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Surprise occurs because of differences between a decision outcome and its predicted
outcome (prediction error), regardless of whether the error is positive or negative. It has
recently been postulated that surprise affects the reward value of the action outcome;
studies have indicated that increasing surprise as an absolute value of prediction
error decreases the value of the outcome. However, how surprise affects the value
of the outcome and subsequent decision making is unclear. We suggest that, on
the assumption that surprise decreases the outcome value, agents will increase their
risk-averse choices when an outcome is often surprising. Here, we propose the surprise-
sensitive utility model, a reinforcement learning model that states that surprise decreases
the outcome value, to explain how surprise affects subsequent decision making. To
investigate the properties of the proposed model, we compare the model with previous
reinforcement learning models on two probabilistic learning tasks by simulations. As a
result, the proposed model explains the risk-averse choices like the previous models,
and the risk-averse choices increase as the surprise-based modulation parameter of
outcome value increases. We also performed statistical model selection by using two
experimental datasets with different tasks. The proposed model fits these datasets
better than the other models with the same number of free parameters, indicating that
the model can better capture the trial-by-trial dynamics of choice behavior.

Keywords: surprise, reward prediction error, reinforcement learning, risk, decision making, outcome value

INTRODUCTION

Decision making in everyday life depends on predicting outcomes associated with potential choices.
The prediction is updated by the actual outcome obtained after the choice. These processes can
be modeled by a reinforcement learning algorithm, a framework that uses prediction error as a
learning signal to update future outcome expectations (Schultz, 2016). Prediction error represents
the difference between actual and expected outcomes and has a positive or negative valence. When
a decision outcome exceeds expectations, the value associated with the chosen option is increased,
making it more likely to be chosen again. When a decision outcome is less than expected, the
value associated with the chosen option is decreased, making it less likely to be chosen again.
Prediction error also functions as a surprise, based on the degree of absolute prediction error.
When people are confronted with unexpected events, regardless of their valence, they experience
surprise. A greater surprise increases the degree of the change in the expectation (Niv et al., 2015;
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Haarsma et al., 2019). However, how surprise affects the value of
the outcome and subsequent decision making remains unclear.

Recent experimental human and monkey studies have shown
that surprising events or outcomes harm individuals, even
when the error is positive (Knight et al., 2013; Topolinski
and Strack, 2015). Topolinski and Strack (2015) used facial
electromyography to measure people’s responses immediately
after surprising information; they observed that participants
flexed their corrugator muscles, which indicated negative valence.
Knight et al. (2013) showed that in a predictable food-taking
paradigm, rhesus monkeys were slower to accept unexpected
offers and exhibited aversive reactions, such as repeatedly turning
their heads and looking away before accepting the food item,
especially in response to better-than-expected offers. These
studies indicate that surprise decreases, at least initially, the value
of an event for individuals and decreases the value of the offer
associated with the event.

This phenomenon, reducing the outcome value by surprise,
can be indicated from the perspective of predictive coding,
which is a computational theory of brain function. This theory
postulates that the brain facilitates perception from sensation
by minimizing the prediction error between the expected and
received sensory input (Friston, 2005; Clark, 2013). Some
researchers using this theory have proposed that surprise affects
the reward value of a decision outcome (Peters et al., 2017; Van
de Cruys, 2017; Friston, 2018). They have stated that an increase
in surprise decreases the value of the outcome, as surprise makes
a situation uncertain, which is generally associated with negative
affect. For example, Van de Cruys (2017) suggested that positive
affect is induced when prediction error is reduced, whereas
negative affect is induced when a situation with lower prediction
errors shifts to one with higher prediction errors.

Here, we propose the surprise-sensitive utility model, in which
the degree of outcome surprise affects the outcome value. We
investigated how the effect of surprise on the outcome value
affects subsequent decisions by using two reinforcement learning
tasks: the risky, probabilistic learning task (Niv et al., 2012) and
the simple two-armed bandit task. We predicted that a surprising
outcome that decreases the value of a decision outcome would
decrease the preference for risky choices, in which prediction
error often occurs. To investigate this prediction, we first
simulated the risk-sensitive learning task and compared the
proposed model with previous computational models on the task.
We also fitted the models to real experimental data taken from
Niv et al. (2012). We found a better fit of the proposed model to
the dataset than previous models and conducted model selection
using an additional dataset (Goris et al., 2019) to investigate
the generalizability of the proposed model to different tasks and
populations. Furthermore, we simulated the simple two-armed
bandit task to investigate how parameters within the proposed
model modulate the choice preference.

Model Description
The Q-learning model is the base model of our surprise-sensitive
utility model. The Q-learning model incorporates a Rescorla–
Wagner rule, where only the Q-value of the chosen option
is updated by a prediction error, which explains the observed

behavior by computing an action value Q(t) for each trial t, which
represents the expected outcome of the action. The Q-value of
the chosen action is updated iteratively by a prediction error,
which is the difference between the expected outcome Q(t) and
the received outcome r. Based on Niv et al. (2012), a decaying
term of 0.5/(1+ Ts) (with Ts being the number of trials in which
the consequences of stimulus S had been experienced) was added
to a constant learning rate, α as follows: α

′

= α+ 0.5/(1+ Ts)

Q(t + 1) = Q(t)+ α
′

(r(t)− Q(t))

The surprise-sensitive utility model is a model in which the
received outcome r is affected by the surprise (absolute value
of prediction error). In this model, S (t) is the subjective utility
modulated by surprise. The degree of modulation is controlled
by a parameter d as follows:

S (t) = r (t)− d|r(t)− Q(t)|

Q(t + 1) = Q(t)+ α
′

(S(t)− Q(t))

For all models, the probability of choosing option i at trial t is
given by the softmax function:

P(a(t) = i) =
exp(β · Qi(t))∑K
j=1 exp(β · Qj(t))

where β is the inverse temperature parameter that determines the
sensitivity of the choice probabilities to differences in the values,
and K represents the number of possible actions. In this study,
K = 2 unless otherwise stated. a(t) denotes the option that was
chosen at trial t.

MATERIALS AND METHODS

Analysis 1: Simulation With a
Risk-Sensitive Task
We first simulated a risk-sensitive task with 1,000 agents and
compared the probability of choosing a sure option on four
models: the proposed model (the surprise-sensitive utility model)
and three previous models described in Niv et al. (2012) (the
Q-learning model, utility model, and risk-sensitive Q-learning
model). The utility model is a Q-learning model that incorporates
non-linear subjective utilities for the different reward amounts. In
this model,U (x) indicates the subjective utility of a reward whose
objective value is x: U (0) = 0, U (20) = 20, and U (40) =
a · 20. The value of a affects the utility curve. The risk-

sensitive model is a Q-learning model in which positive and
negative prediction errors have asymmetric effects on learning.
Specifically, there are separate learning rates: α+ and α− for
positive and negative prediction errors, respectively.

To show the similarity of the individual-level probabilities
of a sure choice estimated from each model and real data, we
simulated the choice behavior for every 16 subjects for each
model. For the parameter values of each model (α and β for
the Q-learning model; α, β, and u for the utility model; α+, α−,
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and β for the risk-sensitive model; α, β, and d for the surprise
model), we used the median of the best-fitting parameter values
from 16 participants’ data in Niv et al. (2012) (see Analysis 2 for
details of model fitting). To make the model performance clearer,
we simulated the task (234 trials) 1,000 times and calculated the
mean of the probability of choosing a sure option for each subject.

Furthermore, within the surprise-sensitive utility model, we
examined how the free parameters α and d are related to the
risk-sensitive choice. For the surprise decay rate d, we ran
simulations for 1,000 times with each of three learning rates (α
= 0.2, 0.5, and 0.8).

Risky, Probabilistic Learning Task
The risky, probabilistic learning task is described in detail in Niv
et al. (2012). Briefly, five different-colored stimuli (portrayed as
casino-style slot machines or bandits) were randomly allocated
to five payoff schedules: sure 40/c, sure 20/c, two sure 0/c stimuli,
and one variable-payoff risky stimulus associated with equal
probabilities of 0/c or 40/c payoffs. Two types of trials were
intermixed randomly: choice trials and forced trials. In choice
trials, two stimuli were displayed, and the subject was instructed
to select one of them quickly. In forced trials, only one stimulus
was displayed, and the subject was forced to select it and obtain
its associated outcome. The task consisted of 234 trials (three
sessions of 78 trials). Each trial comprised (1) 30 “risk” choice
trials involving a choice between the 20/c stimulus and the
0/40/c stimulus (target choice to assess subjects’ behavioral risk
sensitivity); (2) 20 “test” choice trials involving each of the pairs
40/c vs. 0/40/c, 20/c vs. 40/c, 0/c vs. 0/40/c, and 0/c vs. 20/c (3) 24 forced
trials involving each of the stimuli (16 only for each of the 0/c
stimuli); and (4) 20 trials in which subjects chose between the two
0/c stimuli.

Analysis 2-1: Model Selection With
Actual Experimental Data
To investigate how the model fits the actual experimental data, we
conducted a model comparison based on the actual experimental
data from Niv et al. (2012) presented on the author’s homepage1.
This dataset consists of data from 16 participants who conducted
the same risk-sensitive task as the simulation.

The free parameters of each model for model fitting were as
follows: α and β for the Q-learning model; α, β, and u for the
utility model; α+, α−, and β for the risk-sensitive model; α, β, and
d for the surprise model (Supplementary Table S1). The learning
rate was constrained to the range 0 ≤ α, α+, α− ≤ 1 with a
beta (2,2) prior distribution, and the inverse temperature was
constrained to 0 ≤ β ≤ 10 with a gamma (2,3) prior distribution.
The utility parameter was constrained to the range 1 ≤ a ≤ 30
with a uniform prior distribution; these priors are based on Niv
et al. (2012). Additionally, the decay rate of the surprise model
was constrained to−1 ≤ d ≤ 1 with a uniform prior distribution.
To test whether the value of d was positive, we allowed this
parameter to be negative. We fit the parameters of each model
with a maximum a posteriori estimation. We also approximated
the log marginal likelihood (evidence) for each model by using

1https://nivlab.princeton.edu/data

the Laplace approximation (Kass and Raftery, 1995). We used
the R function “solnp” in the Rsolnp package (Ghalanos and
Theussl, 2015) to estimate the fitting parameters. We confirmed
whether the estimated surprise decay parameter was positive or
negative using a one-sample T-test. In the model selection, model
evidence (log marginal likelihood) for each model and participant
was subjected to random-effects Bayesian model selection (BMS;
Stephan et al., 2009) by using the function “spm_BMS” in SPM12.
BMS provides estimates of the protected exceedance probability,
defined as the probability that a particular model is more frequent
in the population among the set of candidate models.

Analysis 2-2: Model Selection With
Actual Experimental Data
To ensure the fitting of the proposed model in different tasks
and populations, we also conducted model selection with the
actual experimental datasets from Goris et al. (2019) whose
datasets are presented on the Open Science Framework website2.
The datasets include the autism spectrum condition scores for
each participant. However, we did not consider the participants’
autistic score. This is because the purpose of this analysis was
to confirm the fitness of the newly proposed model among
other models but not to investigate the specific characteristics of
psychiatric disorders, which will be done in future studies.

Here, we briefly describe their task and utilized computational
models. The Goris et al. (2019) dataset consists of data from
163 participants who conducted a gambling task, which is a
kind of four-armed bandit task, with 200 trials. Each of the
four choices had the same average reward outcome, € 250, but
different predictability. These choices returned a gain drawn from
a normal distribution with a mean of € 250 and a standard
deviation of € 0, € 10, € 30, and € 70. We fitted the models
from Niv et al. (2012) and the proposed model to the data. The
models and the methods of model selection were the same as the
Niv et al. (2012) dataset but with different numbers of possible
actions (K = 4).

Analysis 3: Simulation With Simple
Two-Armed Bandit Tasks
To investigate the behavioral difference between models on a
simple task, we simulated the simple two-armed bandit task and
investigated the relationship between stay probability and reward
history. We simulated 1,000 agents using the surprise-sensitive
utility model and the basic Q-learning model. We compared
the stay probability, defined as the probability of choosing the
same choice in the next trial, t + 1, as the current trial, t. In the
task, agents chose one of two choices in which the probability
of reward acquisition was different (0.8 vs. 0.2). The parameter
values for each model were α = 0.3 and β = 2 for Q-learning and
α = 0.3, β = 2, and d = 0.5 for the surprise model. Furthermore,
we investigated the influence of the surprise decay rate (d) on
the stay probability by varying the value of d as d = 0.1, 0.5, and
0.9 within the surprise-sensitive utility model. We predicted that
the stay probability of the proximate reward condition [r(t) = 1]
would decrease as the surprise decay rate increased.

2https://osf.io/pkq3u
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To explore the detail in the difference between the surprise-
sensitive utility model and the basic Q-learning model, we
conducted two additional simulations with simple bandit tasks
whose two options were different on probability or outcome
value. Specifically, we simulated the task with two safe options
(reward probability: p = 0.9) with a small value difference (r = 1
or 0.8) and the task with two safe options (p = 0.9) associated with
a higher value (r = 1) or lower value (r = 0.3).

RESULTS

We first performed the simulation to investigate the risk aversion
tendency for the four models. The previous winning model
was the risk-sensitive Q-learning model, which had separate
learning rates in which positive and negative prediction errors
have asymmetric effects on learning. As shown in Figure 1,
the surprise-sensitive utility model had a similar probability
of choosing a sure option (i.e., risk aversion) as the risk-
sensitive Q-learning model and the utility model. Additionally,
the probability of choosing a sure option simulated with the
proposed model was similar to the result of actual experimental
data from Niv et al. (2012). Furthermore, we found that the
probabilities of sure choice of the proposed model fitted to
individual subjects were more similar to the real data than
other models for some subjects, especially whose probability of
choosing a sure option was high (Supplementary Figure S1).
Compared with the other models, the proposed model showed
the most similar probability of choosing a sure option on the top
four subjects choosing the sure choice. This finding indicates that
the proposed model may better explain the choice behavior of
risk-averse agents.

Furthermore, within the surprise-sensitive utility model, we
examined how the learning rate α and the surprise decay rate
d are related to the risk-sensitive choice. We found that risk
aversion increased as d increased in the surprise-sensitive utility
model (Figure 2) and that this tendency was more pronounced
as α increased. For Figure 2, we restricted the value of d from
0 to 1, as this study focused on the reduction in outcome value
by surprise (see Supplementary Figure S2 for the case with a
negative d value).

We next conducted model selection with actual experimental
data of the risky, probabilistic learning task from Niv et al. (2012).
We compared the model evidence of each model (log marginal
likelihood) and found that the surprise-sensitive utility model
had the largest value (Figure 3A). We then carried out a Bayesian
model comparison to determine the best model for explaining
choice behavior and found that the surprise-sensitive utility
model had a decisively higher protected exceedance probability,
indicating that it is more frequent in the population than the
other models (Figure 3B). Each estimated parameter of the
model is shown in Supplementary Figure S3. We confirmed
that the estimated surprise decay parameter was significantly
positive even with a uniform prior distribution from -1 to 1
[t(15) = 9.34, p < 0.0001]. These findings indicate that modeling
the diminishing effect of surprise on outcome values led to a
better fit to the dataset than the other models.

FIGURE 1 | Probability of choosing a sure option for model and real data.
Data are presented as the mean ± standard error. The surprise-sensitive utility
model had a similar probability of choosing a sure option (risk aversion) as the
risk-sensitive Q-learning model and the utility model. Additionally, the
probability of choosing a sure option simulated with the proposed model was
similar to the result of real experimental data. QL, Q-learning model; utility,
utility model; RSQL, risk-sensitive Q-learning model; surprise,
surprise-sensitive utility model.

FIGURE 2 | Plot and second-order polynomial fit for the probability of
choosing a sure option depending on the surprise decay rate and learning
rate. We found that risk aversion increased as the surprise decay rate (d)
increased in the surprise-sensitive utility model and that this tendency
increased as the learning rate (α) increased.
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FIGURE 3 | Model selections. (A) We compared the model evidence of each model (log marginal likelihood) and found that the surprise-sensitive utility model had
the largest value. (B) We carried out a Bayesian model comparison and found that the surprise-sensitive utility model had a decisively higher protected exceedance
probability. QL, Q-learning model; utility, utility model; RSQL, risk-sensitive Q-learning model; surprise, surprise-sensitive utility model.

To investigate the generalizability of the proposed model to
different tasks and populations, we performed model selection
using a dataset from Goris et al. (2019). In this dataset, the
subjects performed a four-armed bandit task in which the options
were neutral about risk. We found that the surprise-sensitive
utility model had the largest model evidence (Supplementary
Figure S4A) and had a decisively higher protected exceedance
probability (Supplementary Figure S4B). Each estimated
parameter of the model is shown in Supplementary Figure S4C.

The proposed model fits these datasets better than the
other models, with the same number of free parameters. This
suggests that there should be some difference in how the
model predicts choice given the choice history and reward
history. We thus investigated what kind of history dependence
in the proposed model causes a difference in prediction from
other models. To do this, we simulated the simple two-armed
bandit task and compared the basic Q-learning model and
surprise-sensitive utility model focusing on the relationship
between stay probability and reward history. We found a smaller
stay probability in proximate reward conditions [r(t) = 1;
green and purple bars), especially in the surprised reward
condition (r(t) = 1, r(t − 1) = 0; green bar], in the surprise-
sensitive utility model compared with the Q-learning model
(Figure 4). The difference in the decrease in stay probability
on [r(t) = 1, r(t − 1) = 0] compared with [r(t) = 1,
r(t − 1) = 1] was small, but this slight difference may
account for the difference in the fit of models. We further
investigated how the surprise decay rate (d) affected the stay
probability and found that as the parameter increased, the
stay probability of proximate reward conditions [r(t) = 1]
decreased (Figure 5).

Finally, we studied the basic performance of the proposed
model as a reinforcement learning algorithm (i.e., how the

model successfully chooses the optimal choice). We conducted
two additional simulations on a simple two-armed bandit
task with different options of probability or outcome value.

FIGURE 4 | Effect of reward history on stay probability of the Q-learning
model and surprise-sensitive utility model. Data are presented as the
mean ± standard error. We found a smaller stay probability in proximate
reward conditions [r(t) = 1], especially in the surprised reward condition
[r(t) = 1, r(t − 1) = 0], in the surprise-sensitive utility model compared with the
Q-learning model. QL, Q-learning model; surprise, surprise-sensitive utility
model.
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FIGURE 5 | Stay probability and surprise decay rate. Data are presented as
the mean ± standard error. We investigated how the surprise decay rate (d)
affected the stay probability and found that as the parameter increased, the
stay probability of proximate reward conditions [r(t) = 1] decreased.

First, we simulated two safe options (reward probability
is p = 0.9) with a small difference in reward magnitude
(r = 1 or 0.8). As expected, the proposed model chose
a larger reward option less frequently than the Q-learning
model did (Supplementary Figure S5A). This is because the
nearly uniform reduction in reward value by surprise for
both options increased choice randomness (a similar effect
as decreasing inverse temperature parameter, β). In contrast,
when the difference in reward magnitude was large (r = 1 vs.
r = 0.3), the proposed model chose the higher-reward option
more frequently than the Q-learning model (Supplementary
Figure S5B). This perhaps counterintuitive result is explained
as follows. When the difference in reward magnitude was large,
the model easily chooses the better option. This led to an
imperfect action value update for the small-reward option. Thus,
choosing a smaller reward option may easily generate a larger
prediction error compared with the larger reward option, and
thus, the action value of the lower valued option is more
reduced by surprise. This results in the frequent choice of the
large reward option.

DISCUSSION

In this study, we proposed the surprise-sensitive utility model in
which prediction error works not only to update the prediction
but also to decrease the outcome value. As a result of the
simulation, we found that the surprise-sensitive utility model
similarly explains the risk-averse choices to a previous model
(Niv et al., 2012; Figure 1). We confirmed the superiority

of the proposed model by model comparison using two
actual experimental datasets (Figures 3A,B and Supplementary
Figure S2). These findings suggest that surprise can affect
subsequent decision making by reducing outcome value.

In the proposed model, the probability of choosing a sure
option increased as the surprise decay rate (d) increased
(Figure 2). This tendency increased as the learning rate (α)
increased. This makes sense, as the larger surprise decay rate leads
to a larger reduction in the value for the risky choice, making the
agents avoid the choice. The learning rates determine the degree
of the prediction update. Having large learning rates causes the
agent to adjust their behavior quickly to avoid risky choices.

The proposed model fits these datasets better than the
previous models, with the same or fewer free parameters.
First, this model fits the dataset of Niv et al. (2012) and
Goris et al. (2019) better than the risk-sensitive Q-learning
model, which utilized separate learning rates for positive or
negative prediction error, having asymmetric effects on changes
in predictions. The result in which the proposed model fits these
datasets better than the asymmetric learning rates model implies
the importance of non-linear modulation of the evaluation
of outcomes. At this point, the proposed model is similar
to the utility model, but unlike the static modulation of
the utility model, the modulation varies trial-by-trial in the
proposed model. Because parameter estimates obtained from
model fitting reflect not only the steady-state but also transient
trial-by-trial behavior dynamics (Katahira, 2018), we believe
that these differences between models may contribute to the
fitting results.

This surprise sensitive utility model may explain the
symptomatic behavior of psychiatric disorders, such as autism
spectrum disorder (ASD). Our results showed that a decreased
outcome value, a reward history that generates larger surprises,
and a higher surprise decay rate all negatively affected an agent’s
stay probability. These findings indicate that agents who are
susceptible to surprise avoid making the same choice, even
when the proximate outcome is rewarded. Individuals with
ASD prefer repetitive behaviors with a perfect contingency that
does not generate large surprises over social interaction, where
contingency is non-perfect and surprise is more likely (Gergely,
2001; Van de Cruys et al., 2014; Northrup, 2017). Previous
models cannot explain such preferential behaviors because, in
these models, a positive prediction error leads to a preference
for the chosen option. However, in the surprise-sensitive utility
model, the value of the surprise outcome decreases, which can
explain the tendency to avoid social interaction and prefer
repetitive behaviors. Additionally, on average, individuals with
ASD are known to have lower social motivation than neurotypical
people (Chevallier et al., 2012; Bottini, 2018; Clements et al.,
2018; Sumiya et al., 2020). However, at the individual level,
individuals with ASD exhibit highly variable levels of social
motivation (Sumiya et al., 2018). The surprise decay rate may be
associated with these individual differences in social motivation
within ASD. In the future, it may be useful to expand the
use of this proposed model to investigate the differences in
choice preference in individuals with ASD whose preference is
influenced by the surprise.
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CONCLUSION

Previously, the effect of surprise on the value of an outcome
and subsequent decision making was unclear. In this study, we
proposed the surprise-sensitive utility model, a reinforcement
learning model in which surprise decreases the outcome value.
Comparing the proposed model with previous models, we found
that the new model explains risk-averse choices as well as
previous models. Risk-averse choices increased as the surprise-
based modulation parameter of outcome value increased. The
present findings suggest that surprise can affect subsequent
decision making by reducing the outcome value. This proposed
model can be the basis for a model linking the experimental data
and the notion that surprise decreases outcome values.
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data than other models for some subjects, especially those whose probability of
choosing a sure option is high. QL, Q-learning model; utility, utility model; RSQL,
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FIGURE S2 | Plot and second-order polynomial fit for the probability of choosing
a sure option depending on the surprise decay rate (−1 ≤ d ≤ 1) and learning
rate. When a surprise decay rate (d) is positive, risk aversion increases as the
surprise decay rate (d) increases. However, when a surprise decay rate (d) is
negative, risk aversion decreases as d decreases.

FIGURE S3 | Estimated parameters of the surprise-sensitive utility model in the
Niv et al. (2012) dataset.

FIGURE S4 | The results of the analysis on the dataset of Goris et al. (2019).
(A) Model evidence for each model: data are presented as the mean (bars) and
data value (plots and lines) per subject, (B) Bayesian model selection, (C)
estimated parameters of the surprise-sensitive utility model. We found that the
surprise-sensitive utility model had the largest value and had a decisively higher
protected exceedance probability. QL, Q-learning model; utility, utility model;
RSQL, risk-sensitive Q-learning model; surprise, surprise-sensitive utility model.

FIGURE S5 | Numbers for choosing each option of the Q-learning model and
surprise-sensitive utility model. Data are presented as the mean ± standard error.
(A) We compared two safe options (p = 0.9) with a small value difference (r = 1 or
0.8) and found that agents chose higher valued options less in the proposed
model than in the Q-learning model. (B) We compared two safe options (p = 0.9)
with higher values (r = 1) and lower values (r = 0.3) and found that agents chose
the higher-value option in the proposed model more than the Q-learning model.
QL, Q-learning model; surprise, surprise-sensitive utility model.

TABLE S1 | Model specification.
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