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Wepresent the first purely event-basedmethod for face detection using the high temporal

resolution properties of an event-based camera to detect the presence of a face in a

scene using eye blinks. Eye blinks are a unique and stable natural dynamic temporal

signature of human faces across population that can be fully captured by event-based

sensors. We show that eye blinks have a unique temporal signature over time that can be

easily detected by correlating the acquired local activity with a generic temporal model of

eye blinks that has been generated from a wide population of users. In a second stage

once a face has been located it becomes possible to apply a probabilistic framework to

track its spatial location for each incoming event while using eye blinks to correct for drift

and tracking errors. Results are shown for several indoor and outdoor experiments. We

also release an annotated data set that can be used for future work on the topic.

Keywords: face detection, face tracking, event-based computation, neuromorphic vision, silicon retina

1. INTRODUCTION

This paper introduces an event-based method to detect and track faces from the output of an
event-based camera. We also release a dataset of 50 recordings, consisting of a mix of indoor and
outdoor conditions. 25 of those recordings have been annotated for a total of 265 blinks1. The
method exploits the dynamic properties of human faces to detect, track and update multiple faces
in an unknown scene. Although face detection and tracking are considered practically solved in
classic computer vision, it is important to emphasize that current performances of conventional
frame based techniques come at a high operating computational cost after days of training on large
databases of static images. Event-based cameras record changes in illumination at high temporal
resolutions (in the range of 1µs to 1ms) and are therefore able to acquire the dynamics of moving
targets present in a scene (Lichtsteiner et al., 2008). In this work we will rely on eye blink detection
to determine the presence of a face in a scene to in a second stage initialize the position of a bayesian
tracker. The permanent computation of eye blinks will allow to correct tracking drifts and reduce
localization errors over time. Blinks produce a unique space-time signature that is temporally stable
across populations and can be reliably used to detect the position of eyes in an unknown scene. This
paper extends the sate-of-art by:

• Implementing a low-power human eye-blink detection that exploits the high temporal precision
provided by event-based cameras.

• Tracking of multiple faces simultaneously at µs precision, once they have been detected.

1Dataset is available for download under https://www.neuromorphic-vision.com/public/downloads/data-set-face-detection.

tar.gz; Supplementary Material.
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The developed methodology is entirely event-based as every
event output by the camera is processed into an incremental,
non-redundant scheme rather than creating frames from events
to recycle existing image-based methodology. We also show
that the method is inherently robust to scale changes of faces
by continuously inferring the scale from the distance of the
two eyes of the tracked face from detected eye blinks. The
method is compared to existing image-based face detection
techniques (Viola and Jones, 2004; Liu et al., 2016; Jiang and
Learned-Miller, 2017; Li and Shi, 2019). It is also tested on a
range of scenarios to show its robustness in different conditions:
indoors and outdoors scenes to test for the change in lighting
conditions; a scenario with a face moving close and moving
away to test for the change of scale, a setup of varying pose
and finally a scenario where multiple faces are detected and
tracked simultaneously. Comparisons with existing frame-based
methods are also provided.

1.1. Event-Based Cameras
Biomimetic event-driven time-based vision sensors are a novel
class of vision device that—like the biological retina—are
driven by “events”happening within the visual scene. They
are not like conventional vision sensors, which are driven by
artificially created timing and control signals (e.g., frame clock)
that have no relation whatsoever to the source of the visual
information (Lichtsteiner et al., 2008).

Over the past few years, a variety of these event-based
devices has been developed, including temporal contrast
vision sensors that are sensitive to relative luminance
change (Lichtsteiner et al., 2008), some also providing also
absolute light measurement (Posch et al., 2011).

These vision sensors output visual information about the
scene in the form of asynchronous address events using the
Address Event Representation protocol and encode the visual
information in the time dimension rather than as a voltage,
charge, or current. The novel algorithm for face detection and

FIGURE 1 | Working principle of the event-based camera and two types of events. (1) Change event of type ON is generated at t0 as voltage generated by incoming

light crosses a voltage threshold. (2) Time t2 − t1 to receive a certain amount of light is converted into an absolute gray-level value, emitted at t2 used for ground truth

in the paper.

tracking we propose in this paper is designed to take advantage
of the high temporal resolution data representation provided by
event-based cameras. The operating principle of these sensor is
shown in Figure 1. An event is defined as the n-tuple: ev =

(x, y, t, p), where (x, y) are the pixel coordinates, t the time
of occurrence and p is the polarity. Variations of event-based
cameras implement additional functionality.

In this work, we are using the Asynchronous Time-based
Image Sensor (ATIS) (Posch et al., 2011) as it also provides events
that encode absolute luminance information. This additional
information allows for direct and easier comparisons with the
frame-based world.

1.2. Face Detection
State-of-the-art face detection relies on neural networks that
are trained on large databases of face images, to cite the latest
from a wide literature, readers should refer to Yang et al. (2017),
Jiang and Learned-Miller (2017), and Sun et al. (2018). Neural
Networks usually rely on intensive computation that necessitates
dedicated hardware co-processors (usually GPU) to enable real-
time operations (Ren et al., 2008). Currently dedicated chips such
as Google’s Tensor Processing Unit or Apple’s Neural Engine
have become an essential tool for frame-based vision. They are
designed to accelerate matrix multiplications at the core of neural
networks inference. However, the computation costs associated
to these computations are extremely high (thousands of Watts).

Dedicated blink detection using conventional frame-based

techniques operate on a single frame. To constrain the region of

interest, a face detection algorithm is used beforehand (Noman

and Ahad, 2018). In an event-based approach, the computational

scheme can be inverted as detecting blinks is the mechanism that
drives face detection.

1.3. Human Eye Blinks
Humans blink synchronously in correlation to their cognitive
activities and more often than required to keep the surface of the
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eye hydrated and lubricated. Neuroscience research suggests that
blinks are actively involved in the release of attention (Nakano
et al., 2013). Generally, the observed eye blinking rates in adults
depend on the subject’s activity and level of focus. Rates can
range from 3 blinks/min when reading to up to 30 blinks/min
during conversation (Table 1). Fatigue significantly influences
blinking behaviors, increasing both rate and duration (Stern et al.,
1994). In this paper we will not consider these boundary cases
that will the be subject of further work on non-intrusive driver
monitoring (Häkkänen et al., 1999; Wang et al., 2006). A typical
blink duration is between 100 and 150ms (Benedetto et al., 2011).
It shortens with increasing physical workload, increased focus or
airborne particles related to air pollution (Walker et al., 2001).

To illustrate what happens during an event-based recording
of an eye blink, Figure 2 shows different stages of the eye lid
closure and opening. If the eye is in a static state, few events
will be generated (Figure 2A). The closure of the eye lid happens
within 100ms and generates a substantial amount of ON events,
followed by a slower opening of the eye (Figures 2C,D) and the
generation of primarily OFF events. From this observation, we
devise a method to build a temporal signature of a blink. This

TABLE 1 | Mean blinking rates according to Bentivoglio et al. (1997) and Stern

et al. (1994).

Activity (blinks/min) Bentivoglio et al. (1997) Stern et al. (1994)

Reading 4.5 3–7

At rest 17 –

Communicating 26 –

Not reading – 15–30

signature can then be used to signal the presence of a single eye
or pair of eyes in the field of view that can then be interpreted as
the presence of a face.

2. METHODS

2.1. Temporal Signature of an Eye Blink
Eye blinks can be represented as a temporal signature. To build
a canonical eye blink signature A(ti) of a blink, we convert
events acquired from the sensor into temporal activity. For each
incoming event ev = (xi, yi, ti, pi), we update A(ti) as follows:

A(ti) =

{

AON(ti) = AON(tu)e
−

ti−tu
τ + 1

scale
if pi=ON

AOFF(ti) = AOFF(tv)e
−

ti−tv
τ + 1

scale
if pi=OFF

(1)

where tu and tv are the times an ON or OFF event occurred
before ti. The respective activity function is increased by 1

scale
each time tn an event ON or OFF is registered (light increasing or
decreasing). The quantity scale initialized to 1 acts as a corrective
factor to account for a possible change in scale, as a face that is
closer to the camera will inevitably trigger more events. Figure 3
shows the two activity profiles where 5 profiles of a subject’s blinks
are shown, as well as much higher activities at the beginning
and the end of the sequence when the subject moves as a whole.
From a set of manually annotated blinks we build such an activity
model function as shown in Figure 2 where red and blue curve
respectively represent the ON and OFF parts of the profile.

Our algorithm detects blinks by checking whether the
combination of local ON- and OFF-activities correlates with the
canonical model of a blink that had previously been “learned”
from annotated material. To compute the local activity, the

FIGURE 2 | Mean and variance of the continuous activity profile of averaged blinks in the outdoor data set with a decay constant of 50ms. (A) Minimal movement of

the pupil, almost no change is recorded. (B) Eye lid is closing within 100ms, lots of ON-events (in white) are generated. (C) Eye is in a closed state and a minimum of

events is generated. (D) Opening of the eye lid is accompanied by the generation of mainly OFF-events (in black).
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FIGURE 3 | Showing ON (red) and OFF (blue) activity for one tile which lines up with one of the subject’s eyes. Multiple snapshots of accumulated events for 250ms

are shown, which corresponds to the gray areas. (A–E) Blinks. Subject is blinking. (F) Subject moves as a whole and a relatively high number of events is generated.

overall input focal plane is divided into one grid of n × n tiles,
overlapped with a second similar grid made of (n− 1)× (n− 1)
tiles. Each of these are rectangular patches, given the event-
camera’s resolution of 304×240 pixels. The second grid is shifted
by half the tile width and height to allow for redundant coverage
of the focal plane. In this work we set experimentally n = 16 as
it corresponds to the best compromise between performance and
the available computational power of the used hardware.

2.1.1. Blink Model Generation

A total of M = 120 blinks from six subjects are manually
annotated from the acquired data to build the generic model of
an eye blink shown in Figure 2. Each blink, extracted within a
time window of 250 ms is used to compute an activity function as
defined in Equation (1). The blink model is then obtained as the
average of these activity functions:

B(t) =



















BON(t) =
M
∑

k=1

AON (t)
M , if pi=ON

BOFF(t) =
M
∑

k=1

AOFF(t)
M , if pi=OFF

(2)

To provide some robustness and invariance to scale and time
changes to the blink model, we also define N, the number of
events per unit of time and normalized by the scale factor. This
number provides the number of samples necessary to calculate
the cross-correlation to detect blink as explained in section 2.1.2.
Formally, N =

⌊

#events
T.scale

⌋

, where ⌊.⌋ is the floor function giving

the largest integer smaller than #events
T.scale

.
Finally, we used two different models for indoor and outdoor

scenes, as experiments showed that the ratio between ON
and OFF events change substantially according to the lighting
conditions. Although the camera is supposed to be invariant
to absolute illumination, this is practically not the case due to
hardware limitations of early camera generation that we used for
this paper.

2.1.2. Sparse Cross-Correlation

When streaming data from the camera, the most recent activity
within a T = 250ms time window is taken into account in each
tile to calculate the similarity score, here the cross-correlation
score, for the ON and OFF activities. This cross-correlation is
only computed if the number of recent events exceeds an amount
N defined experimentally according to the hardware used. The
cross-correlation score between the incoming stream of events
and the model is given by:

C(tk) = αCON(tk)+ (1− α)COFF(tk), (3)

where

Cp(tk) =

N
∑

i=0

Ap(ti)Bp(ti − tk), (4)

with p ∈ {ON,OFF}. The ON and OFF parts of the correlation
score are weighted by a parameter α set experimentally that tunes
the contribution of the ON vs OFF events. This is a necessary step
-as explained in the previous section-, due to the camera manual
parameter settings, the amount of ON andOFF events are usually
not balanced. For all experiments, α is set to 2

3 .
It is important for implementation reasons to compute the

correlation as it appears in Equation (4). While it is possible to
calculate the value of the model B(t− tk) at anytime t, samples for
A are only known for the set of times {ti}, from the events. This
is illustrated as an example by Figure 4, for an arbitrary time tk,
where triangles outline the samples of the activity for calculated
events at ti and the circles show the samples calculated at the same
time ti with the model. If C(ti) exceeds a certain threshold, we
create what we call a blink candidate event for the tile in which the
event that triggered the correlation occurred. Such a candidate is
represented as the n-tuple eb = (r, c, t), where (r, c) are the row
and column coordinates of the grid tile and t is the timestamp.
We do this since we correlate activity for tiles individually and
only in a next step combine possible candidates to a blink.

2.1.3. Blink Detection

To detect the synchronous blinks generated by two eyes, blink
candidates across grids generated by the cross-correlation are
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FIGURE 4 | Example of the samples used to calculate the sparse cross-correlation for the OFF activity of an actual blink. The gray area represents BOFF , the activity

model for OFF events (in that particular example, it is previously built for outdoor data sets). Blue triangles correspond to the activity A(ti ) for which events have been

received in the current time window. Black dots are the BOFF (ti ), the value of activity in the model at the same times-tamps as incoming events.

tested against additional constraints for verification. As a human
blink has certain physiological constraints in terms of timing, we
check for temporal and spatial coherence of candidates in order
to find true positives. Themaximum temporal difference between
candidates will be denoted as 1Tmax and is set experimentally
to 50ms, the maximum horizontal spatial disparity 1Hmax is set
to half the sensor width and the maximum vertical difference
1Vmax is set to a fifth of the sensor height. Following these
constraints we will not detect blinks that happen extremely
close to the camera or stem from substantially rotated faces.
Algorithm 1 summarizes the set of constraints to validate the
detection of a blink. The scale factor here refers to a face that has
already been detected.

Algorithm 1: Blink detection

1 Inputs: A pair of consecutive blink candidate events
ebu = (ru, cu, tu) and ebv = (rv, cv, tv) with tu > tv

2 if (tu − tv < 1Tmax) AND (|ru − rv| < 1Vmax × scale)
AND (|cc − cv| < 1Hmax × scale) then

3 if face is a new face then
4 return 2 trackers with scale = 1
5 else

6 return 2 trackers with previous scale
7 end

8 end

2.2. Gaussian Tracker
Once a blink is detected with sufficient confidence, a tracker is
initiated at the detected location. We use trackers such as the

ones presented in Lagorce et al. (2015) that rely on bivariate
normal distributions to locally model the spatial distribution
of events. For each event, every tracker is assigned a score
that represents the probability of the event to belong to
the tracker:

p(u) =
1

2π
|6|−

1
2 e−

1
2 (u−µ)T6−1(u−µ) (5)

where u = [x, y]T is the pixel location of the event, is covariance
matrix 6 that defines the shape and size of the tracker. The
tracker with the highest probability is updated according to the
activity of pixels and also according to the estimated distance
between the spatial locations of the detected eyes.

2.3. Global Algorithm
The detection and tracking blocks combined operations are
summarized by following algorithm:

Algorithm 2: Event-based face detection and tracking
algorithm

1 for each event ev(x, y, t, p) do
2 if at least one face has been detected then
3 update best blob tracker for ev as in (5)
4 update scale of face for which tracker has moved

according to tracker distance
5 end

6 update activity according to (1)
7 correlate activity with model blink as in (3)
8 run Algorithm 1 to check for a blink

9 end
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3. EXPERIMENTS AND RESULTS

We evaluated the algorithm’s performance by running cross-
validation on a total of 48 recordings from 10 different subjects,
comprising 248 blinks. The recordings are divided into five
sets of experiments to assess the method’s performances under
realistic constraints encountered in natural scenarios. The event-
based camera is set static. We test the following scenarios of
sequences of:

• indoor and outdoor sequences showing a single subject
moving in front of the camera,

• a single face moving back and forth w.r.t. the camera to test the
robustness of scale change,

• several subjects discussing, facing the camera to test
for multi-detection,

• a single face changing its orientation w.r.t. the camera to test
for occlusion resilience.

The presented algorithm has been implemented in C++ and
runs in real-time on an Intel Core i5-7200U laptop CPU. We
are quantitatively assessing the proposed method’s accuracy
by comparing it with state of the art and gold standard face
detection algorithms from frame-based computer-vision. As
these approaches require frames, we are generating gray-levels
from the camera when this mode is available. The Viola and
Jones (2004) algorithm (VJ) provides the gold standard face
detector but we also considered the Faster R-CNN (FRCNN)
from Ren et al. (2015) and the Single Shot Detector (SSD)

network from Liu et al. (2016) that have been trained on the
Wider Face (Yang et al., 2016) data set. This allows us to
compare the performances of the event-based blink detection
and tracking with state-of-the-art face detectors based on deep
learning. Finally, we also tested a conventional approach that
combines CNN and correlation filter presented in Li and Shi
(2019). It is referred to as the “Correlation Filter” (CF) for the
rest of the paper. This technique, however, relies on creating
frames by summing the activities of pixels within a predefined
time window.

An important statement to keep in mind is that the proposed
blink detection and face tracking technique requires reliable
detection. We do not actually need to detect all blinks since
a single detection is already sufficient to initiate the trackers.
Additional blink detections are used to correct a trackers’
potential drifts regularly.

3.1. Indoor and Outdoor Face Detection
The indoor data set consists of recordings in controlled lighting
conditions. Figure 5 shows tracking results. The algorithm starts
tracking as soon as a single blink is detected (Figure 5A).
Whereas tracking accuracy on the frame-based implementation
is constant (25 fps), our algorithm is updated event-by-event
depending on the movements in the scene. If the subject stays
still, the amount of computation is drastically reduced as there is
a significantly lower number of events. Head movement causes
the tracker to update within µs (Figure 5B).

FIGURE 5 | Face tracking of one subject over 45 s. (A) Subject stays still and eyes are being detected. Movement in the background to the right does not disrupt

detection. (B) When the subject moves, several events are generated.
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TABLE 2 | Summary of results for detection and tracking for four sets of experiments.

No. of recordings Blinks detected (%) Error VJ (%) Error FRCNN (%) Error SSD (%) Error CF (%)

Indoor 21 68.4 5.92 9.42 9.21 10.51

Outdoor 21 52.3 7.6 14.57 15.08 14.88

Scale 3 62.6 4.8 10.17 10.22 17.6

Multiple 3 36.8 15 16.15 14.61 n/a

Total 48 59 7.68 11.77 11.52 12.82

Percentage of blinks detected relates to the total number of blinks in a recording. Tracking errors are Euclidean distances in pixel between the proposed and respective method’s

bounding boxes, normalized by the frame-based bounding box width and height in order to account for different scales.

Subjects in the outdoor experiments were asked to step from
side to side in front of a camera placed in a courtyard under
natural lighting conditions. They were asked to gaze into a
general direction, partly engaged in a conversation with the
person who recorded the video. Table 2 shows that results are
similar to indoor conditions. The slight difference is due to
the non-idealities of the sensor (same camera parameters as
in the indoor experiment). It is important to emphasize that
Event-based cameras still lack an automatic tuning system of
their parameters that hopefully will be developed for the future
generations of a cameras.

3.2. Face Scale Changes
In three recordings the scale of a person’s face varies by a
factor of more than 5 between the smallest to the largest
detected occurrence. Subjects were instructed to approach the
camera within 25 cm from their initial position to then move
away from the camera after 10 s to about 150 cm. Figure 6

shows tracking data for such a recording. The first blink
is detected after 3 s at around 1m in front of the camera
(Figure 6A). The subject then moves very close to the camera
and to the left so that not even the whole face bounding
box is seen anymore (Figure 6B). Since the eyes are still
visible, this is not a problem for the tracker. However, GT
had to be partly manually annotated for this part of the
recording, as two of the frame-based methods failed to detect
the face that was too close to the camera. The subject then
moves backwards and to the right, followed by further re-
detections (Figure 6C).

3.3. Multiple Faces Detection
We recorded three sets of three subjects sitting at a desk talking to
each other. No instructions where given to the subjects. Figure 7
shows tracking results for the recording. The three subjects stay
relatively still, but will look at each other from time to time as
they are engaged in a conversation or sometimes focus on a
screen in front of them. Lower detection rates (see Table 2) are
caused by an increased pose variation, however this does not
result in an increase of the tracking errors due to the absence
of drift.

3.4. Pose Variation Sequences
The subjects in these sequences are rotating their head
from one side to the other until only one eye is visible

in the scene. Experiments show that the presence of a
single eye does not affect the performances of the algorithm
(see Figure 8). These experiments have been carried out
with an event-based camera that has a VGA resolution.
While this camera provides better temporal accuracy and
spatial resolution, it does not provide gray-level events
measurements.

Although we fed frames from the change detection events
(which do not contain absolute gray-level information but are
binary) to the frame-based methods, none of them could detect
a face. This can be expected by the fact that the used networks
have been trained on gray-level images. Perhaps if we re-train
the last layers of the networks with manually labeled frames from
change detection events (binary), they would probably achieve
similar performances. However, the frame data set creation and
the training are beyond the scope of this work.

3.5. Summary
Table 2 summarizes the relative accuracy of the detection and the
tracking performances of the presented method, in comparison
to VJ (Viola and Jones, 2004), FRCNN (Ren et al., 2015), SSD (Liu
et al., 2016), and CF (Li and Shi, 2019). We set the correlation
threshold to a value that is guaranteed to prohibit false positive
detections, in order to (re-)initialize trackers at correct positions.
The ratio of detected blinks is highest in controlled indoor
conditions and detection rates in outdoor conditions are only
slightly inferior. We attribute this fact to the aforementioned
hardware limitations of earlier camera generations that are
sensitive to lighting conditions. A lower detection rate for
multiple subjects is mostly due to occluded blinks when subjects
turn to speak to each other.

The tracking errors are the deviations from the frame-based
bounding box center, normalized by the bounding box’s width.
The normalization provides a scale invariance so that errors
estimated for a large bounding box from a close-up face have
the same meaning as errors for a small bounding box of a face
further away.

VJ, FRCNN, and SSD re-detect faces at every frame and
discard face positions in previous frames, resulting in slightly
erratic tracking over time. They do however give visually
convincing results when it comes to accuracy, as they can detect
a face right from the start of the recording and at greater
pose variation given the complex model of a neural network.
CF uses a tracker that updates its position at every frame that

Frontiers in Neuroscience | www.frontiersin.org 7 July 2020 | Volume 14 | Article 587

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lenz et al. Event-Based Face Detection and Tracking

FIGURE 6 | Verifying resistance to scale. (A) First blink is detected at initial location. Scale value of 1 is assigned. (B) Subject gets within 25 cm of the camera,

resulting in a three-fold scale change. (C) Subject veers away to about 150 cm, the face is now 35% smaller than in (A).

is created from binning the change detection events, rather
than working on gray-level frames. The tracker update at each
frame based on the previous position ensures a certain spatial
consistency and smoothness when tracking, at the temporal
resolution of the frame rate. However, since a correlation filter
was initially designed for classic (gray-level) images, it relies on
visual information of the object to track to be present at all time,
which is not necessarily the case for an event-camera.

The CF technique from Li and Shi (2019) requires the camera
tomove constantly in order to obtain visual information from the
scene to maintain the tracking, as the algorithms uses rate-coded
frames. This required us to modify their algorithm since in our
data, tracked subjects can stop w.r.t. to the camera, hence they
became invisible. We added a mechanism to the correlation filter
that freezes the tracker’s position when the object disappears. We
use a maximum threshold of the peak-to-sidelobe ratio (Bolme
et al., 2010), which measures the strength of a correlation peak
and can therefore be used to detect occlusions or tracking failure
while being able to continue the online update when the subject

reappears. This results in delays in tracking whenever an object
starts to move again and results in tracking penalties. CF has
further limitations at tracking at high scale variance and cannot
track multiple objects of the same nature at the same time.

4. CONCLUSION

We introduced a method able to perform face detection and
tracking using the output of an event-based camera. We have
shown that these sensors can detect eye blinks in real time.
This detection can then be used to initialize a tracker and avoid
drifts. The approachmakes use of dynamical properties of human
faces rather than relying on an approach that only uses static
information of faces and therefore only their spatial structure.

The face’s location is updated at µs precision once the trackers
have been initialized, which corresponds to the native temporal
resolution of the camera. Tracking and re-detection are robust to
more than a five-fold scale, corresponding to a distance in front
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FIGURE 7 | Multiple face tracking in parallel. Face positions in X and Y show three subjects sitting next to each other, their heads are roughly on the same height. (A)

Subject to the left blinks at first. (B) Subject in the center blinks next, considerably varying their face orientation when looking at the other two. (C) Third subject stays

relatively still.

FIGURE 8 | Pose variation experiment. (A) Face tracker is initialized after blink. (B) Subject turns to the left. (C,D) One eye is occluded, but tracker is able to recover.

of the camera ranging from 25 cm to 1.50m. A blink provides
robust temporal signatures as its overall duration changes little
from subject to subject.

The amount of events received and therefore the resulting
activity amplitude varies only substantially when lighting of

the scene is extremely different (i.e., indoor office lighting
vs bright outdoor sunlight). The model generated from an
initial set of manually annotated blinks has proven to be
robust to those changes across a wide set of sequences. The
algorithm mechanism is also robust to eye occlusions and can
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still operate when face moves from side to side allowing only
a single blink to be detected. In the most severe cases of
occlusion, the tracker manages to reset correctly at the next
detected blink.

The occlusion problem could be further mitigated by using
additional trackers to trackmore facial features such as themouth
or the nose and by linking them to build a part-based model of a
face as it has been tested successfully in Reverter Valeiras et al.
(2015).

The blink detection approach is simple and yet robust
enough for the technique to handle up to several faces
simultaneously. We expect to be able to improve detection
accuracy by learning the dynamics of blinks via techniques
such as HOTS (Lagorce et al., 2016) or HATS (Sironi
et al., 2018). At the same time with increasingly efficient
event-based cameras providing higher spatial resolution, the
algorithm is expected to increase its performance and range of
operations. We roughly estimated the power consumption of
the compared algorithms to provide numbers in terms
of efficiency:

• The presented event-based algorithm runs in real-time using
70% of the resources of a single core of an Intel i5-7200U
CPU for mobile Desktops, averaging to 5.5W of power
consumption while handling a temporal precision of 1µs (Intel
Corporation, 2017).

• The OpenCV implementation of VJ is able to operate at 24
of the 25 fps in real-time, using a full core at 7.5W (Intel
Corporation, 2017).

• The FRCNN Caffe implementation running on the GPU uses
175W on average on a Nvidia Tesla K40c with 4–5 fps.

• The SSD implementation in Tensorflow runs in real-time,
using 106W on average on the same GPU model.
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