of 0 V.

FIGURE 4 | IBL–VWL characteristics with VPASS and VPGM.

(6 V), 10 VPGM, and 20 VPGM pulses. As shown in the inset, the
IBL shows little variation with 104 VPASS pulses compared with 10
VPGM pulses.

We estimate device variation, as it degrades the classification
accuracy of neural networks. RVW method is used to match IBL
of NAND cells in a NAND array to the target current level among
eight levels in Figure 3. The weights obtained in off-chip training
are transferred to cells by the RVW method, which reiterates
the cycle of reading, verifying, and writing threshold voltage of
NAND cells. After each VPGM pulse is imposed on the NAND
cell, the IBL of the NAND cell is measured by the Vread to check
if the measured conductance of the cell is outside of the target
conductance range. A VPGM is imposed on the NAND cell if the
conductance is outside of the target conductance range. As this
process is repeated, the amplitude of VPGM increases. The RVW
process ends when the conductance of the cell is within the target
conductance range. In this work,∼40 pulses are applied to fit the
current of a synaptic device within the range of target current on
average, and amplitude of VPGM increases from 11 V with a fixed
width of 100 µs. Figure 5 shows the measured IBL distribution of
second and third weight levels (W2, W3) obtained by the RVW
method in the NAND string. To investigate the effect of device
variation on neural networks, the largest variation among the
eight levels need to be estimated. Among the eight levels, W2
has the largest device variation, and W3 has the smallest device
variation. The estimated device variation (σw/µw) of W2 is 3.43%,
and W3 is 1.68% based on the statistical parameters extracted
from the measurement data. In this estimation, we assume that
the conductance distribution of NAND cells follows a Gaussian
distribution (Lee et al., 2019b).

Pulse Width Modulation Circuit
Figure 6 represents a PWM circuit consisting of a sawtooth
generator, a differential amplifier, and a level shifter. The
sawtooth generator produces a sawtooth wave (VS). The
differential amplifier compares VS with an analog signal (VA)
and amplifies the difference between VS and VA. The level shifter
produces a width-modulated pulse (VP) with a fixed amplitude,
and VP is applied to SSLs of a synaptic string array. Figure 7
shows the simulation results of VA, VS, and VP in the PWM
circuit when VAs are 0.3 and 0.9 V, as an example. The pulse
width of the VP is proportional to the amplitude of the VA. As
the amplitude of VA increases from 0.3 to 0.9 V, the pulse width
of VP increases from 3 to 9 µs.

Evaluation of Quantized Neural Networks
In QNNs, the weight can be quantized during or after training.
PTQ means that training the DNNs with high-precision floating-
point weight without quantization during training. After the
training process, PTQ quantizes the pretrained weight at the
inference stage. On the other hand, QT performs quantizing
the weights during the training process and training a DNN
model with quantized weights during forward and backward
propagations (Li et al., 2017a,b; Choi et al., 2019). We investigate
the effect of QT that involves quantization during the training
process on the inference accuracy. Figures 8A,B show simulated
classification accuracies of QNN using PTQ for CIFAR10
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FIGURE 5 | IBL distribution of NAND cells in NAND array at (A) W2 and (B) W3 levels.

and MNIST, respectively. Classification accuracies decrease by
0.33 and 1.26% with PTQ for MNIST and CIFAR10 images,
respectively, compared with those obtained from neural networks
having floating-point weight, as the bit-width of weight decreases
to 4. Therefore, the PTQ scheme significantly decreases inference
accuracy with 4-bit weight.

To decrease the degradation of classification accuracy, we
adopt QT, which is an algorithm that involves fine-tuning
optimized for QNN. Figure 9 shows the simulated classification
accuracy of neural networks using QT. QT increases classification
accuracies by 0.34 and 0.96% for MNIST and CIFAR10,
respectively, compared with those for PTQ. The classification
accuracies using QT for MNIST and CIFAR10 are 98.2 and
89.7%, respectively, which are comparable with those obtained in
neural networks having floating-point weight (FNN), as shown in
the inset. Therefore, by adopting QT, the neuromorphic system
utilizing NAND flash memory weighting 4-bit can achieve high
inference accuracy. The power efficiency of the synaptic device
is estimated from the distribution of synaptic weights in QNN.
The average power consumed in a synaptic device per neural
computation is estimated to be 0.15 µW for multilayer neural

FIGURE 6 | PWM circuit consisting of sawtooth wave generator, differential
amplifier, and level shifter.

networks consisting of five layers (784–1024–1024–1024–10).
The power consumption of the synaptic device can be reduced
by adopting a thin (∼3 nm) body (Lue et al., 2019) or pruning the
neural networks (Lee et al., 2020). Note that, in this work, we use
a 4-bit weight because a 4-bit weight can achieve higher accuracy
than binary weight and achieve comparable accuracy compared
with a 6-bit weight (Hubara et al., 2017). If a synaptic device has
a 5-bit conductance level to implement a 6-bit weight, more time
and energy are required in the RVW process for weight transfer.

To investigate the effect of weight and input precision on the
classification accuracy of the neural networks, QNN, having 4-
bit weight and analog input, is compared with binary neural
networks (BNN) having 1-bit weight and 1-bit input. Figure 10
shows the inference accuracy of QNN and BNN for CIFAR10
with convolution neural networks having three fully connected
layers and six convolution layers. Note that, as bit-width of
weight and input in QNN decreases, the classification accuracy
decreases (Hubara et al., 2017). It is because the quantization
of weights and inputs results in a weighted sum error. In
addition, the reduction of bit-width of quantization increases the
weighted sum error, which decreases classification accuracy. The
final classification accuracies are 89.38 and 87.1% for QNN and
BNN, respectively. Therefore, the proposed operation scheme
can implement QNN with higher inference accuracy compared
with BNN (Lee et al., 2019a).

Effect of Device Non-ideality
Figure 11 shows the effect of device variation (σw/µw) on
simulated classification accuracy of QNN for CIFAR10 and
MNIST images. The simulation is executed 20 times at each
σw/µw, assuming a Gaussian distribution (Lee et al., 2019b). The
classification accuracy decreases as the device variation increases.
In this work, the largest device variation among eight levels is
3.43% (W2), so it is used to estimate the classification accuracy.
As the device variation (σw/µw) of our work is sufficiently low,
the inference accuracies decrease by less than 0.16 and 0.24%
for the MNIST and CIFAR 10 images, respectively, compared
with accuracy with no variation. To reduce the variation in
the conductance of synaptic devices, it is necessary to reduce
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FIGURE 7 | Simulated result of VA, VS, and VP in PWM circuit.

the target current range set in the control circuits of the RVW
method. However, this increases the number of pulses applied
to devices, which increases energy and time consumption in the
RVW process. Therefore, it is necessary to set the optimized
target current range in RVW, taking into account the degree of
conductance variation and the energy and time consumed in the

RVW process. The variation obtained in this work is less than
3.43%, which is sufficiently low to achieve comparable accuracy
compared with that with no variation.

Figure 12 shows the effect of the stuck-at-off device ratio
on simulated classification accuracy of QNN for CIFAR10 and
MNIST images. The simulation is executed 20 times at each ratio,
and the classification accuracy decreases as the ratio of stuck-at-
off device increases. The classification accuracies decrease by 13.5
and 0.5% for CIFAR10 and MNIST, respectively, as the stuck-
at-off device ratio increases to 10%. To reduce degradation of
classification accuracy due to the stuck-at-off device below 1%
for CIFAR10, the ratio of the stuck-at-off device needs to be
below 2%. NAND flash memory is currently a mass-produced
technology, and the ratio of stuck-at-off cells is estimated to
be less than 1%.

DISCUSSION

Comparison of Input Pulse Schemes
To implement VMM in a neuromorphic system, the intensity
of the input signal in the DNN algorithm can be represented
by the amplitude or width of the input pulse. However, the
amplitude modulation scheme causes an error in VMM because

FIGURE 8 | Simulated classification accuracy with respect to the bit-width of weight using PTQ for (A) CIFAR10 and (B) MNIST images.

FIGURE 9 | Simulated classification accuracy with QT for (A) CIFAR10 and (B) MNIST images.
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FIGURE 10 | Simulated classification accuracy of QNN and BNN for CIFAR10
images.

FIGURE 11 | Effect of device variation (σw/µw ) on simulated classification
accuracy of QNN for CIFAR 10 and MNIST images. Red star represents the
accuracy when the largest variation obtained in this work is applied.

the I-V characteristics of synaptic devices are non-linear (Kim T.
et al., 2017). To resolve this problem, a previous study reported
an input pulse mapping scheme using an inverse function

generator that handles the non-linearity of I-V characteristics
(Kim T. et al., 2017). This solves the non-linearity problem,
but the VMM can still be inaccurate due to unwanted voltage
drop across the parasitic resistance of the pass cells or metal
wire. As described earlier, the amplitude modulation scheme has
limitations in realizing accurate VMM operation but can reduce
latency compared with the width modulation scheme.

On the other hand, the width modulation scheme can
eliminate the effect of parasitic resistance by operating synaptic
devices in the saturation region of I-V characteristics. This
scheme may have a longer latency than the amplitude modulation
scheme but enables accurate VMM. The width modulation
scheme requires a PWM circuit to convert the intensity of the
input to the width of the input pulse, which increases the burden
on the peripheral circuit. Because the amplitude modulation
scheme requires an inverse function generator that requires
an operational amplifier, it also increases the burden on the
peripheral circuit (Kim T. et al., 2017).

Comparison With Prior Works
In prior studies, our group has reported neuromorphic
architectures that use NAND flash memory cells as binary
synapses performing XNOR operation in BNNs (Lee et al., 2019a)
and synaptic devices in on-chip training (Lee et al., 2018). In
those studies, output current for each neuron is sequentially
generated each time Vread is imposed on a selected WL. However,
in this work, all outputs of neurons in a neuron layer are
generated in a single input pulse. In addition, in the previous
study of Lee et al. (2018), the conductance of synaptic devices
is changed by applying an identical pulse to the synaptic device
in on-chip learning. In this study, the conductance of synapse
is tuned by the RVW method in off-chip learning. In Lee et al.
(2019a), binary synaptic architecture capable of XNOR operation
digitally was reported. However, this work proposes the VMM
of multi-bit input and multi-bit weight in an analog fashion,
significantly decreasing the burden of neuron circuits compared
with the scheme of digital fashion.

A design scheme of synaptic architecture using NAND flash
memory for performing MAC with multi-bit weight and multi-
bit input has been proposed in Lue et al. (2019). In this

FIGURE 12 | Effect of stuck-at-off device ratio on simulated classification accuracy of QNN for (A) CIFAR 10 and (B) MNIST images.
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scheme, lots of binary cells and BLs are utilized to represent a
multilevel weight and a multilevel input, respectively, resulting
in a substantial disadvantage in terms of synapse density (Lue
et al., 2019). Furthermore, “shifter and adder” design is utilized
to generate multilevel MAC, resulting in lots of burden in
peripheral circuits (Lue et al., 2019). On the other hand, the
proposed scheme in this work uses two NAND cells as one
synaptic device and utilizes the PWM circuit to represent multi-
bit input, which significantly increases the density of synaptic
devices. Furthermore, the VMM can be performed in a pulse
step using the proposed scheme in this work, greatly reducing the
CMOS overhead in peripheral circuits compared with the “shifter
and adder” design.

CONCLUSION

We have proposed a novel operating method and architecture
for neuromorphic computing using PWM in the NAND
flash memory architecture and evaluated its performance. The
proposed operation scheme is well fitted to conventional NAND
flash memory to implement QNNs with width-modulated input
pulse and 4-bit weight. In addition, VMM of analog input and
4-bit weight can be implemented with a single pulse without
additional logic operation. By utilizing a RVW scheme, eight
conductance levels from 0 to 1.4 µA were demonstrated with a
device variation of less than 3.43%. QT increases accuracies by

0.34 and 0.96% for MNIST and CIFAR10 images, respectively,
compared with PTQ. Sufficiently low device variation (3.43%)
of NAND cells results in high inference accuracy. Finally, the
proposed operation scheme in this work can implement high-
density, highly robust, and highly efficient neuromorphic systems
using NAND flash memory architecture.
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