
METHODS
published: 22 July 2020

doi: 10.3389/fnins.2020.00728

Frontiers in Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 728

Edited by:

John Ashburner,

University College London,

United Kingdom

Reviewed by:

Zhifang Pan,

Wenzhou Medical University, China

Gulsher Ali Baloch,

Sukkur IBA University, Pakistan

Muhammad Aksam,

COMSATS University Islamabad,

Lahore Campus, Pakistan

*Correspondence:

Noorbakhsh Amiri Golilarz

noorbakhsh.amiri@std.uestc.edu.cn

Hui Gao

huigao@uestc.edu.cn

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 28 March 2020

Accepted: 18 June 2020

Published: 22 July 2020

Citation:

Amiri Golilarz N, Gao H, Kumar R,

Ali L, Fu Y and Li C (2020) Adaptive

Wavelet Based MRI Brain Image

De-noising. Front. Neurosci. 14:728.

doi: 10.3389/fnins.2020.00728

Adaptive Wavelet Based MRI Brain
Image De-noising

Noorbakhsh Amiri Golilarz 1*, Hui Gao 1*, Rajesh Kumar 1, Liaqat Ali 2, Yan Fu 1 and Chun Li 3

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China,
2 School of Information and Communication Engineering, University of Electronic Science and Technology of China,

Chengdu, China, 3 The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, China

This paper presents a unique approach for wavelet-based MRI brain image de-noising.

Adaptive soft and hard threshold functions are first proposed to improve the results of

standard soft and hard threshold functions for image de-noising in the wavelet domain.

Then, we applied the newly emerged improved adaptive generalizedGaussian distributed

oriented threshold function (improved AGGD) on the MRI images to improve the results

of the adaptive soft and hard threshold functions and also to display, this non-linear and

data-driven function can work promisingly even in de-noising the medical images. The

most important characteristic of this function is that it is dependent on the image since

it is combined with an adaptive generalized Gaussian distribution function.Traditional

thresholding neural network (TNN) and optimized based noise reduction have good

results but fail to keep the visual quality and may blur some parts of an image. In

TNN and optimized based image de-noising, it was required to use Least-mean-square

(LMS) learning and optimization algorithms, respectively to find the optimum threshold

value and parameters of the threshold functions which was time consuming. To address

these issues, the improved AGGD based image de-noising approach is introduced

to enhance the qualitative and quantitative performance of the above mentioned

image de-noising techniques. De-noising using improved AGGD threshold function

provides better results in terms of Peak Signal to Noise Ratio (PSNR) and also

faster processing time since there is no need to use any Least-mean-square (LMS)

learning and optimization algorithms for obtaining the optimum value and parameters

of the thresholding functions. The experimental results indicate that image de-noising

using improved AGGD threshold performs pretty well comparing with the adaptive

threshold, standard threshold, improved wavelet threshold, and the optimized based

noise reduction methods.

Keywords: wavelet, MRI image de-noising, AGGD, adaptive threshold, PSNR

1. INTRODUCTION

Image de-noising is among the most important tasks in image and signal processing. Wide range
of unwanted noises may affect the visual quality of images. The noise can affect an image during
the processes of acquisition and transmission which can cause deflection from an original image.
It is obvious that the image quality and resolution may be contaminated by these artifacts so
that it is required to do image de-noising as the first step before any further analysis, such as
super-resolution, classification and any qualitative and quantitative measurement.
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One of the most crucial issues in image de-noising is keeping
the most influential characteristics of the images and removing
the non-important characteristics. Noise removal has become
one of the critical pre-processing steps in many applications
like remote sensing, satellite and biomedical image processing
(Golilarz et al., 2019b). Some of these noises can affect the
appearance and damage the attribute of an image. Others may
not be continuous and they occur randomly. In this case, it is
very difficult to get rid of these kinds of noises. However, many
methods have been proposed for reducing the possible noises
from the images and enhancing their quality.

Yuan and Ghanem (2015) introduced a new approach for
image restoration in the presence of impulse noise. Weighted
couple sparse representation has been introduced by Chen et al.
(2015). To remove multimodal noise using semi-supervised
learning on big data, Yin et al. (2018) introduced a highly

FIGURE 1 | (A) is Zhang’s improved soft threshold, and (B) is Zhang’s

improved hard threshold (Zhang, 2001).

accurate image reconstruction. Garnett et al. (2005) introduced
a universal noise reduction algorithm combined with an impulse
detector. Median- type noise detectors and detail-preserving
regularization based noise removal are proposed by Chan
et al. (2005). Moreover, impulse noise reduction with Gaussian
curvature of image surface is proposed by Miura et al. (2013).
Lin et al. (2010) introduced impulse noise suppression using
a new adaptive center weighted median (ACWM) filter. A
new impulse detector combined with weighted median filter
is proposed by Dong and Xu (2007) to obtain the directional
weighted median (DWM) filter. Universal noise reduction using
a switching bilateral filter combined with a noise detector
is utilized by Lin et al. (2010). The standard deviation to

FIGURE 2 | Adaptive threshold functions.

FIGURE 3 | Improved AGGD threshold.
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FIGURE 4 | Original MRI brain images.
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acquire the optimal direction is proposed by Awad (2011) as
a new technique to discard the noise from images influenced
by random-valued impulse noise. In 2013, Lu et al. proposed
sparse coding for noise removing with spike and slab prior
(Lu et al., 2013). Noise reduction utilizing a scale mixture
of Gaussians was presented by Portilla et al. (2003). In this
technique, the components have been explained with a statistical
model. Additionally, the estimation of mode in high-dimensional
spaces using flat-top kernels has been proposed in a study
conducted by De Decker et al. (2011). Recently, wavelet and
thresholding based noise reduction has become very common
among researchers in the field of image and signal processing.
Many techniques have been introduced to discard the noises
and keep the most significant characteristics of images in the
wavelet domain.

Chang et al. (2000) proposed context modeling for parameter
estimation of each component which is adaptive to wavelet
thresholding. It is clear, this component is modeled as a random
variable for GGD. Based on the obtained results, this method
has better performance than orthogonal transform. Speckle noise
reduction utilizing a Bayesian multiscale method is introduced
by Achim et al. (2001). An empirical Bayes method with
Jeffrey’s non-informative prior is also a noise removal method
based on wavelet transform proposed by Figueiredo and Nowak
(2001). Şendur and Selesnick (2002) proposed bivariate shrinkage
function for image denoising using wavelet transform. Image
de-noising using joint inter- and interscale statistical model,
translation invariant wavelet transformations, and Bayesian
wavelet shrinkage based on heavy-tailed modeling have been
proposed by Pizurica et al. (2002), Achim et al. (2003), and
Sveinsson and Benediktsson (2003), respectively.

Starck et al. (2002) proposed the curvelet transform for noise
reduction. Additionally, sparse and redundant representations
over learned dictionaries for noise removing is proposed by
Elad and Aharon (2006). The local adaptive wiener filter
approach for noise suppression in wavelet domain is introduced
by Li et al. (2011). Image de-noising with an un-decimated
wavelet transform (UWT) utilizing soft thresholding function is
introduced by Golilarz and Demirel (2018a). Furthermore, image
de-noising based on translation invariant wavelet transform
combined with smooth sigmoid based shrinkage (SSBS) function
is introduced by Golilarz et al. (2017). Adapting to unknown
smoothness via wavelet shrinkage is introduced by Donoho and
Johnstone (1995).

TABLE 1 | Performance analysis of adaptive and standard threshold for MRI

image de-noising in terms of PSNR values.

Image Variance Hard Soft Adaptive hard Adaptive soft

MRI image 1

0.01 20.56 21.46 23.52 25.74

0.03 19.39 20.41 21.83 23.80

0.05 18.71 19.63 21.01 22.69

MRI image 2

0.01 22.78 23.47 25.61 27.39

0.03 20.14 21.31 24.5 26.51

0.05 19.56 20.7 23.81 24.83

To improve the quality and performance of the
previous method, Coifman and Donoho (1995) proposed
translation-invariant de-noising. Numerous literature has
emerged for thresholding neural network (TNN) based noise
suppression. Thresholding neural network (TNN) for adaptive
noise reduction is proposed by Zhang (2001). In this study,
new types of soft and hard threshold functions have been
presented to be utilized as the activation function in TNN. These
threshold functions are differentiable and non-linear. Moreover,
thresholding neural network-based noise reduction with a
smooth sigmoid based shrinkage and TNN using an improved
threshold function have been proposed by Golilarz and Demirel
(2017) and Golilarz and Demirel (2018b), respectively. Image
denoising in the wavelet domain based on improved TNN
and cycle spinning has been conducted in a study proposed
by Sahraeian et al. (2007). In this study, the authors utilized
a new adaptive improved threshold function combined with
cycle spinning to enhance the results of TNN based image
de-noising using adaptive thresholding. Besides, Nasri and
Nezamabadi-pour (2009) presented a new adaptive thresholding
function for wavelet based noise removal. In their research,
they introduced a new TNN combined with a new type of
adaptive function with three shape tuning parameters to improve
the Zhang’s approach (Zhang, 2001). Golilarz et al. (2018)
introduced a new method for hyperspectral remote sensing
image de-noising utilizing 3D un-decimated wavelet transform
with a new improved soft thresholding function to improve
the results of previous threshold based noise removal. Qian
(2018) proposed an algorithm for image de-noising utilizing an
enhanced thresholding and median filter. One of the drawbacks
and limitations of utilizing TNN based noise reduction is
that it is time-consuming. Gradient-based learning is used
in TNN to attain the optimum threshold value. Therefore,
to address this problem, Bhandari et al. (2016) proposed
optimized adaptive thresholding based image de-noising
which they used JADE optimization algorithm instead of the
steepest descent gradient based LMS method to decrease the
computational time for attaining the optimum threshold value
and other parameters.

To improve the efficiency of de-noising based on JADE
algorithm, Golilarz et al. (2019b) utilized Harris Hawks
optimization (HHO) algorithm (Heidari et al., 2019) in the
first stage, and then improved adaptive generalized Gaussian
distribution (AGGD) threshold function (Golilarz et al., 2019a)

TABLE 2 | Performance analysis of adaptive and standard threshold for MRI

image de-noising in terms of MSE.

Image Variance Hard Soft Adaptive hard Adaptive soft

MRI image 1

0.01 571 465 289 173

0.03 748 592 427 271

0.05 875 708 515 350

MRI image 2

0.01 343 292 179 118

0.03 630 481 231 145

0.05 719 553 270 214
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FIGURE 5 | Visual comparison between adaptive and standard thresholds for variance 0.03.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 728

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Amiri Golilarz et al. MRI Brain Image De-noising

is used to enhance the quality of optimized based image de-
noising approach, and lessen the computational time as well. The
authors indicated that in improved AGGD based noise removal,
the optimum value can be acquired without using any LMS
learning and optimization algorithm. This advantage can save
the processing time. In addition, the performance of wavelet
thresholding can be enhanced using the adaptive GGD function
because it provides us with more information about the image
which the noisy constituents can be controlled well utilizing this
adaptive function.

In this research, in the first stage we present adaptive
soft and adaptive hard threshold to improve the results of
standard hard and standard soft threshold function. In standard
hard threshold, the small components are set to zero but
adaptive soft and adaptive hard threshold can tune these
coefficients using AGGD function in the interval [−σn, σn]. The
results proved that adaptive threshold acts better than standard
threshold in image de-noising. Additionally, to enhance the
performance of image de-noising using optimization algorithms,
improved adaptive generalized Gaussian distribution (AGGD)
threshold is used for MRI brain image de-nosing. Moreover, we
compared the proposedmethodwith improvedwavelet threshold
proposed by Zhang et al. (2019). Experimental results prove the
superiority of the proposed method over standard threshold,
adaptive threshold, optimization (Golilarz et al., 2019b), and
improved wavelet threshold (Zhang et al., 2019) based image
de-noising methods.

2. WAVELET BASED IMAGE DE-NOISING

To get the output de-noised image in the wavelet domain,
we can do as follows (Golilarz et al., 2019b). Firstly, by
applying wavelet transform we will get wavelet coefficients. These
components can be sorted in two main groups: those carrying
the most significant features of images and those having the non-
important characteristics, with the former is the detail coefficient
and latter is the non-important coefficients or noisy constituents.
Next, these wavelet coefficients which we got from the first step,
should be tuned using a suitable threshold value to preserve the
crucial features and attribute of the image and discard the non-
important components. These tuned components are called as
thresholded wavelet coefficients. Then, it is time to apply the
inverse wavelet transform (IWT) on these tuned thresholded
wavelet coefficients providing us with the noise free image. On
this matter, it is an important task to use a suitable threshold
function and a threshold value since it plays an important role
in getting our desired output de-noised image.

2.1. Definition of Noise, Threshold, and
Mean Square Error
Assume that the noisy vector is as: f =

[
f0, f1, . . . .fN−1

]T
which

is contaminated by additive white Gaussian noise (AWGN):

fi = ui + ni, i = 0, 1, 2, . . . ,N − 1 (1)

where, ui represents the input noise-free wavelet constituents
and ni is the iid (independent and identically distributed)
Gaussian noise.

Then, assume the data vector without noise as U =

[u0, u1, . . . , uN−1]
T and the thresholded output vector as |Û =[

û0, û1, . . . , ûN−1

]T
Admittedly, the main goal in image de-

noising is to minimize the Mean Square Error risk (Nasri and
Nezamabadi-pour, 2009). TheMean Square Error (MSE) risk can
be obtained as follows:

mserisk =
1

2
E‖Û − U‖2 =

1

2N

N−1∑

i=0

(̂ui − ui)
2 (2)

where, N is the size of the sub-band, (ui) is the input
coefficients and ûi the thresholded wavelet coefficients (Nasri
and Nezamabadi-pour, 2009).

Noise removal in the wavelet domain requires applying a
proper threshold function and the threshold value. The universal
threshold value (tuni) can be obtained based on VisuShrink
technique using the equation below (Donoho and Johnstone,
1994). VisuShrink applies a universal threshold to all of the
wavelet detail constituents. This threshold is known to discard
additive Gaussian noise with high probability tending to result
in overly smooth image appearance due to the fact that the
threshold may be big because of its dependancy to the number
of samples, n.

tuni = σ
√
2 ln(n) (3)

where, n is the sample size and σ is the robust median estimator
(Donoho and Johnstone, 1994) as follows:

σ̂ = Median
(∣∣Gi,j

∣∣) /0.6745 (4)

where, G(i,j) is the components in the HH1 sub-band
(Donoho and Johnstone, 1994).

TABLE 3 | Comparison between different noise reduction methods in terms of

PSNR values.

Image Variance Hard Soft Adaptive

hard

Adaptive

soft

HHO Improved

AGGD

MRI image 3

0.01 21.05 21.89 24.53 26.29 30.48 33.21

0.03 19.69 20.43 22.48 24.46 29.11 32.14

0.05 18.31 18.78 21.75 23.85 28.87 31.26

TABLE 4 | Comparison between different noise reduction methods in terms

of MSE.

Image Variance Hard Soft Adaptive

hard

Adaptive

soft

HHO Improved

AGGD

MRI image 3

0.01 510 421 229 153 58 31

0.03 698 589 367 233 79 40

0.05 959 861 434 268 84 49
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2.2. Thresholding Neural Network (TNN)
Thresholding neural network based (space scale adaptive) noise
reduction is proposed by Zhang (2001). In this network, there
is linear transform which is fixed, and activation function which
can be adaptive. The input of TNN is noisy image in which the
linear orthogonal transform can be applied on it to get noisy
components. Note that η is the non-linear activation function.
The noisy coefficients need to be passed through this function
to get thresholded wavelet coefficients. Eventually, by applying

inverse linear orthogonal transform, we will attain output de-
noised image (Golilarz and Demirel, 2018b). Zhang introduced
two types of the non-linear threshold, namely: improved soft,
and improved hard threshold functions as follows (Zhang,
2001). These functions with different λ and µ values are shown
in Figure 1.

ηsoft(x, t) = x+
1

2
(
√
(x− t)2 + λ −

√
(x+ t)2 + λ) (5)

FIGURE 6 | Comparison of visual inspection between different noise reduction methods for MRI Brain Image 3 for variance 0.03.
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where, ηsoft is the improved soft threshold function. Here, x is
the wavelet component, t is the threshold value and λ > 0 is a
user-defined function parameter (Zhang, 2001).

ηhard(x, t) =


 1

1+ exp
(
−x+t

µ

) −
1

1+ exp
(
−x−t

µ

) + 1


 x

(6)
where, ηhard is the improved hard threshold function, x is the
wavelet components, t is the threshold value and µ > 0 is a user-
defined function parameter (Zhang, 2001). In this network, the
optimum threshold value in the step L is given below (Golilarz
and Demirel, 2017):

t(L+ 1) = t(L)− 1t(L). (7)

where, 1t(L) is as:

1t(L) = θ(L)
∂J(t)

∂(t)
, t = t(L) (8)

where θ is learning rate and J(t) is the MSE risk function.
To improve the efficiency and speed of Zhang’s proposed

TNN, Nasri and Nezamabadi-pour (2009) introduced a new
thresholding neural network in the wavelet domain. Despite the
Zhang’s network which is space scale adaptive, this network
is sub-band adaptive noise reduction (Nasri and Nezamabadi-
pour, 2009). Similarly, the activation function is also non-linear
and data-driven. The whole procedure of acquiring the de-
noised image is mentioned above. In adaptive wavelet-based
noise removal techniques, the threshold functions are chosen
to be non-linear and adaptive. In this case, to improve the
capability of the threshold functions, instead of setting the noisy
components (below the threshold value) to zero by standard
threshold functions, we can adjust and control these small
coefficients using polynomial functions (Bhandari et al., 2016).

2.3. Optimized Based Image De-noising
Noise reduction using an optimized adaptive threshold function
combined with nature-inspired optimization algorithms is
introduced by Bhandari et al. (2016). The authors presented

TABLE 5 | Performance of improved AGGD compared with improved threshold in

terms of PSNR values.

MRI images Variance Improved threshold Improved AGGD

MRI image 4

0.01 27.68 33.39

0.03 25.77 31.41

0.05 24.35 30.36

MRI image 5

0.01 26.18 32.01

0.03 25.73 30.76

0.05 23.62 29.21

MRI image 6

0.01 27.07 32.79

0.03 24.89 30.12

0.05 23.51 29.03

several optimization algorithms for satellite image de-noising.
It was proved that image de-noising using TNN with steepest
descent learning is time-consuming so that utilizing the
optimization instead of LMS learning algorithm not only can
improve the quality but also can increase the speed remarkably.
Bhandari et al. (2016), utilized several different evolutionary for
image de-noising. In their study, they used Differential Evolution
(DE) (Storn and Price, 1997), Particle Swarm Optimization
(PSO) (Poli et al., 2007), Wind Driven Optimization (WDO)
(Bayraktar et al., 2011), Firefly Algorithm (FA) (Yang, 2010),
Cuckoo Search (CS) Algorithm (Yang and Deb, 2009), and JADE
algorithm (Zhang and Sanderson, 2009) as the optimizers to
obtain the optimized thresholded wavelet coefficients in the
process of getting the de-noised image. At the end, it was
shown that using JADE algorithm performs better than other
optimization algorithms in terms of PSNR values and qualitative
results. By getting motivation from this paper, Golilarz et al.
(2019b) attempted to improve the cited results by proposing
a new technique. Then, it is proposed to apply another meta-
heuristic optimizer (Harris Hawks Optimizer introduced by
Heidari et al., 2019) instead of using JADE algorithm in the
optimization process. The results showed the superiority of HHO
based image de-noising method.

Themain steps of obtaining the desired de-noised image using
an optimization algorithm are as follows (Bhandari et al., 2016):

1. Apply a discrete wavelet transform on input noisy image
(AWGN with zero mean and standard deviation of) to get
noisy coefficients. Then, we can set the parameters of the
optimization algorithm (number of iterations, number of
solutions, scale parameters, etc.).

2. The noisy coefficients can be passed through an optimization
algorithm consisting of the adaptive function so that the
solution for the optimization algorithm can be acquired.

3. After computing it through threshold function, the best fitness
values for each solution can be obtained (Bhandari et al.,
2016).

4. After passing these parameters through adaptive function, we
can get optimized thresholded wavelet coefficients.

5. Inverse discrete wavelet transform (IDWT) can be applied to
these coefficients to get output de-noised image.

TABLE 6 | Performance of improved AGGD compared with improved threshold in

terms of MSE.

MRI images Variance Improved threshold Improved AGGD

MRI image 4

0.01 111 30

0.03 172 50

0.05 239 60

MRI image 5

0.01 157 41

0.03 174 54

0.05 282 78

MRI image 6

0.01 128 34

0.03 210 63

0.05 290 81
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3. ADAPTIVE THRESHOLD FOR T = σN

3.1. Adaptive Hard Threshold
This function consists of two main parts: in the interval
[−σn, σn], which is an AGGD oriented function, and behind the
interval which is the identity function. As can be seen in Figure 2,
since it is discontinuous, we call it an adaptive hard threshold
function. We call this function as “tune and keep” since it keeps
large coefficients behind the interval and unlike the standard
hard threshold function, we can tune the small noisy coefficients
instead of setting them to zero. This function is formulated below.

χ(x) =





x , x < −σn
s(x)− s(0), |x| ≤ σn
x , x > σn

(9)

where s(x) = σn

(
e

x2

2σ2n
− 1

2

)
, x is the coefficient, and t = σn is the

threshold value.

3.2. Adaptive Soft Threshold
The main difference between this function and the adaptive
hard threshold is its continuity. As Figure 2 adaptive threshold
function which is given below. We call this function as “tune
and shrink” since it shrinks large coefficients behind the interval
by the threshold value but unlike the standard soft threshold
function, it is possible to tune the small noisy coefficients instead
of setting them to zero.

β(x) =





x+ (t − s(t)− s(0))) , x < −σn
s(x)− s(0) |x| ≤ σn
x− (t − s(t)− s(0))) , x > σn

(10)

where, β(x) is the adaptive soft threshold, s(x) = σn

(
e

x2

2σ2n
− 1

2

)
, x

is the coefficient, and t = σn is the threshold value.

FIGURE 7 | Visual comparison between improved AGGD and improved threshold for variance 0.03.
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4. IMPROVED AGGD THRESHOLD FOR
T > σN

Golilarz et al., in 2019 proposed an adaptive generalized Gaussian
distribution (AGGD) oriented threshold for image de-noising
(Golilarz et al., 2019a). This function is data-driven, non-linear,
and also flexible and fitted to any kind of images so that it
can be shaped in various images. These are the most important
characteristics of this function. It is proved that in the interval
[−t, t], this function tunes the non-important constituents using
an adaptive GGD threshold function instead of setting these
coefficients to zero. Admittedly, this characteristic enhances the
capability and flexibility of this function. The AGGD threshold
function is given as (Golilarz et al., 2019a):

ρ(x) =





x , x < −t
s(x)− s(0), |x| ≤ t
x x > t

(11)

where, s(x) = σn

(
e

x2

2σn2
− 1

2

)
, x is the coefficient, σn is the robust

median estimator and t is the threshold value. This value is the
inter section of x and s(x).

Golilarz et al. (2019b) improved the capability, quality,
and speed of their former method (AGGD) by proposing an
improved version of AGGD threshold function which results
in an enhancement in both qualitative and quantitative results.
This function is completely non-linear and differentiable by
an adaptive generalized Gaussian distribution function in the
interval [−t, t], and another non-linear function behind the
interval. Obviously, the whole coefficients can be tuned using
non-linear and data-driven functions. Like the AGGD threshold
function, the threshold value can be obtained without using any
optimization and steepest descent learning algorithms. Figure 3
shows improved AGGD function. This function is formulated
as follows:

µ(x) =





(
1

1+ex+t

)
x− t

2 , x < −t

s(x)− s(0), |x| ≤ t(
1

1+e−x+t

)
x+ t

2 , x > t

(12)

where, µ(x) is the improved AGGD threshold, s(x) =

σn

(
e

x2

2σ2n
− 1

2

)
, x is the coefficient, σn is the robust median

estimator and t is the threshold value.

5. EXPERIMENTAL RESULTS

In this part we used four experiments to show the superiority
of using improved AGGD method both qualitatively and
quantitatively. In this research we used Peak Signal to Noise
Ratio(PSNR) and MSE to evaluate the performance analysis of
different de-noising techniques. MSE and PSNR (dB) can be

obtained as follows:

MSE =
1

MN

M∑

i=1

N∑

j=1

[d(i, j)− d̂(i, j)]2 (13)

where d is the original image, d̂ is the de-noised image andM, N
are the size of image (Bhandari et al., 2016).

PSNR = 10 log10

(
2552

MSE

)
(14)

whereMSE is the mean square error.
In this part, we analyzed the use of wavelet based noise

reduction with adaptive GGD threshold to improve the
visual quality of MRI brain images in clinical researches
and investigation which may be affected to unwanted noises
during receiving and transmitting procedures. Particularly, we
applied improved AGGD threshold on brain images in the
wavelet domain to evaluate the effectiveness and efficiency of
the proposed method in de-noising the medical images in
comparison with other techniques.

Here we utilized 12 MRI brain images which are shown in
Figure 4. The dataset is available in Dataset (2020). The images
are affected by additive white Gaussian noise AWGN with zero
mean and different variance values. In these experiments we
utilized Db4 wavelet with one level of decomposition. For HHO
algorithm, the parameters are same with those in the original
work of HHO (Heidari et al., 2019).

In the first experiment, as can be seen from Tables 1, 2, we
compare adaptive soft, adaptive hard with standard soft and

TABLE 7 | Performance analysis of proposed method compared with Sahraeian

and Noorbakhsh’s technique for MRI brain image de-noising in terms of PSNR

values.

Image Variance Sahraeian Noorbakhsh Proposed

MRI image 7

0.01 29.54 29.95 33.26

0.03 28.25 28.64 32.07

0.05 25.69 26.12 29.65

MRI image 8

0.01 29.78 30.21 33.31

0.03 27.95 28.51 32.04

0.05 25.76 26.11 29.51

MRI image 9

0.01 30.42 30.89 34.52

0.03 29.16 29.63 33.01

0.05 27.55 27.95 31.51

MRI image 10

0.01 30.39 30.76 33.77

0.03 29.12 29.68 32.48

0.05 26.38 26.91 30.1

MRI image 11

0.01 28.62 29.17 32.05

0.03 27.43 27.87 31.01

0.05 26.1 26.61 29.59

MRI image 12

0.01 30.03 30.56 33.46

0.03 28.81 29.15 32.5

0.05 27.42 27.98 30.89
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FIGURE 8 | Visual comparison between different noise suppression techniques for variance 0.03.
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TABLE 8 | Processing time comparison among different techniques.

Methods Hard Soft Adaptive hard Adaptive soft HHO Improved threshold Improved AGGD

Time (s) 4.2 4.6 3.5 3.2 4.4 2.6 1.8

standard hard threshold functions in terms of PSNR and MSE.
In this experiment we used MRI images 1–2. In addition in
Figure 5, we can see the visual comparison of these methods. It
is obvious that adaptive soft threshold performs well comparing
with adaptive hard, standard soft, and standard hard threshold
function for image de-noising.

In the second experiment, in Tables 3, 4, we compared
improved AGGD with de-noising using Harris Hawks
Optimization (HHO) based noise reduction (Golilarz et al.,
2019b), adaptive soft, adaptive hard, standard soft, and standard
hard thresholds. Note that we used MRI Brain Image 3.
Additionally, in Figure 6 we compared these techniques visually.
It is obvious that improved AGGD performs better than other
de-noising techniques.

In the third experiment we compared proposed
improved AGGD with improved threshold (Zhang et al.,
2019). Here we used MRI Brain Images 4–6. As can be
seen from Tables 5, 6, improved AGGD performs better
than improved threshold function for MRI brain image
de-noising. Moreover, Figure 7 shows the superiority
of the proposed technique over improved threshold
function qualitatively.

In the fourth experiment we compared the proposed method
with Sahraeian et al. (2007) andNoorbakhsh’s technique (Golilarz
et al., 2018) as well. Here we used MRI Brain Images 7–12. From
Table 7 we can conclude that improved AGGD performs better
than Sahraeian and Noorbakhsh’s proposed method for MRI
brain image de-noising. Additionally, we can see this comparison
visually in Figure 8.

The improved AGGD based image de-noising is presented
to enhance both quality and the processing time. In the last
experiment, we compared the processing time among various
image de-noising methods. The computational cost of improved
AGGD function is cheaper than improved threshold, HHO,
adaptive soft, adaptive hard, standard soft and standard hard
threshold functions. The speed and computational time among
different noise suppression techniques has been compared
in Table 8 for MRI brain Image 1 for variance 0.01. For
HHO, the time is the average of 10 runs. For all the
implementations and experimental results, we used Matlab
programming language on a computer with Intel core i7 and
16 GB RAM.

6. CONCLUSION

In this study, a new method for wavelet-based MRI image de-
noising is presented. Firstly, adaptive soft and hard threshold

functions are introduced to improve the performance of standard
threshold functions in the wavelet domain. Secondly, we used
the newly emerged improved adaptive generalized Gaussian
distributed oriented threshold function (improved AGGD) on
the MRI images to show that, this data driven and image
dependent threshold function performs well comparing with
adaptive soft and hard threshold functions. Recently, image
de-noising in the wavelet domain attracts lots of attentions
in image and signal processing. Previous TNN and optimized
based noise removal methods have good results but still the
quality of an image needs to be enhanced and improved.
TNN and optimized based noise reduction methods, require
to utilize Least-mean-square (LMS) learning and optimization
algorithms, respectively for acquiring the value of the optimum
threshold and the parameters of the threshold functions which
this process was time consuming. The improved AGGD based
image de-noising is presented to solve these drawbacks. The
computational cost of improved AGGD method is quite cheaper
than the above mentioned techniques because we are in no use
of LMS learning and optimization algorithms. This approach
has good results in terms of PSNR values. The experimental
analysis proves the superiority of improved AGGD threshold
over adaptive threshold, standard threshold, improved wavelet
threshold, and the optimized based noise reduction methods.
For the future work, we will extend this work to deal with
other forms of noise like impulse noise and non-Gaussian
noise as well.
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