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Increasing evidence has suggested that the dynamic properties of functional brain
networks are related to individual behaviors and cognition traits. However, current
fMRI-based approaches mostly focus on statistical characteristics of the windowed
correlation time course, potentially overlooking subtle time-varying patterns in dynamic
functional connectivity (dFC). Here, we proposed the use of an end-to-end deep
learning model that combines the convolutional neural network (CNN) and long
short-term memory (LSTM) network to capture temporal and spatial features of
functional connectivity sequences simultaneously. The results on a large cohort (Human
Connectome Project, n = 1,050) demonstrated that our model could achieve a high
classification accuracy of about 93% in a gender classification task and prediction
accuracies of 0.31 and 0.49 (Pearson’s correlation coefficient) in fluid and crystallized
intelligence prediction tasks, significantly outperforming previously reported models.
Furthermore, we demonstrated that our model could effectively learn spatiotemporal
dynamics underlying dFC with high statistical significance based on the null hypothesis
estimated using surrogate data. Overall, this study suggests the advantages of
a deep learning model in making full use of dynamic information in resting-state
functional connectivity, and highlights the potential of time-varying connectivity patterns
in improving the prediction of individualized characterization of demographics and
cognition traits.

Keywords: dynamic functional connectivity (dFC), deep learning, gender classification, intelligence prediction,
resting-state functional magnetic resonance imaging

INTRODUCTION

Functional organization principles in the human brain derived from resting-state functional
MRI (rs-fMRI) data have been found to improve our understanding of individual cognition and
behavioral differences greatly. Functional connectivity (FC) analysis based on rs-fMRI is often
applied to quantify the statistical dependencies across different brain regions which are correlated
over time (Friston, 2011). Initially, FC was assessed with the assumption that the connections
remain unchanged at rest (Hutchison et al., 2013). Moreover, recent studies have found that FC is
extremely useful in gender classification (Zhang et al., 2018) and individual prediction of cognition
traits such as fluid intelligence (Finn et al., 2015).
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However, increasing evidence has suggested that the statistical
properties of FC change over different time scales across
task states (Elton and Gao, 2015; Fatima et al., 2016) and
during periods of unconstrained rest (Chang and Glover, 2010;
Allen et al., 2014), i.e., dynamic functional connectivity (dFC).
So far, spatiotemporal patterns and dynamics of functional
networks derived from rs-fMRI data have been widely studied.
The evidence suggested that dynamic interactions of different
functional networks were relate to specific tasks (Yuan et al.,
2018a; Li et al., 2019) and brain disorders such as Alzheimer’s
Disease (Huang et al., 2017), which motivated us to explore
the spatiotemporal characteristics of functional networks based
on dFC. Moreover, dFC (Sakoğlu et al., 2010) has been
successfully applied to characterizing neuropsychiatric disorders
like schizophrenia (Damaraju et al., 2014; Du et al., 2017),
autism spectrum disorder (Zhu et al., 2016) and depression
(Demirtaş et al., 2016). Importantly, dFC is linked to individual
characteristics such as cognitive flexibility (Douw et al., 2016),
emotions (Tobia et al., 2017), and age (Qin et al., 2015; Davison
et al., 2016), and even the variability of dFC can be used to predict
high-level cognitive performance (Liu et al., 2018).

Although these studies discriminated individual cognitive
ability or demographic characteristics based on dFC, most
of them employed statistical characteristics of the original
dynamic correlation series as features to achieve classification
or prediction. Nevertheless, these manually selected features
neglected the time-varying patterns in correlation timecourse
of FC through folding temporal dimension of dFC, likely
causing the loss of some useful information related to individual
cognition traits. Actually, the temporal evolution of connectome-
scale brain network interactions has been observed to fit
well the task-fMRI data (Yuan et al., 2018a), suggesting the
neurophysiological significance of spatiotemporal structures
in functional network dynamics. Some recent studies also
demonstrated the potential of temporal sequence of windowed
functional correlations in predicting individual cognitive traits
and demographics. For example, the time series of dFC has long-
range sequential correlations that vary across the human adult
lifespan (Battaglia et al., 2020) and specific temporal structures of
several FC microstates have been reported to be subject-specific
and heritable, and significantly linked to individual cognitive
traits (Vidaurre et al., 2017). Moreover, network switching
in dFC is related to task performance and sleep (Pedersen
et al., 2018), attention (Madhyastha et al., 2015), schizophrenia
(Damaraju et al., 2014), and depression (Zheng et al., 2017).
In particular, a growing body of researches links observed
patterns of non-stationary switching between FC states with
aspects of the underlying neural dynamics (Hansen et al., 2015;
Thompson, 2018), indicating short-term alteration in FC time
series along with shifting in cognitive states. However, given that
the mechanism underlying spontaneous fluctuation in resting-
state dFC has not been fully understood, explicitly modeling the
sequence of time-resolved FC is still a challenging task.

Currently, deep learning has undergone unprecedented
development in neuroscience. The advantage of an end-to-end
model like deep learning is automatically extracting abstract
spatial-temporal structures from neuroimaging data (Huang

et al., 2017; Li et al., 2019), which has been used for discriminating
complex mental disorders (Yan et al., 2017; Zeng et al., 2018)
and gender classification (Yuan et al., 2018b). In particular, RNN
models, such as long short-term memory (LSTM), can effectively
extract complex and non-linear time-varying patterns underlying
signals’ fluctuations in a data-driven way due to its advantages
of “deep in time,” and have been successfully used in identifying
autism (Dvornek et al., 2017) and discriminating schizophrenia
(Yan et al., 2019) from healthy controls.

In this work, we ask to what extent the dFC can be used to
predict individual cognition traits including gender classification
and individual prediction of fluid and crystallized intelligence,
using a deep network model on the dFC time course. We
proposed the use of a convolutional neural network (CNN)
and LSTM framework to identify the spatial and temporal
structures underlying the spontaneous fluctuation of dFC. We
assumed this framework directly working on the temporal series
of dFC, could avoid information reduction and make full use
of high-level spatiotemporal information of dFC. This model
consists of two parts. The first part includes a multi-scale 1D
convolutional layer, concatenation layer, and max-pooling layer,
which were designed for spatial feature extraction. The second
part involves two stacked LSTM layers, which were used to
detect temporal dynamics (by learning short-term sequential
switching and unknown long-term/non-linear patterns) in time
series of windowed correlations. Finally, the average outputs of
the LSTM layer were put as the input for the final fully connected
layer. We further assessed the capacity of the CNN + LSTM
model on one gender classification task and two prediction tasks
of individual intelligence, with comparison to support vector
machine (SVM) and support vector regression (SVR) models that
usually use statistical characteristics of dFC as features (Liu et al.,
2018). Furthermore, we conducted deconvolutional computation
to visualize the learned features corresponding to task-related
connections in three tasks for demonstrating the validity of the
network in learning dynamics of time-resolved FC.

MATERIALS AND METHODS

Participants and Data Acquisition
The dataset was selected from the publicly available S1200 release
of the Human Connectome Project dataset (HCP), including
1,206 subjects (age 22–35). The rs-fMRI data of all subjects was
scanned in two sessions on two different days. Each session
contains a right-left (RL) phase-encoding run and a left-right
(LR) phase-encoding run. In addition, the HCP collected many
behavioral measures, such as fluid intelligence and crystallized
intelligence, which allows us to investigate the relationship
between individual traits and their neuroimaging data. 1,050
subjects (gender: 569 females and 481 males) were left for this
study by restricting subjects with at least one run and two
intelligence measures.

Data was acquired using a 3.0 T Siemens scanner at
Washington University at St. Louis. The data acquisition
parameters were as follows: repetition time (TR) = 720 ms, time
echo (TE) = 33.1 ms, flip angle (FA) = 52◦, resolution = 2.0 mm,
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field of view (FOV) = 208 × 180 mm (RO × PE),
matrix size = 104 × 90 (RO × PE), slices = 72, and
volumes = 1,200. More details are available in the previous
literature (Van Essen et al., 2013).

Data Preprocessing
The HCP dataset was first preprocessed under the HCP minimal
preprocessing pipeline, which mainly includes distortion and
spatial artifact removal, motion correction, within-subject
cross-modal registration, and cross-subject registration to a
standard space (Glasser et al., 2013). In addition, standard
preprocessing procedures for resting-state connectivity analysis
were performed on the HCP using SPM81. For each subject,
the fMRI images were resampled to 3 × 3 × 3 mm
isotropic voxels. Next, a Gaussian filter kernel of 6 mm full
width at half maximum (FWHM) was used to smooth the
images spatially. Then, the images were temporally bandpass
filtered from 0.01 to 0.08 Hz. Finally, to further denoise
rs-fMRI data, we regressed the white matter (WM) signal,
head motion, cerebrospinal fluid (CSF) signal, and their first-
order deviations.

Dynamic Functional Connectivity
To obtain regions of interest (ROI) based bold signals, we
averaged preprocessed rs-fMRI time courses of voxels within each
gray matter region according to a 268-node functional atlas (Shen
et al., 2013). Then, a sliding time window approach (Calhoun
et al., 2014; Qin et al., 2015) was used to divide the ROI-based
brain signals into temporal segments with a window size of
39.6 s (55 TRs), and the dFC of each region pair was calculated
using Pearson correlation coefficients. As a result, a series of
268 × 268 correlation matrices were generated (Figure 1A).
Additionally, to normalize the coefficient values of correlation
matrices, we applied Fisher’s z-transformation to each correlation
matrix. Next, the upper triangular part of each correlation matrix
was reshaped into a vector for the following analysis. Ultimately,
for each run of each subject, we obtained a sliding-window
correlation matrix of 230 (windows)× 35,778 (connections).

dFC-Based Prediction Setup
Gender and behavioral data of intelligence on high-level
cognition from HCP protocol were selected, including fluid
intelligence (Penn Progressive Matrices, HCP: PMAT24_A_CR)
and crystallized intelligence which was measured using
NIH toolbox composite scores (Crystallized Cognition
Composite), combining Picture Vocabulary Test and Oral
Reading Recognition Test into one score (CompGcScore)
(Akshoomoff et al., 2013). Next, the gender and intelligence
measures of subjects were predicted using the CNN + LSTM
model based on dFC matrices.

CNN + LSTM Model
As shown in Figure 1B, the used CNN + LSTM network is
composed of three 1D convolutional layers which have three
filters of different size (4, 8, and 16 time windows), one

1http://www.fil.ion.ucl.ac.uk/spm

concatenation layer combining features from three convolutional
layers, one max-pooling layer which was designed to down-
sample, two LSTM network layers, and a fully connected
layer (Yan et al., 2019). The model was built for both the
gender classification task and cognitive performance prediction
tasks. Specifically, the obtained dFC matrices were fed into the
CNN + LSTM model as inputs for parameter optimization. Then,
the optimized model was saved for testing and comparison.

Multi-Scale Convolutional Layer
Although LSTM is powerful for handling temporal correlation,
the major drawback of LSTM in handling spatiotemporal data
was the redundancy of high-dimensional data. In addition, in
the previous CNN-RNN architecture, the capability of each
Conv1D layer determined by a single fixed filter size is extracting
local information at only one time scale. Moreover, to adapt
specific tasks, the filter length of 1D convolutional layer should
be hand-picked. Therefore, multi-scale 1D convolutional layers
were proposed for feature extraction because it can not only
reduce spatial dimension but also account for different scales
of brain activity (Roy et al., 2019; Yan et al., 2019). The
architecture of multi-scale 1D convolutional layers includes
multiple filters with diverse sizes in each convolutional layer.
Filter lengths of 1D convolutional layers changed exponentially
rather than linearly. Our experiment demonstrated that this
architecture led to better performance by using different filter
lengths (4, 8, and 16 time windows) in the 1D convolutional
layers. Therefore, the size of the convolutional filters of three
different scales 1D convolutional layers are 35,778 × 4 × 32,
35,778 × 8 × 32, 35,778 × 16 × 32, respectively. Here, we fed
the dFC matrices into the multi-scale convolutional layer. As
a result, outputs are three features whose sizes are 230 (time
windows) × 32 (feature dimension). Then, a concatenation
layer is designed to concatenate the output features in the time
dimension, resulting in a feature map with a size of 230 × 96.
Furthermore, a downsampling operation is performed using
the max-pooling layer along the time dimension with kernel
size 5 × 1, resulting in 46 × 96 features as an input of the
following LSTM layers.

We performed deconvolutional computation for each
convolutional layer (Figure 1C) (Zeiler and Fergus, 2014) to
obtain the distribution of those connections with relatively high
weights in discrimination. The deconvolutional results of one
1D convolutional layer were obtained for 100 randomly selected
subjects. The group-level statistical strength of each functional
connection was generated by computing the absolute value
of its average strength across 100 randomly selected subjects
(Zhang et al., 2018).

Two-Layer Stacked LSTM Layer
Long short-term memory is one kind of RNN models, which is
different from CNN because of its consideration of the temporal
information. LSTM consists of an input gate, an output gate,
a forget gate and a cell. The advantage of LSTM is that it has
sufficient ability to solve long-term dependencies because of
the interactive operation among these three gates, in contrast
to general RNNs. In addition, LSTM is designed to combat
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FIGURE 1 | The flowchart of using the CNN + LSTM model to distinguish sex and predict intelligence based on dynamic functional connectivity (dFC). (A) The
pipeline of calculating dFC using resting-state fMRI data and surrogate data that was generated by employing the multivariate phase randomization (MVPR) model
on original BOLD signals. (B) Overview of multi-layer structure in the CNN + LSTM model. (C) The deconvolutional computation for visualizing learned
spatiotemporal features in dFC from the Conv1D layers.

vanishing/exploding gradients by using a gating mechanism. The
LSTM model can be presented in the following form:

Forgetgate : ft = Sigmoid
(
Wf xt + Uf ht−1 + bf

)
(1)

Inputgate : it = Sigmoid
(
Wixt + Uiht−1 + bi

)
(2)

Outputgate : ot = Sigmoid
(
Woxt + Uoht−1 + bo

)
(3)

Estimatedcurrentcellstate : C̃t = Tanh
(
Wcxt + Ucht−1 + bc

)
(4)

Cellstate : Ct = it � C̃t + ft � Ct−1 (5)

Hiddenstate : ht = ot � tanh (Ct) (6)

Where Wf , Wi, Wo, and Wc are input weights; Uf , Ui, Uo, and
Uc are recurrent weights; bf , bi, bo, and bc are bias weights, and�
is the Hadamard product.

Here, we choose two densely connected LSTM layers because
it may better capture latent dynamic information than one LSTM
layer. It is worth noting that densely connected LSTM layers may
mitigate the vanishing or exploding gradients problem (Roy et al.,
2019; Yan et al., 2019). The size of the hidden state was set as
32. Also, we averaged all of the LSTM outputs to combine all
fMRI steps (Dvornek et al., 2017). In this way, better classification
performance could be obtained through leveraging all brain
activities during scanning. Then the learned features were passed
to the fully connected layer. The fully connected layer can be
expressed as:

hl
= bl
+ hl−1

× wl (7)

Where wl and bl are input weight and bias weight, respectively.
When the model is trained for intelligence prediction, the output
of the fully connected layer is the predicted intelligence scores.
However, for gender classification, another operation of Softmax
was added as the last operation of this architecture.

Training, Validation, and Testing
A 10-fold cross-validation procedure was used for evaluating
prediction performance. The HCP data was randomly split
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into training, validation, and testing sets. More specifically, we
divided the 1,050 subjects into ten folds. Note that multiple runs
belonging to the same subject were not split across folds (He et al.,
2020). For every test fold, the remaining nine folds were used for
training and validation. Furthermore, it has been found that head
motion was correlated with behavioral measures such as fluid
intelligence (Siegel et al., 2017). Therefore, we regressed sex, age,
and motion (frame-wise displacement FD) from the intelligence.
In each test fold, we estimated the regression coefficients from the
training set and applied them into the test fold (Kong et al., 2019;
He et al., 2020).

The CNN + LSTM model was coded based on the platform of
Pytorch (Paszke et al., 2017), and optimized with Adam optimizer
to minimize the loss (Yan et al., 2019). The value of batch size was
set as 64. The initial learning rate was 0.0001. We decreased the
learning rate with weight decay rate of 10−1 after each epoch. To
avoid overfitting and achieve higher generalization performance,
we used dropout (dropout rate = 0.5) for regulating the model
parameters and early stopping to stop training according to
the prediction condition of the validation data. Briefly, when
training loss continued to decrease but validation loss increased,
this means that the training was already overfitting, and we
should stop training.

Evaluation of Model Ability to Capture
Dynamics of FC With Surrogate Data
It was unclear whether the CNN + LSTM model concentrated
on the dFC containing the sequential temporal dynamics, or
just captured the static statistics of dFC. To validate the validity
of the model in capture dynamic interaction information, we
used initial BOLD signals to generate surrogate data as null
hypothesis. The aim of surrogate data is to generate the same time
probability distribution, while preserving all statistical properties
of the observed data like stationary cross correlation, but to
destroy the dynamics in FC time courses (Schreiber and Schmitz,
2000; Pereda et al., 2005; Savva et al., 2019).

In this study, a multivariate phase randomization (MVPR)
model (Prichard and Theiler, 1994) was applied by randomly
shuffling the Fourier phases of the original BOLD signals such
that their static FC structure could be preserved (Hindriks et al.,
2016; Liégeois et al., 2017; Savva et al., 2019).

X̂k = Xkeiϕ, k = 1, 2, · · · , n (8)

Where X = [X1, X2, · · · , Xn] is the discrete Fourier
transformations of original time series. n = 268 refers to the
number of brain regions. ϕ = [ϕ1, ϕ2, · · · , ϕT] is a uniformly
distributed random phase in the range of [0, 2 π].

Subsequently, the inverse Fourier transform is applied to
X̂1, X̂2, · · · , X̂n to generate one randomized copy x̂. We repeated
the procedure and then generated 100 surrogate copies for each
subject. In addition, dFC matrices were calculated in the same
way, excluding that surrogate copies instead of BOLD signals
were used. For each surrogate copy of all subjects, the resulted
dFC matrices were used as input of the model for gender
classification with 10-fold cross-validation strategies. As a result,

100 surrogate copies were performed to estimate a distribution of
accuracies under the null hypothesis of dFC.

Furthermore, a statistical method was proposed to assess the
existence of dFC between a pair of ROIs (Savva et al., 2019). Then,
this statistical framework was applied to test if the CNN + LSTM
model could concentrate on the ROI pairs with statistically
significant dFC. For details, 250 surrogate copies of one randomly
selected participant were generated with the aforementioned
method to formulate the null hypothesis. This null hypothesis can
be rejected when any given FC time-series exhibits dFC.

Evaluation of Model Performance in
Gender Classification and Intelligence
Prediction Tasks
As commonly seen in the recent intelligence prediction studies
based on rs-fMRI data (Finn et al., 2015; Liu et al., 2018; He et al.,
2020), the Pearson’s correlation between predicted and observed
intelligence scores of all subjects across all folds was used
for assessing the model performance of intelligence prediction
tasks. In this study, we reported the Pearson’s correlation and
mean absolute error (MAE) to evaluate our model prediction
performance. In the case of gender classification, the model was
evaluated with the classification accuracy. Additionally, the area
under ROC curve (AUC) which is a very widely used measure
of performance for classification was also reported. Furthermore,
it has been revealed that chronnectome (Calhoun et al., 2014)
could be used to identify individuals and predict individual
higher cognitive performance (Liu et al., 2018). For comparing
with the CNN + LSTM model, we used linear SVM and linear
epsilon SVR models (LIBSVM toolbox in Matlab2) based on
dynamic characteristic of dFC (dFC-Str, which refers to the
overall strength of dFC) (Liu et al., 2018), to achieve gender
classification and intelligence prediction with the same 10-fold
cross-validation strategies. The hyperparameter of linear SVM
and linear epsilon-SVR includes the regularization parameter C,
which was optimized for achieving its best performance.

Control Analysis
We further examined the effects of parcellation schemes and
sliding window sizes on model performance. The selection of
window size was controversial in previous studies (Kiviniemi
et al., 2011; Jones et al., 2012; Hutchison et al., 2013; Allen
et al., 2014; Qin et al., 2015). A smaller window size can
better detect the potential low-frequency fluctuations in FC
(Sakoğlu et al., 2010; Hutchison et al., 2012). It has been
suggested that the window sizes from around 30–60 s can
achieve the best classification and prediction performances
(Shirer et al., 2012; Qin et al., 2015). In this work, three additional
window sizes (60, 80, and 100 s) were used to investigate the
potential impact of window width on gender classification and
intelligence prediction performance. Additionally, to evaluate the
effects caused by different brain parcellations, two additional
parcellations were used for generating dFC matrices, including
Power-264 consisting of 264 ROIs (Power et al., 2011),

2http://www.csie.ntu.edu.tw/~cjlin/libsvm
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and functional brain atlas of 160 ROIs (Dosenbach et al.,
2010). Then, we re-performed the gender classification and
intelligence prediction analyses using these dFC matrices based
on these parcellations.

RESULTS

Performance of Gender Classification
and Intelligence Prediction Tasks
Gender Classification Results
Figure 2A shows the gender classification performance of the
CNN + LSTM and SVM model. The accuracy of 93.05 ± 1.91%
was obtained by using the CNN + LSTM model, which is
significantly higher than that obtained using SVM (p < 0.001,
two-sample t-tests). Moreover, their ROC curves are shown in
Figure 2B. The CNN + LSTM model achieved an AUC of
0.9805, while the SVM achieved an AUC of 0.9195. Note that the
CNN + LSTM model achieved better performance than SVM by
integrating the advantages of CNN and LSTM.

We conducted 100 times of repeated tests using 100 surrogate
copies to testify whether the trained deep network discriminates
genders based on dynamics in FC rather than other features
such as static functional correlation across ROIs. The results
are shown in Figure 2C. As expected, empirical distributions
of the accuracies scattered around 57%, suggesting the classifier
performance was just better than random guessing for the
surrogate copies. All the accuracies of surrogate copies fell behind
that of real BOLD signals, demonstrating that the statistical
significance of gender classification based on temporal dynamics
in FC was high (p < 0.001), so that the null hypothesis that
the deep network failed in capturing spatiotemporal features of
dFC could be rejected. The learning curves while training the
CNN+LSTM model was shown in Figure 2D.

Intelligence Prediction
Figure 3A depicts the prediction accuracy of fluid and crystallized
intelligence (Pearson’s correlation coefficient) in a 10-fold cross-
validation test. The CNN + LSTM model achieved higher
prediction accuracy in both tasks than the SVR model,
with Pearson’s correlation r = 0.3129 for fluid intelligence
and r = 0.4946 for crystallized intelligence, respectively, in
contrast to SVR’s prediction accuracy of r = 0.2245 for fluid
intelligence and r = 0.3889 for crystallized intelligence. The
conclusions of MAE are similar, as illustrated in Figure 3B.
The MAE of 11.9561 ± 0.7412 (for crystallized intelligence) and
3.7287 ± 0.2673 (for fluid intelligence) in the CNN + LSTM
model are significantly lower than those obtained using SVR
(p < 0.05, two-sample t-tests).

Estimating the Most Discriminative
Connection Features
To explore the ability of the CNN + LSTM model in extracting
features related to the three discriminating tasks, we used
deconvolution computations to show the important functional
connection features characterized with high weights. Figure 4A

shows the distributions of FC with feature weights above the
threshold, which was set for an important contribution at the
75th percentile of all feature weights. Important FC features are
widespread across the brain for all three discriminating tasks.
However, as for gender classification, a large number of FC
features above the threshold are distributed in inter-network
and intra-network of frontoparietal (networks 1 and 2), default
mode (network 3), and motor (network 5), especially for the
default mode and motor networks. While FC features with high
weights are mostly in the inter-network and intra-network of
frontoparietal for fluid and crystallized intelligence tasks.

To explore which networks had the most predictive power,
average intra-network and inter-network feature weights of eight
networks were calculated without thresholding. As illustrated in
Figure 4B, the default mode network (DMN) has the highest
inter-network and intra-network feature weights of gender
classification, especially for the inter-network. The motor and
frontoparietal networks follow the default mode. The other
networks have slightly low weights of intra-network and inter-
network features. Additionally, patterns from fluid intelligence
and crystallized intelligence predictions are very similar, i.e.,
the frontoparietal network has slightly higher weights than the
others. However, the visual I network (network 6) has low
predictive power for predicting intelligence. Intra-network and
inter-network feature weights are comparable in all the networks.

Identifying Significant Dynamic
Connections With Surrogate Data
The null hypothesis for dFC using the surrogate data was tested
on one randomly selected subject, with the results indicated in
Figure 5A. The red points represent those connections exhibiting
statistically significant dFC. Note that significant connections
were widely distributed across the brain. To further identify
if the CNN + LSTM model could capture those regions with
statistically significant dynamics, we computed the distributions
of averaged deconvolutional weights for all significantly dynamic
and non-significantly dynamic connections. As shown in
Figures 5B,C, both the weight distributions of ROI pairs follow
the approximately normal distribution. Moreover, the features
with high weights cover nearly half of those connections with
significant dFC. In other words, the important regions extracted
by using the CNN + LSTM model carry sufficient dynamic
connectivity information.

DISCUSSION

In this work, we used a CNN + LSTM model combining
the advantages of CNN and LSTM to learn spatiotemporal
information in rest-state dFC. This was the first attempt to
capture the dynamic interaction information of dFC series using
deep learning, which avoids information reduction and takes
advantage of time-varying spatiotemporal information. More
importantly, we showed that the CNN + LSTM model not only
successfully achieved a high accuracy of gender classification but
could significantly predict individual intelligence, including fluid
and crystallized intelligence across a large-scale dataset totaling
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FIGURE 2 | ROC and accuracy for the gender classification task. (A) ROC curve across 10 testing folds for the CNN + LSTM and the SVM model. (B) Gender
classification accuracy averaged across 10 testing folds. Bars refer to mean accuracy of all testing folds. Error bars indicate the standard error. Obviously, the
CNN + LSTM model is statistically better than the SVM model (***p < 0.001). (C) Accuracies of gender classification using the CNN + LSTM model on the real BOLD
signals and their surrogate copies. A total of 100 surrogate data were generated by using MVPR to estimate the null distribution of classification accuracies (see
section “Materials and Methods” for detail). With the mean classification accuracies as the statistic, results reveal that the classifier learned the connection dynamics
with a probability of being wrong of <0.001. (D) The learning curves while training the CNN + LSTM model.

1,050 participants. Moreover, the results of deconvolutional
computation provided interpretation for extracted features. Our
results suggest that the CNN + LSTM model can simultaneously
learn temporal and spatial information of dFC series instead of
dFC’s statistical characteristics, which could significantly improve
the prediction power of individual cognition traits.

Gender Classification and Intelligence
Prediction Performance
Table 1 summarizes the rs-fMRI based model performance
of gender classification and intelligence prediction from some
recent studies. Zhang et al. (2018) showed that with three
different methods combining FC features of multiple runs from
the HCP (820 subjects), the optimal classification accuracy and
AUC were 85% and 0.93, respectively. Ktena et al. (2018)
achieved a gender classification accuracy of 80% with static
functional connectivity (sFC) from UK Biobank (2,500 subjects).
In addition, He et al. (2020) reported a sex prediction accuracy
of 91.6% with four different models in the UK Biobank (8,868
subjects). Our model based on dFC time series could achieve
a higher accuracy of gender classification than those using the
static FC feature.

In the case of behavioral measures such as fluid and
crystallized intelligence, combining Picture Vocabulary Test
(vocabulary) and Oral Reading Recognition Test (reading) into
one score, previous studies (Finn et al., 2015; Liu et al., 2018)
reporting high fluid intelligence prediction accuracy were both
using a leave-one-subject-out cross-validation for small samples
from the HCP dataset (126 subjects and 105 subjects). Recent
studies reported lower accuracies when the number of samples
increased. For example, He et al. (2020) reported prediction
accuracies (Pearson’s correlation) ranging from 0.257 to 0.297
for fluid intelligence, about from 0.25 to 0.4 for reading and
approximately from 0.2 to 0.4 for vocabulary, with four different
models in the HCP dataset (953 subjects). Dubois et al. (2018)
successfully predicted fluid intelligence (r = 0.27) using linear
models in the HCP dataset (884 subjects). Kashyap et al.
(2019) reported prediction accuracies of 58 behavioral measures,
including fluid intelligence (r = 0.25), reading (about r = 0.37) and
vocabulary (about r = 0.39) in the HCP dataset (803 subjects).

It is worthy to note that all these methods are based on
the sFC, assuming that the underlying connections remain
unchanged over time. Here, we applied a CNN + LSTM model to
learn the spatiotemporal information of the original dFC series.
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FIGURE 3 | Prediction performance of fluid intelligence and crystallized intelligence. (A) The correlations between predicted and observed intelligence scores for the
CNN + LSTM and support vector machine (SVM) models. Note that the CNN + LSTM model exhibits the highest correlation scores for both tasks. Each subject is
represented by one dot, and 95% confidence interval for the best-fit line is represented by the gray area which is used to assess the predictive power of the model.
(B) Comparison between mean MAE across 10 testing folds for the CNN + LSTM and the SVM model. Lower is better. Bars refer to the mean accuracy of all testing
folds, and error bars refer to their standard error. Note that the CNN + LSTM model is statistically better than the SVM model (*p < 0.05).

Importantly, combining the multiple 1D convolutional layers
of different filters can learn the spatial associations of dFC at
different time scales. And the stacked LSTM layers can capture
latent temporal dynamics. As mentioned earlier, we achieved
a gender classification accuracy of 93.05% and prediction
accuracies (Pearson’s correlation) of 0.3129 and 0.4946 for fluid
intelligence and crystallized intelligence, respectively. Overall,
this indicates that our model prediction performance is among
the best in the literature based on the same size dataset of rs-fMRI.
Further, we employed an ablation control analysis to highlight
necessity of the use of the LSTM module, i.e., we only retained
the multi-scale 1D convolutional layer, one concatenation layer
and one fully connected layer to reperform the intelligence
prediction tasks. Other parameters are consistent with the
CNN + LSTM model. As shown in Supplementary Figure S1,
the multi-scale CNN model only achieved a significantly
low prediction accuracy of crystallized intelligence (Pearson’s
correlation r = 0.1866) and fluid intelligence (r = 0.1277),
suggesting that the LSTM greatly contributed to the prediction
of individual intelligence by capturing the temporal information
of dFC time series.

Effectiveness Analysis Using Surrogate
Data
So far, many dFC studies have employed MVPR model to
generate surrogate data for detecting significance of dynamics
in resting-state FC (Hindriks et al., 2016; Savva et al., 2019)
by preserving statistical properties of the initial data such as
stationary cross-correlation, i.e., static FC structure. Given that

the dynamic information is removed in the surrogate data, the
null hypothesis is that the model can achieve high classification
or prediction accuracy in the absence of the dFC. However,
our results demonstrate that the classification performances of
surrogate copies are just better than random guessing, so that
the null hypothesis should be rejected (p < 0.0001). Moreover,
the results from the feature analysis in the model also provide
further evidence supporting this deduction, i.e., the features
with high weights from the 1D convolution layer covered nearly
half of those connections with significant dFC, especially those
connections with the highest weights. These outcomes from
the surrogate data suggest that the CNN + LSTM model can
sufficiently learn temporal dynamics rather than only static
structure in the FC.

Important Networks of Gender and
Intelligence Discrimination
As shown in Figure 4, the FC features within the DMN‘,
frontoparietal and motor networks had a great contribution
to gender classification, especially, the DMN has the highest
inter-network and intra-network feature weights, which is
generally consistent with previous structural and functional MRI
studies (Zhang et al., 2018; Luo et al., 2019). However, the
subcortical/cerebellum and visual networks are the majority of
the least discriminative functional networks.

Previous researches have shown that the DMN is related to
many different functions like social understanding (Li et al.,
2014), social cognitive abilities (Schilbach et al., 2008; Mars
et al., 2012), and episodic memory (Sestieri et al., 2011). While
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FIGURE 4 | Connectivity patterns with high task-related weights. (A) Distributions of functional connections with feature weights that are larger than the threshold for
three prediction tasks. Different brain functional networks are represented by segments of different colors, and the length of the segment refers to the total number of
connections. Ribbons refer to functional connections, and the width of ribbon refers to the number of intra-network and inter-network connections. (B) Average
feature weights of intra-network and inter-network connections for three tasks.

FIGURE 5 | Statistically significant dynamic connections for one randomly selected subject. (A) Distribution of significant dynamic connections (red points) in eight
networks. (B) Distribution histogram of deconvolutional weights for significant dynamic connections. (C) Distribution histogram of deconvolutional weights for non-
significant dynamic connections.

many studies reported sex differences in behavioral measures.
For example, women perform better than men on memory tasks
(Hedges and Nowell, 1995) as well as measures of social cognition
(Gur et al., 2010, 2012; Moore et al., 2015). These results revealed
the underlying associations between the DMN and gender.

Besides the DMN, there were also other networks with high
contributions to the gender classification. For instance, features
with high weights for gender classification are prominent in
the frontoparietal and motor networks. Also, the network-
level average feature weight was illustrated in Figure 5B,
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TABLE 1 | Model performance of rs-fMRI based gender classification and intelligence prediction tasks in some recent studies.

Author Dataset (subs) Methods Types of data Tasks Accuracy

Chao Zhang HCP (820) PLSR sFC Gender 87% (10-fold)

Sofia Ira Ktena UK Biobank (2,500) GCN sFC Gender 80% (5-fold)

Tong He UK Biobank (8,868) TML sFC Gender 91.6% (9-fold)

Casanova R FCP (148) Lasso regression sFC Gender 62%

Stephen M. Smith HCP (131) Linear discriminant analysis sFC Gender 87% (LOOCV)

Susanne Weis HCP (434) SVM sFC Gender 75.1% (10-fold)

Tong He HCP (953) FNN sFC Fluid intelligence 0.297 (20-fold)

Julien Dubois HCP(884) Linear models sFC Fluid intelligence 0.27 (leave-one family out)

Rajan Kashyap HCP (803) COBE sFC Fluid intelligence 0.25 (20-fold)

Ru Kong HCP (881) MS-HBM sFC Fluid intelligence 0.22 (20-fold)

Abigail S. Greene HCP (515) CPM sFC Fluid intelligence 0.196 (LOOCV)

Jin Liu HCP (105) SVR dFC Fluid intelligence 0.418 (LOOCV)

Emily S. Finn HCP (142) Linear regression sFC Fluid intelligence 0.5 (LOOCV)

All results are the best performance mentioned in the literature. CNN, convolutional neural network; GCN, graph convolutional network; PLSR, partial least squares
regression; COBE, common and orthogonal basis extraction; MS-HBM, multi-session hierarchical Bayesian model; CPM, connectome-based predictive modeling;
LOOCV, leave-one-subject-out cross-validation.

FIGURE 6 | Impact of parcellation scheme and sliding window width on gender classification and intelligence prediction performance in control analysis. (A) Impact
of sliding window width on gender classification. (B) Impact of parcellation scheme on gender classification. Box refers to median with 25 and 75th percentiles, and
whiskers represent minimal to maximal values. (C) Impact of sliding window width on intelligence prediction. (D) Impact of parcellation scheme on intelligence
prediction. The accuracy of intelligence prediction is evaluated with the Pearson’s correlation between predicted and observed intelligence scores of all subjects
across all folds.

indicating that the intra-network and inter-network weights
of the motor and frontoparietal regions are slightly higher
than other networks except for the DMN. Recent studies have

also reported that most FC features within frontalparietal and
sensorimotor networks are associated with gender differences
(Zhang et al., 2016, 2018). Additionally, the reliable gender
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difference in FC has been reported for the sensorimotor network
(Weis et al., 2019).

In the case of fluid intelligence and crystallized intelligence,
we found stronger FC features are mostly associated with the
frontoparietal network. This suggests that individual variability
in intelligence is related to higher order systems that reflect
individual cognitive ability than those of the primary systems.
Similarly, Liu et al. (2018) found that dFC features of default
mode, frontoparietal, and dorsal attention networks contributed
predominantly to fluid intelligence and executive function.
The frontoparietal network was also reported to be the most
predictive of fluid intelligence (Finn et al., 2015). Moreover,
many previous studies also reported that intelligence is related
to the structural and functional properties of these networks,
which are consistent with ours (Kanai and Rees, 2011; Cole et al.,
2012). On the other hand, for the intelligence prediction tasks,
all the networks have comparable average weights, suggesting
strong evidence that more than one network accounts for the
intelligence, consistent with the previous report that intelligence
is related to functional coupling and structural connectivity
across widespread brain regions (Choi et al., 2008).

Effect of Parcellation Scheme and
Sliding Window Width
Several confounding factors, such as sliding window width and
parcellation scheme, might influence prediction performance. As
shown in Figure 6, we investigated the impact of the parcellation
scheme and sliding window width and found that most of the
results remained robust. All the sliding window widths from
40 to 100 s could achieve a robust prediction performance,
thus providing indirect evidence of dFC’s presence at different
timescales (Savva et al., 2019). Intriguingly, the window width
of 40 s achieved the best performance in gender classification
and crystallized intelligence prediction tasks. The window width
of 60 s in fluid intelligence prediction task achieved a slightly
higher performance (r = 0.3172) than the window width of
40 s (r = 0.3129). These results suggested that the duration
between 40 and 60 s could better capture dynamic information
of fluctuations and decode the variability of individuals, in line
with the previous findings (Shirer et al., 2012; Kucyi and Davis,
2014; Qin et al., 2015). However, the mean accuracies of gender
classification based on the functional brain atlas of 160 ROIs and
264 ROIs were about 88 and 90.3%. The prediction accuracies
of intelligence prediction tasks based on the functional brain
atlas of 160 ROIs and 264 ROIs were 0.2758 and 0.3120 for
fluid intelligence, 0.4283 and 0.4308 for crystallized intelligence,
respectively. Reduction in gender classification and intelligence
prediction accuracies compared to the 268-node functional
parcellation suggests that a finer parcellation may detect more
subtle individual variability and dynamics.

Limitation and Conclusion
Some limitations should be considered in the presented
approach. Firstly, We used the gender classification task to
demonstrate the effectiveness of the deep learning model,
considering that gender is an accurate label and many recent

studies have focused on gender classification (Smith et al., 2013;
Ktena et al., 2018; Zhang et al., 2018). However, compared to
SVM, the improvement (about 5%) of gender classification
is considerate but still limited which may be caused by
the ceiling effect of gender classification. A better way of
evaluating the model is to extend the model to applications
of individual diagnosis for typical mental disorders such as
schizophrenia and depression. Many recent studies aimed to
find neuroimaging-based biomarkers for disease diagnosis
using deep learning techniques. For example, In our previous
study (Zeng et al., 2018), the deep autoencoder network
achieved an improvement (>5.0%) in diagnosing schizophrenia
across multiple imaging sites compared to other multi-
site studies such as using linear classifiers (Skåtun et al.,
2017). Furthermore, LSTM also shows potential capabilities
in diagnosing disease. Dvornek et al. (2017) achieved a
classification accuracy of 68.5% in discriminating autism
spectrum disorders with LSTMs, which demonstrated a
higher classification accuracy compared to previous studies
(Ghiassian et al., 2016; Abraham et al., 2017). Overall, based
on the findings of abnormal functional connectivities in
psychiatric disorders (Damaraju et al., 2014; Yan et al.,
2017; Zeng et al., 2018) and the potential abilities of deep
learning in disease diagnosis, the CNN + LSTM model
may have excellent prospects in assistant diagnosis of some
mental disorders.

Secondly, we applied the CNN + LSTM model to explore
brain network dynamics only with rs-fMRI data. While
multi-modalities fusion (e.g., combining electroencephalography
measures) will be helpful for generating a more accurate model
due to the higher temporal resolution of electroencephalography
data relative to fMRI signals. Thirdly, interpretation of the LSTM
model remains unclear but a critical field of research. We will
further aim to interpret deep learning models in the future.

In summary, this is the first time that original dFC series are
successfully applied to discriminating individual cognitive ability
or demographic characteristics such as sex, fluid, and crystallized
intelligence. Furthermore, the high accuracies in these tasks
indicated the effectiveness of the used model owing to the full
use of the high-level spatiotemporal information of dFC. Also,
the deconvolutional computation provides an interpretation of
the deep learning methods. Our findings highlight that deep-
chronnectome can capture the inherent dynamical interaction
information of functional networks and provide the potentials for
predicting individualized characterization of demographics and
cognition traits.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.humanconnectome.org.

AUTHOR CONTRIBUTIONS

DH and HS designed the study. JQ and LF performed the
experiments. LF, JS, and HS discussed the results and contributed

Frontiers in Neuroscience | www.frontiersin.org 11 August 2020 | Volume 14 | Article 881

https://www.humanconnectome.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00881 August 14, 2020 Time: 17:56 # 12

Fan et al. A Deep Model on dFC

to the final manuscript. All authors contributed to the article and
approved the submitted version.

ACKNOWLEDGMENTS

We thank the Human Connectome Project (HCP) for data
collection and sharing. This research was supported by

the National Science Foundation of China (61773391 and
61420106001).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00881/full#supplementary-material

REFERENCES
Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Samaras, D.,

Thirion, B., et al. (2017). Deriving reproducible biomarkers from multi-site
resting-state data: an autism-based example. NeuroImage 147, 736–745. doi:
10.1016/j.neuroimage.2016.10.045

Akshoomoff, N., Beaumont, J. L., Bauer, P. J., Dikmen, S. S., Gershon, R. C.,
Mungas, D., et al. (2013). VIII. NIH Toolbox Cognition Battery (CB): composite
scores of crystallized, fluid, and overall cognition. Monogr. Soc. Res Child Dev.
78, 119–132. doi: 10.1111/mono.12038

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.
(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb.
Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Battaglia, D., Boudou, T., Hansen, E. C., Lombardo, D., Chettouf, S., Daffertshofer,
A., et al. (2020). Dynamic functional connectivity between order and
randomness and its evolution across the human adult lifespan. bioRxiv
[Preprint]. doi: 10.1101/107243

Calhoun, V. D., Miller, R., Pearlson, G., and Adalı , T. (2014). The chronnectome:
time-varying connectivity networks as the next frontier in fMRI data discovery.
Neuron 84, 262–274. doi: 10.1016/j.neuron.2014.10.015

Chang, C., and Glover, G. H. (2010). Time–frequency dynamics of resting-state
brain connectivity measured with fMRI. Neuroimage 50, 81–98. doi: 10.1016/j.
neuroimage.2009.12.011

Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Lee, J.-M., et al.
(2008). Multiple bases of human intelligence revealed by cortical thickness and
neural activation. J. Neurosci. 28, 10323–10329. doi: 10.1523/jneurosci.3259-08.
2008

Cole, M. W., Yarkoni, T., Repovš, G., Anticevic, A., and Braver, T. S. (2012). Global
connectivity of prefrontal cortex predicts cognitive control and intelligence.
J. Neurosci. 32, 8988–8999. doi: 10.1523/jneurosci.0536-12.2012

Damaraju, E., Allen, E., Belger, A., Ford, J., McEwen, S., Mathalon, D., et al.
(2014). Dynamic functional connectivity analysis reveals transient states of
dysconnectivity in schizophrenia. Neuroimage Clin. 5, 298–308. doi: 10.1016/j.
nicl.2014.07.003

Davison, E. N., Turner, B. O., Schlesinger, K. J., Miller, M. B., Grafton, S. T.,
Bassett, D. S., et al. (2016). Individual differences in dynamic functional brain
connectivity across the human lifespan. PLoS Comput. biol. 12:e1005178. doi:
10.1371/journal.pcbi.1005178
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