AUTHOR=Zhou Dongmei , Li Xuemei TITLE=Epilepsy EEG Signal Classification Algorithm Based on Improved RBF JOURNAL=Frontiers in Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.00606 DOI=10.3389/fnins.2020.00606 ISSN=1662-453X ABSTRACT=

Epilepsy is a chronic recurrent transient brain dysfunction syndrome. It is characterized by recurrent epilepsy caused by abnormal discharge of brain neurons. Epilepsy is one of the common diseases in nervous system. The analysis of EEG signals is a hot topic in current research. In order to solve the problem of epileptic EEG signals classification accurately, we carry out in-depth research on epileptic EEG signals, analyze features from linear and non-linear perspectives, input them into the improved RBF model to dynamically extract effective features, and introduce one against one strategy classifier to reduce the probability of error classification. Experiments show that the proposed algorithm has strong robustness and high epileptic signal recognition rate.