AUTHOR=Sim Hyeonuk , Lee Jongeun TITLE=Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware JOURNAL=Frontiers in Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.543472 DOI=10.3389/fnins.2020.543472 ISSN=1662-453X ABSTRACT=
While convolutional neural networks (CNNs) continue to renew state-of-the-art performance across many fields of machine learning, their hardware implementations tend to be very costly and inflexible. Neuromorphic hardware, on the other hand, targets higher efficiency but their inference accuracy lags far behind that of CNNs. To bridge the gap between deep learning and neuromorphic computing, we present bitstream-based neural network, which is both efficient and accurate as well as being flexible in terms of arithmetic precision and hardware size. Our bitstream-based neural network (called