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The primary claim of the Richiardi et al. (2015) Science article is that a measure of
correlated gene expression, significant strength fraction (SSF), is related to resting state
fMRI (rsfMRI) networks. However, there is still debate about this claim and whether
spatial proximity, in the form of contiguous clusters, accounts entirely, or only partially,
for SSF (Pantazatos and Li, 2017; Richiardi et al., 2017). Here, 13 distributed networks
were simulated by combining 34 contiguous clusters randomly placed throughout
cortex, with resulting edge distance distributions similar to rsfMRI networks. Cluster
size was modulated (6–15 mm radius) to test its influence on SSF false positive rate
(SSF-FPR) among the simulated “noise” networks. The contribution of rsfMRI networks
on SSF-FPR was examined by comparing simulated networks whose clusters were
sampled from: (1) all 1,777 cortical tissue samples, (2) all samples, but with non-rsfMRI
cluster centers, and (3) only 1,276 non-rsfMRI samples. Results show that SSF-FPR is
influenced only by cluster size (r > 0.9, p < 0.001), not by rsfMRI samples. Simulations
using 14 mm radius clusters most resembled rsfMRI networks. When thresholding
at p < 10−4, the SSF-FPR was 0.47. Genes that maximize SF have high global
spatial autocorrelation. In conclusion, SSF is unrelated to rsfMRI networks. The main
conclusion of Richiardi et al. (2015) is based on a finding that is ∼50% likely to be a
false positive, not <0.01% as originally reported in the article (Richiardi et al., 2015).
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We discuss why distance corrections alone and external face validity are insufficient to
establish a trustworthy relationship between correlated gene expression measures and
rsfMRI networks, and propose more rigorous approaches to preclude common pitfalls
in related studies.

Keywords: resting state fMRI, Allen Brain Atlas, brain gene expression, internal validity and external validity,
scientific rigor

INTRODUCTION

There is still active debate about whether brain regions
comprising resting state fMRI (rsfMRI) networks exhibit
uniquely high correlated gene expression or whether this effect is
attributed entirely to spatial proximity in the form of contiguous
clusters (Richiardi et al., 2015, 2017; Pantazatos and Li, 2017).
The main claim and conclusion of the Richiardi et al. (2015)
Science article is that high correlated brain gene expression
[i.e., significant strength fraction (SSF)] can be at least partially
explained by and is related to rsfMRI networks. Our 2017
commentary (Pantazatos and Li, 2017) found that randomly
spaced clusters also generate SSFs much higher than expected by
chance, indicating that SSF is not specific to rsfMRI networks.
On the basis of this and other evidence presented in our 2017
commentary (Pantazatos and Li, 2017), we claimed that SSF is
attributable entirely to spatial proximity, and that it is unrelated
to rsfMRI networks. In their reply to our commentary, Richiardi
et al. (2017) did not rebut this claim, other than to (rightly)
point out that edges in these random clusters (median∼ 24 mm)
were shorter than rsfMRI networks (median ∼ 50 mm). That
the SFs tend to be higher overall in these simulated networks
(see Figure 1D in our 2017 commentary), which also tend
to have shorter edges, is consistent with our argument that
distance drives SSF. However, it is unclear, a priori, why lower
average within-network (W) distances could account for the non-
specificity of SSF. More rigorous and comprehensive network
“noise” simulations are needed to determine the impact of spatial
proximity (i.e., contiguous cluster size) vs. rsfMRI networks on
SSF and whether SSF can be attributed entirely, or only partially,
to spatial proximity.

Here, we generated randomly distributed networks so that
they more accurately simulate rsfMRI networks. The parameters
of the simulations were varied in order to examine the impact of
contiguous cluster size on frequency of SSF among the simulated
networks (i.e., false positive rate of SSF, or SSF-FPR). When
using all samples for each network simulation, contiguous cluster
centers have∼20% chance of being a rsfMRI sample [throughout
the text we refer to an “rsfMRI sample” as any of the 501 Allen
Human Brain Atlas (AHBA) tissue samples that were defined in
Richiardi et al. (2015) as belonging to one of the 13 resting state
networks]. Note this is a rough estimate since the probability is
28% (501/1777) when the first cluster is formed and then drops
slightly with subsequent clusters because they are not allowed
to overlap with any previously formed clusters, see methods.
Therefore, an additional variation of simulations was run which
enforced non-rsfMRI cluster centers. To further the reduce the
chances that simulated clusters overlapped with and included any

rsfMRI samples, a third variation removed them entirely from the
simulations. If rsfMRI networks are related to and contribute at all
towards SSF, then the SSF-FPR should decrease with the latter two
experiment variations.

In their reply to our commentary, Richiardi et al. claimed their
results hold after linear distance correction (based on regression).
We plotted tissue-tissue correlations vs. distance to show why this
approach is insufficient to remove the effects of spatial proximity.
Finally, we propose that the feature selection routine applied in
the original 2015 article selects the genes that exhibit the highest
global spatial autocorrelation, consistent with our argument that
spatial proximity alone drives SSF. We tested this by examining
and comparing measures of spatial autocorrelation for the 136
consensus features identified in the original 2015 article vs.
all other genes.

METHODS

A series of networks were simulated for varying sizes of
contiguous clusters (i.e., 6–15 mm radius spheres) placed
randomly throughout cortex. Cluster centers were comprised
of cortical samples chosen at random from among the 1,777
included in the original Richiardi et al. Science article. We
varied the cluster sizes from 6 to 15 mm spherical radius to
systematically examine the effect of contiguous cluster size vs.
SSF-FPR, and repeated this across three experiment types, in
order to test and confirm our hypothesis that contiguous cluster
size is the main (and only) predictor of significant SF. Thirty
four clusters were first generated by randomly sampling the MNI
locations of 1,777 cortical samples (or 1,276 for experiment type
3, described below). These locations defined the cluster centers,
and neighboring AHBA samples within a specific spherical radius
were grouped together to form a cluster. These clusters were then
combined in the following manner in order to mimic the edge
distance distributions of rsfMRI networks shown in Figure 2A
top panel (which is essentially the same figure shown in the
2017 reply by Richiardi et al.): nine networks were generated
by grouping together three clusters selected at random, three
networks by grouping together two clusters at random, and one
network comprised of a single cluster.

We also computed the median edge distances between all
network nodes (AHBA samples) as well as between cluster centers
for simulated and real networks. For the latter, the clusterdata
function in MATLAB was used to group clusters in each of the
13 real rsfMRI networks when using the same number of clusters
per network as used for the simulations (i.e., the nine largest
networks were grouped into three clusters, the three next largest
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FIGURE 1 | Plots of simulated network properties vs. contiguous cluster size. (Top panel) Median network sample size (W). Dashed line depicts the value for real
rsfMRI networks (W = 501). (Middle panel) Median network edge distances (90% of the median distances across the 1,000 random networks fell within the
depicted error bars). Dashed line depicts the value for real rsfMRI networks (∼50 mm). (Bottom panel) Contiguous cluster size, not rsfMRI samples, predicts
percentage of SSF (SSF-FPR × 100) among the simulated “noise” networks (All: r = 0.98; Z-cn: r = 0.99; omit-RS: r = 0.99, p-values < 10E-6). All = experiment in
which all 1,777 AHBA cortical samples were used; Z-cn = same as “All,” except cluster centers were forced to lie outside of rsfMRI network areas; omit-RS = only
non-rsfMRI samples (1,276) were used to simulate both network and non-network regions.

were grouped into two clusters, and the smallest network was
grouped into one cluster.

For each of the 10 cluster sizes (i.e., radii varied from r = 6–
15 mm), 1,000 distributed networks were simulated. For each
of these 1,000 distributed networks, a “real” SF was calculated,
and 1,000 “null” SFs were calculated by shuffling region labels
1,000 times as previously described in the original Richiardi et al.
(2015) article. This resulted in 10 cluster sizes × 1,000 simulated
networks × 1,000 shuffles = 10,000,000 total SF calculations

(iterations) per experiment variation (described below). SFs were
considered significant at p < 1/(# total shuffles), or 0.001 in
this case. The simulations were repeated for each of the three
experiment variations: (1) “All” – using all cortical samples,
(2) “Z-cn” – using all cortical samples but enforcing non-
rsfMRI cluster centers, and (3) “omit-RS”- using only non-rsfMRI
samples. For experiment type 1 “All” (all cortical samples), cluster
centers were randomly chosen from the 1,777 cortical MNI
coordinates without any restrictions (other than the constraint
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FIGURE 2 | (A) Boxplot of edge distances (y-axis) for resting state fMRI networks as defined in Richiardi et al. (2015) (top panel), and an example set of simulated
networks in the current study (middle panel). The network sizes (sorted in descending order by # of AHBA tissue samples) are plotted for rsfMRI networks (black line)
and simulated networks (dashed blue line, cluster size = 14 mm radius, error bars show the range for 90% of the values across the 1,000 simulations, bottom panel).
(B) A plot of distance (8 mm bins, X-axis) vs. median brain gene expression tissue-tissue correlation (y-axis) along with best fit line. The plot used all edges used to
calculate SF after applying within-tissue correction. (C) Consensus features that maximize high strength fraction (identified in the original 2015 article) are also more
likely to cluster together in space and exhibit high global spatial autocorrelation. Top panel: Histograms and kernel density plots of Moran’s I values for each of
16,906 genes, 136 high SF genes in red, all others in gray. Bottom panel: The y-axis is relative to each sample, with different n, so heights are not comparable, but
position along the x-axis is. Bottom panel: A box plot of the same Moran’s I values.
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that cluster spheres defined about each cluster center were not
allowed to overlap). For experiment type 2 “Z-cn,” networks were
defined as in type 1, but with the additional constraint that cluster
centers were not allowed to be comprised of a rsfMRI sample
(i.e., cluster centers were not allowed to include any of the 501
samples used to define rsfMRI regions in Richiardi et al., 2015).
For experiment type 3 “omit-RS,” the clusters (both the centers
and the neighboring samples comprising the clusters) were drawn
only from the 1,276 non-rsfMRI samples. The total # of available
samples for the above three experiment variations were 1,777,
1,777, and 1,276, respectively. The same procedures, including
within tissue correction, etc., were applied as in the original 2015
article and in our 2017 commentary when calculating SF.

Moran’s I, a measure of spatial autocorrelation, was
calculated for each of 16,906 genes’ expression levels. Moran’s I
approaches +1 when the gene expression levels cluster perfectly
over space (high spatial autocorrelation), and approaches -1
when the tested variable is evenly distributed (high dispersion).
A measure of 0 indicates no relationship, meaning gene
expression levels are randomly dispersed in space. Moran’s I
was assessed with pysal v2.0 libraries (Rey and Anselin, 2010),
using continuously diminishing weights over distance from
each sample location up to 16 mm, beyond which all further
weights were set to 0. Neither changing the 16 mm threshold
to 64 mm nor using binary rather than continuous weighting
substantively changed the results. The updated MATLAB code
(network simulations and resulting plots and figures) and a
Jupyter notebook and Python code (gene expression spatial
autocorrelation analyses and resulting plots) are available at
https://github.com/spiropan/ABA_functional_networks.

RESULTS

A contiguous cluster size of 14 mm yielded within network
sample size (W) closest to the rsfMRI sample size of 501
(Figure 1, top panel). The median # of W tissue samples for
these simulated networks was 495 (interquartile range, IQR = 40).
Across all simulated networks, the median distance among the 34
cluster centers (34∗33/2 = 561 edges) was 84.6 mm (IQR = 2.7),
indicating the clusters were widely distributed throughout cortex
as expected and similar to real rsfMRI networks (median distance
among cluster centroids = 80.6 mm). Note this metric is similar
for all simulations since cluster size does not affect distances
between the cluster centers. Varying contiguous cluster size
did not significantly impact median within network (W) edge
distances of the random networks, which all approximated the
median edge distance of real rsfMRI networks (dashed line in
Figure 1, middle panel). Contiguous cluster size almost perfectly
predicted SSF-FPR (r-values > 0.98, p < 10E-6, Figure 1,
bottom panel). The SSF-FPR rose from ∼0.05 at 6 mm radius
to > 0.6 at 15 mm (in other words, about 50x to 600x the
theoretical FPR at alpha level p = 0.001). Forcing cluster centers
to lie outside rsfMRI areas or even removing rsfMRI samples
all together did not impact the results In these simulations,
the latter actually increased the SSF-FPR at most cluster sizes
(Figure 1, bottom panel). An additional simulation at cluster
size 14 mm, this time using 10,000 (vs. 1,000) shuffles for SF

significant testing, yielded SSF-FPR = 0.47 (i.e., 4,700x higher
than the theoretical false positive rate p < 10−4 reported in the
original 2015 Science article). Note our approach simulated 13
networks that roughly mimic the distribution of median distances
of the rsfMRI networks shown in Figure 1 of the 2017 reply from
Richiardi et al. (2017). Figure 2A here recapitulates that figure
in boxplot form (top panel) and also shows an example set of
simulated networks with cluster size = 14 mm in the current study
(middle panel). The distribution of network sizes for simulated
networks with cluster size 14 mm also resembled the distribution
of rsfMRI network sizes (Figure 2A bottom panel) and the
(ranked) network sizes for rsfMRI vs. simulated networks were
tightly correlated (r = 0.97, p = 7.6E-8).

A control analysis similar to the “All” condition tested whether
total # W samples (not contiguous cluster size) predicted SSF.
To reduce computation time, only 200 networks were simulated
using 200 shuffles for SF significance testing. The contiguous
cluster size was held constant at 6 mm, while scaling factors
from [1, 1.5,2. . .5] modulated the number of contiguous clusters
comprising the networks. While this varied the median # W
nodes from∼100 to 450 among the simulated networks (median
edge distances ∼57 mm), the SSF-FPR decreased slightly from
0.12 to 0.085 (r = -0.2, p = 0.6, data not shown), confirming that
contiguous cluster size, and not total # W nodes, predicts SSF.

We plotted median tissue-tissue correlations (after applying
within-tissue correction as in the original 2015 article) vs.
distance to confirm a non-linear relationship (Figure 2B). Next,
we tested whether the 136 consensus features identified in the
original 2015 article exhibit high global spatial autocorrelation.
The relationship between the magnitude of each gene’s expression
and its spatial clustering was assessed using Moran’s I, a measure
of spatial autocorrelation. Moran’s I was significantly higher in
the 136 genes Richiardi deemed significant (mean I = 0.430,
sd 0.142) than in remaining genes (mean I = 0.084, sd 0.100)
(p < 10−9 for each of the 136 genes; see Figure 2C).

DISCUSSION

The main finding and claim of the original 2015 article, reflected
in the title, is “that functional brain networks defined with
resting-state functional magnetic resonance imaging can be
recapitulated by using measures of correlated gene expression
in a postmortem brain tissue data set.” The main text states
“the spatial organization of functional networks corresponded to
regions that have more highly correlated gene expression than
expected by chance (P < 10−4)” and that “this finding cannot
emerge from spatial proximity or gross tissue similarity.” This is
the most critical, specific claim under contention.

Our network simulations indicate that the spatial organization
of rsfMRI networks do not correspond to regions that have more
highly correlated gene expression than expected by chance. The
probability of observing highly correlated gene expression for
rsfMRI networks by chance is about 50%, not <0.01% as reported
in the original article. Furthermore, contiguous cluster size, and
not rsfMRI networks, accounts entirely for SSF. The SSF-FPR was
not affected by enforcing non-rsfMRI cluster centers or removing
rsfMRI samples entirely from the simulations. Taken together,
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these results indicate that the evidence presented in the original
2015 article is insufficient to establish a relationship between
correlated brain gene expression and rsfMRI networks. In other
words, SSF is not an internally valid measure. It is a highly
reliable measure that is driven by artifact (spatial proximity in the
form of contiguous clusters) rather than a meaningful (i.e., valid)
relationship with rsfMRI networks (Zuo et al., 2019).

Why Distance Corrections Alone Are Not
Enough to Establish Links Between
Correlated Gene Expression and rsfMRI
Networks
In their reply to our 2017 commentary, Richiardi et al. rightly
point out that Euclidean distance correction will “wrongly assign
‘nearness’ to two ‘neurally distant’ regions on the crowns of
adjacent gyri” (see figure in their reply). This is one reason
why correcting for Euclidean distance alone is not adequate
and why other types of control experiments are required to
validate measures of correlated gene expression such as SSF.
In their reply, Richiardi et al. also argue that their original
results hold after distance corrections using linear regression and
distance-aware permutation. Note that a non-linear correction
for spatial proximity (Fulcher and Fornito, 2016) would have
more effectively corrected for distance. However, even if the
authors’ SF measure were to survive significance testing with a
more effective distance correction, it would still be necessary to
show that the significantly high SF is specific to rsfMRI networks.
Below we discuss why parametric distance corrections alone are
not enough to validate the SSF measure.

Our 2017 commentary discusses why Euclidean distance
(linear regression) is an inadequate method for proximity
correction due to strong model assumptions (i.e., the relationship
between distance and tissue correlation is not linear, as
evidenced by a plot of median tissue-correlations vs. distance,
Figure 2B). The authors suggested an intrinsic contradiction
in our recommendation to avoid distance correction using
linear regression and then also showing a linear correlation
in our original 2017 commentary Figure 1B. There was no
contradiction here, because a best fit line was added only
to show the first order approximate fit between distance and
correlated gene expression, not to suggest linear regression be
used for distance correction. A primary purpose of Figure 1B
was to show that the within-network (Wi) edges (dark gray) are
substantially shorter than the out of network edges (T-Wi, light
gray). Our critique was also founded on Figure 1A (removing
within tissue samples inadequately corrects for spatial proximity),
Figure 1C (SF falls monotonically as progressively longer edges
are removed) and Figure 2D (SSF is not specific to rsfMRI). In
hindsight, we could have tried to overlay the curve (shown in
Figure 1 here) to our 2017 commentary Figure 1B, but it would
have been less straightforward to attach a p-value and the model
fit might not have been readily apparent.

The distance-aware permutation testing appears to be a
more valid approach than the original (non-distance) aware
permutation testing. However, the authors’ results (higher
p-values with more conservative distance aware corrections)

illustrate and support the fact that SF is driven by distance, but
in a different way that parallels our 2017 commentary Figure 1C.
Whereas our 2017 commentary Figure 1C showed that “real” SF
decreases as short edges are removed from the rsfMRI networks,
the author’s results show that the null distribution SFs increase as
long edges are removed from the “null” networks. Both scenarios
will create higher p-values in SF significance testing.

Critically, the fact that the authors’ new analyses survive
distance corrections and distance aware permutations, and at
higher p-values than < 10−4 as originally reported in the 2015
article, does not validate the SSF measure, since it is unrelated
to rsfMRI networks to begin with. In other words, these same
distance corrections and distance aware permutations would
show similar results (i.e., higher SF p-values but still <0.01 or
0.05) when applied to any of the ∼50% of randomly spaced
networks that started out with SF p < 10−4.

Why Face Validity in Independent
Datasets Is Not Enough to Establish a
Link Between Correlated Gene
Expression and rsfMRI Networks
In response to our 2017 commentary, Richiardi et al. stressed
their replications (more appropriately called face validity) in
independent datasets and note that we did not generate gene
lists for any of our random cluster analyses and examine them in
other independent datasets. There are several problems with this
line of reasoning and argumentation. First, the authors’ response
appears to be “moving the goalpost1.” The authors did not rebut
our 2017 specific claim that SSF is both unrelated and not specific
to rsfMRI networks, other than to rightly note that the median
distances of our simulated “noise” networks were half as long as
rsfMRI networks. To rebut our claim, the authors would have
needed to show that simulated networks with longer median
distances fail to generate inflated SSF-FPR, but they did not.

Secondly, we did not claim that the set of 136 genes identified
in the study were not important to functional connectivity.
However, at best, the additional findings that the authors mention
in their reply (i.e., in mouse connectivity and rsfMRI connectivity
using their identified set of 136 genes), suggest face validity for,
but not evidence that validates, their primary claim, which is that
correlated gene expression is higher in and uniquely related to
rsfMRI networks.

It is plausible that, even if SSF is non-specific and completely
unrelated to rsfMRI networks when using all genes, the 136
consensus features identified in the original 2015 article are
unique to rsfMRI networks and uniquely important to functional
connectivity. To demonstrate this would require additional
control experiments and comparisons. One possibility is that
the consensus feature selection routine used in the original 2015
article converges on genes that tend to be more highly expressed
in the largest contiguous clusters of any network. In the case of
rsfMRI, these include the posterior cingulate and ventromedial
PFC of the dDMN, which are major hub regions and highly

1Moving the goalposts is an informal [logical] fallacy in which evidence presented
in response to a specific claim is dismissed and some other (often greater) evidence
is demanded” (https://en.wikipedia.org/wiki/Moving_the_goalposts).
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connected to the rest of the brain, which could help explain the
evidence for supporting connectivity in independent datasets.
Critically, the independent replication (more appropriately called
external face validity) noted by Richiardi et al. in their reply2, used
all genes as a baseline group when examining the 136 consensus
features identified in the original 2015 article. A more rigorous
baseline group would have been all genes with properties similar
to the 136 genes (i.e., mean expression in the brain, variability
and global spatial autocorrelation) in order the confirm that
these generic properties alone do not account for observed
relationships with connectivity.

It is also possible that the identified consensus features are
not unique to rsfMRI networks. This interpretation is supported
by our results that found the 2015 consensus features have high
global spatial autocorrelation throughout cortex (Figure 2C). It is
also possible that the 136 consensus features are relatively unique
to rsfMRI networks, but that consensus features identified in
random networks are also important to functional connectivity
and demonstrate face validity. We did not identify consensus
genes for simulated networks since it was outside the scope of
the current work. Based on our conclusion that spatial proximity
alone drives significant SF, and the observation that the 136
consensus genes have high global spatial autocorrelation, we
would hypothesize that consensus genes for simulated networks
will overlap substantially with the 136 reported consensus genes.
Further work is required to determine which of the above
scenarios is true. Any of the above scenarios, however, is
independent of the primary claim of the original 2015 article.

Why Network Simulations Constitute an
Appropriate Null Model for Testing the
Claim of Higher SF in rsfMRI Networks
In the 2015 Science article, the authors claimed that “Grouping
gene expression samples according to functional networks
yielded a higher strength fraction than that of other groupings
of samples; the spatial organization of functional networks
corresponded to regions that have more highly correlated gene
expression than expected by chance (P < 10−4)” and that “this
finding cannot emerge from spatial proximity or gross tissue
similarity.” Evidence for this claim requires demonstrating higher
correlated gene expression (SF) for rsfMRI networks compared to
alternative groupings (or spatial organizations) of tissue samples.
However, the authors did not attempt to do this. Instead, they
used a null model in which individual samples were shuffled to
generate new null networks before recomputing the SF.

This null model is invalid because it assumes tissue samples are
independent and equally exchangeable with other samples, which
is not true given the distance effect and spatial autocorrelation
in gene expression. In other words, this approach destroys
the most important driver of SF in their null models: large,
spatially contiguous clusters. This is why the p-value (p < 10−4)
reported in the original article is so highly inflated. The distance
aware shuffling that the authors applied in their 2017 reply
mitigated this to certain extent, but not completely, since

2https://arxiv.org/abs/1706.06088

shuffling individual samples, even if they are closer together, will
still tend to “break up” spatially contiguous clusters. A valid
null model would instead consist of shuffling whole clusters,
rather than individual samples, in order to keep the spatially
contiguous structure of the networks intact. However, this is
not straightforward as it would first require defining clusters of
similar sizes comprised of non-rsfMRI sample to be shuffled with
the rsfMRI clusters.

A next best approach, which we employ here, is to generate
a null model by simulating “noise” networks comprised of
contiguous clusters randomly spaced throughout cortex. This
approach constitutes a valid null model for testing the claim
that the spatial organization of rsfMRI networks have higher SF
than expected by chance. In addition, it allowed us to rigorously
quantify the impact of contiguous cluster size, as well as rsfMRI
samples, on SSF FPR.

Suggestions for Future Work
When dealing with high-dimensional data, it is difficult to
identify valid relationships in light of the fact that any set of
features can be identified when maximizing some variable or
measure, even with “noise” data. It is also important to first
ensure that the measure and its interpretation is internally
valid, before seeking external validations. Here, network “noise”
simulations were used to test the internal validity of the SSF
measure and its interpretation that it is related to rsfMRI
networks. Future studies of imaging genomics and functional
networks that use measures of correlated gene expression could
combine non-linear or non-parametric distance correction,
distance-aware permutation as well as split-half bootstrap
resampling to rigorously test the validity of the measures and
their interpretation and also the consistency of the features
(genes) that optimize the measures.
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