Attention and perception are strongly biased toward information about oneself compared to information about others. The self-attention network, an integrative theoretical framework for understanding the self-prioritization effects (SPE), proposes that the ventromedial prefrontal cortex (VMPFC), and the posterior superior temporal sulcus (pSTS) are the two nodes responsible for the preferential processing of self-related stimuli, which interact with the attentional control network (associated with the dorsolateral prefrontal cortex, DLPFC), responsible for processing other-related stimuli. So far, neuroimaging studies have provided considerable correlational evidence supporting the self-attention network.
Here we went beyond correlational evidence by manipulating cortical activity using high-definition transcranial direct current stimulation (HD-tDCS), a non-invasive brain stimulation method. We assessed whether anodal and cathodal stimulation of the VMPFC or the DLPFC modulates the processing of self- and other-related stimuli.
We used an associative unbiased learning procedure, the so-called shape-label matching task, to assess the SPE in a sample of
We found no effect of shape association for non-matching pairs, whereas there was an effect of shape association in the matching condition. Performance (reaction times and accuracy) was better for the self association than for the other two associations, and performance for the friend association was better than for the stranger association. Thus, we replicated the SPE with behavioral data. At the neural level, none of the stimulation succeeded to modulate the magnitude of the SPE effect.
We discuss the implications of these findings, in particular why cognitive modeling theories about SPEs should favor an epiphenomenal rather than a causal link between VMPFC/DLPFC and the impact of personal significance stimuli on perception.