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Selection of the time-window mainly affects the effectiveness of piecewise feature

extraction procedures. We present an enhanced bag-of-patterns representation that

allows capturing the higher-level structures of brain dynamics within a wide window

range. So, we introduce augmented instance representations with extended window

lengths for the short-time Common Spatial Pattern algorithm. Based onmultiple-instance

learning, the relevant bag-of-patterns are selected by a sparse regression to feed a bag

classifier. The proposed higher-level structure representation promotes two contributions:

(i) accuracy improvement of bi-conditional tasks, (ii) A better understanding of dynamic

brain behavior through the learned sparse regression fits. Using a support vector machine

classifier, the achieved performance on a public motor imagery dataset (left-hand and

right-hand tasks) shows that the proposed framework performs very competitive results,

providing robustness to the time variation of electroencephalography recordings and

favoring the class separability.

Keywords: motor imagery, LASSO regularization, CSP, multiple-instance learning, dynamic brain behavior

1. INTRODUCTION

Motor Imagery (MI), recorded via electroencephalography (EEG), is the motor intention in the
form of enhancement or attenuation of brain activity in µ and β rhythms over the sensorimotor
cortex, having a different spatial distribution for each imagined movement (Liang et al., 2016).
MI has particular applicability to neurophysical regulation and rehabilitation, unconscious motor
preparation (Wang et al., 2019), games and entertainment, and sports training, among others (Suica
et al., 2018). In education scenarios, for which the Media and Information Literacy methodology
proposed by the UNESCO covers several competencies that are vital for people to be effectively
engaged in all aspects of human development (Frau-Meigs, 2007). In this regard, the usage of
modern technologies like motor imagery learning may provide tools for measuring the time
response of brain activations during imagination of a determined movement, helping to assess
the sensorimotor response-ability under very concrete learning stimuli (Guillot and Debarnot,
2019). Nonetheless, in characterizing these event-related potentials (ERP), a significant drawback
is the intrinsic variations between individuals and within individual trials, making the EEG energy
distribution very dependent on time, frequency, and spatial domains (Yamawaki et al., 2006). Due
to this heterogeneity, therefore, finding spatial patterns of neural activation with maximal class
separation is a challenging issue and may require a tiresome process (Padfield et al., 2019).
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For bi-conditional tasks, Common Spatial Pattern (CSP)
filtering remains the most widely used signal projection
technique to extract discriminative EEG features, maximizing
the variance of one condition while minimizing the alternative
one. Still, the effectiveness of CSP is mainly affected by two
aspects (Ang et al., 2012): Low robustness of selected channels
across trials, and selection of the time-window for piecewise
analysis that must cover the interval within a neural pattern is
activated, but removing the unrelated sampling points (Miao
et al., 2017). However, due to the subject-specific nature of
MI tasks, the use of a single time window for a whole subject
population diminishes the discriminating ability to extract CSP
features and, hence, degrading the classification accuracy (Xu
et al., 2015). To improve robustness at low Signal-to-Noise
Ratio (SNR), optimal frequency band selection is a common
approach that exploits the spectral relationship among the
extracted MI features. Namely, sparse regression is applied
to find compact representations within a supervised learning
framework, determining the significant CSP features with class
labels (Zhang et al., 2015). Nonetheless, the enhancement
of sparse CSP-based systems should consider the design
of an optimized dictionary matrix utilizing subject-adapted
frequency-time patterns for increasing the classification accuracy
(Shin et al., 2012).

For extracting feature dynamics, the search for adequate time-
series similarity is given close attention, centering mainly on
finding shape-based relationships. To this end, the point-to-
point comparison is the most implemented algorithm, being
efficient for short-time series or with periodic waveforms
to extract local temporal and/or frequency information. In
the case of long sequences, instead, it is more appropriate
to consider similarities based on higher-level structures like
the bag-of-patterns representations, capturing more accurately
the structural dynamics to be fed into a classifier and
without having to deal with the raw data (Passalis et al.,
2017). Besides, despite ignoring the temporal order of local
segments, theses representations enable capturing high-level
structural information, relating either local and/or global
relationships (Wang et al., 2013). To create bag-of-patterns
representations (Chen et al., 2006), similarity distances between
sets are used as well as similarity functions between bags
and instances (Cheplygina et al., 2015), extracted from
histograms (Lin and Li, 2009), codebooks (Gui and Yeh,
2014), or multivariate bag-of-words models (Bailly et al.,
2016). Consequently, the construction of bag-of-patterns and
selection of a similarity measure are the main aspects to
implement a structural relationship between time series, reducing
the similarity bias effect because of the presence of outliers
in real-world applications and avoiding high dimensional
feature vectors that may limit their application for large
datasets (Ratanamahatana and Keogh, 2004).

With the aim of improving the distinction of brain dynamics
in motor imagery tasks, we propose an enhanced bag-of-patterns
representation that is developed through Multiple Instance
Representation using Time-Frequency Atoms. In this case,
instances are constructed by CSP feature sets extracted over
short time windows of the filtered EEG signal. To explore the

brain dynamics across time in more detail, augmented instance
representations are introduced, which are obtained by the scale
and shift operations over the original piecewise CSP feature
extraction. Using a multiple-instance learning approach, the
relevant bag-of-patterns are constructed and further selected
by LASSO regression. From obtained weight vector by LASSO,
the brain dynamic is modeled as the weighted appearance
probability of each time instant along MI period, highlighting
the more relevant time intervals associated with the response
variable. The performance of proposed enhanced bag-of-patterns
representation is assessed using a Support Vector Machine
(SVM) classifier on a public dataset (left hand and right hand
MI tasks), showing that the accomplished accuracy is very
competitive, providing robustness to the time variation of EEG
recordings and favoring the class separability.

The agenda is as follows: Firstly, section 2 describes the
mathematical background of CSP feature extraction, optimized
multi-instance learning representation, and pattern selection
by LASSO regularization for MI classification. The developed
experiments and achieved results are described in section 3,
respectively. Finally, the discussion and concluding remarks are
provided in section 4.

2. MATERIALS AND METHODS

2.1. Motor Imagery Dataset 2a
This signal collection, publicly available at1, was recorded from
nine subjects using a 22-channel system (with inter-electrode
distances of 3.5 cm), corresponding to the international 10 − 20
system. The EEG trials were recorded at sampling frequency 250
Hz and regarded one of four MI tasks: left hand, right hand,
both feet, and tongue. All recordings were performed in six runs
separated by short breaks so that each run held 48 trials (each
one lasting 7 s). A short beep indicated the trial start, after
which a fixation cross appeared on the black screen within the
first 2 s. Then, an arrow (or cue) was shown during 1.25 s to
indicate the left, right, up, or down directions, stimulating to
imagine a left hand, right hand, both feet, or tongue movement,
respectively. Next, each subject performed one MI task within
the time interval from 3.25 to 6 s, while waiting for the cross
to reappear again. The EEG data were labeled (l∈{+1,−1}, left
hand or right hand, respectively) and the artifacts removed.

For preprocessing, the raw EEG data are band-pass filtered
using Nf overlapped bandwidths, resulting in a matrix

Xl
rf
= [xc

rf
: f ∈Nf , r ∈R]

T , where the vector xc
rf
∈R
⊤ denotes

each filtered channel c per bandwidth f and trial r. Specifically,
we use R = 144 and Nf = 17 five-order overlapped Butterworth
filters with bandpass frequencies between 4 and 40 Hz, having
a bandwidth of 4 Hz and overlapping rate of 2 Hz as in Zhang
et al. (2015). Then, the attained filter-banked signals are time-
windowed onto Nt intervals with a 90% overlap of samples, each
one lasting t.

As a result, the processing stage provides an input time-
frequency matrix Xl

rft
= [xc

rft
: t ∈Nt]⊤ per trial, where xc

rft
∈R

T

1http://www.bbci.de/competition/iv/
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represents the time-segmented neural activity related to motor
imagery within a concrete bandwidth, measured at each channel,
lasting T s.

2.2. Construction of Time-Frequency

CSP-Based Atoms
Given a labeled trial matrix Xl

rft
∈R

T×C, the algorithm of

Common Spatial Patterns aims at finding, within each channel
c⊂C, the linear transformation vector w∈R

C to maximize
the Rayleigh Quotient (RQ, noted as J ∈R

+) that is computed
through the mapped data variance between classes as follows:

w∗ = max
∀w

J(w) =
w⊤Σ (+1)w

w⊤Σ (−1)w
, s.t.: ‖w‖2 = 1 (1)

where Σ (l)=E

{
Xl
rft
Xl⊤
rft

:∀r ∈R
}
, with Σ (l) ∈R

C×C, is the

simplest estimate of class data variance computed at a frequency
f . Notations ‖·‖p andE {· : ∀r} stand for ℓp-norm and expectation
operator across variable r, respectively.

Further, the unlabeled EEG sample Xrft is filtered through the

learned spatial matrix W ∈R
C′ ×C that holds all C′ piecewise

transformation components. Thus, at each time sample t ∈Nt ,
the projected data Zrft =WXrft , with Zrft ∈R

C′×T , is computed
by only 2M representative terms of C′ (namely,M first andM last
rows), yielding the extracted feature vector drt that is calculated
across the spectral domain as below:

drt = ln(diag(var{Zrft})/tr{Zrf1t})‖ · · ·

‖ ln(diag(var{ZrfNf t
})/tr{ZrfNf t

}) (2)

where var{·} and tr{·} denote the variance and trace
operator, respectively.

Using the extracted feature from each trial r and overlapped
time window t, therefore, we obtain the time-frequency feature
array Dr ∈R

2MNf ×Nt (Nt < 2MNf ) with vector columns

drt ∈R
2MNf , hereafter we will term as time-frequency atoms.

2.3. Optimization of t-f Atoms for MIL
Representation
Relying on the above introduced atoms, we define each column
vector drt as an instance within a Multi-Instance Learning (MIL)
framework, and in turn, we assemble each r-th bag per trial

by arranging the whole column in a vector Br =



d⊤r1
. . .

d⊤rNt


 with

Br ∈R
Nt×2MNf . So, the whole training set, extracted over all trials,

is denoted as B={Br:∀ r ∈ 2R}.
To put into effect the concept that makes a bag label either

positive or negative, the instance-based embedding is intended to
map each bag into a vector space. To this end, we specify each k
concept class, noted as dk, through the single point concept class,
assuming as a target concept each instance extracted in Equation
(2), i.e., dk⊂D={drt : ∀ r, t}.

For improving the target concept set, the CSP feature set
extracted by Equation (2) is further refined within each instance

in terms of contributing to distinguishing between the labels.
In particular, we search the relevant information from each
EEG channel through a sparse-based operator over the CSP
feature space calculated at each time window. As suggested
in Caicedo-Acosta et al. (2019), the Multiple-Instance Logistic
Regression estimates a bag label by aggregating each instance
label through the following Bernoulli-based logistic regression

l̃r = I(
∑

t ∈Nt
Bernoulli(h(β0+d

⊤
rtβ)) > 0), where I(x)= 1 if x >

0, otherwise, I(x)= 0, being h(x)= 1/(1+e−x) the sigmoid units.
In particular, the parameter set (one bias term β0 ∈R

and β ∈R
2MNf ) is computed within the following quadratic

optimization framework (Chen et al., 2017):

min
β0 ,β

(
−

∑

r ∈ 2R,t ∈Nt

lrγ
i
rt

(
β0 + d⊤rtβ

)

− log
(
1+ exp (β0 + d⊤rtβ)

)
+ α

∑

q∈ 2MNf

|βq|
)

(3)

where the conditional expectation (given lr = 1) is computed as
γrt = h(β0 + d⊤rtβ)/(1 −

∏Nt
t= 1 1 − h(β0 + d⊤rtβ)) and α ∈R

+

is a regularization term. Here, we solve the above optimization
problem through an iterative coordinate descent algorithm.

As a consequence, by applying the optimizing procedure on
MIL representation, we select the t-f atom set with improved
properties, noted as d̂rt , since it holds in Equation (3) that the
larger the magnitude of βq – the more relevant the feature
to predict the instance labels. Therefore, the performed atom-
based optimization enhances the MIL representation, allowing
discarding irrelevant or redundant information in discrimination
MI tasks.

2.4. Similarity-Based Enhancement of
Expanded MIL Representation
With the aim of implementing the concept introduced before,
the instance-based embedding is intended to map each bag into
a vector space. As proposed in Chen et al. (2006), the feature
vector pr ∈R[0, 1]2R extracted from each bag is computed by the

conditional probability that k instance belongs to r-bag, P(̂d
k
|Br),

as follows:

pr = [P(̂d
k
|Br) : ∀̂d

k
∈ D, k∈ 2RNt]. (4)

Further, to implement the higher-level time-frequency
representation, we accept the mapping of instance-based
features with both multiple concepts, either positive or negative,
which are extracted from the training dataset, D⊂B, so that the
conditional probabilities in Equation (4) can be approximated as:

s(̂d
k
,Br) = P(̂d

k
|Br) ∝ max

∀t ∈Nt

exp
(
− ‖̂drt − d̂

k
‖2/σ 2) (5)

where s(̂d
k
,Br)∈R[0, 1] is the assessed measure of similarity

between concept d̂
k
and bag Br , while σ ∈R

+ is the bandwidth of
exponential square function. Using the measure in Equation (5),
therefore, we perform the similarity matrix S∈R[0, 1]2RNt × 2R

with elements s(̂d
k
,Br), ∀k∈ 2RNt ,∀r ∈ 2R.
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Intending to include the mutual influence of other atoms
extracted at different time instants, we expand further each
similarity representation in Equation (5) by a time-window scale,
1τ , yielding the following enhanced similarity matrix:

1pq = [Sp1τ‖ · · · ‖SNτ 1τ :∀p, q], (6)

where Sτ = [s(̂d
k
τ ,Br,τ ) : ∀r, k] is an version of S with

elements expanded by a multiple scaling factor τ = p1τ ,
p= [q,Nτ ], q= [2,Nτ ], being Nτ the maximal number of
considered time-window lengths τ .

Further, as a powerful preprocessing step for high-
dimensional data analysis, feature selection is carried out
aiming at discarding irrelevant and redundant features from the
expanded similarity representation 1pq ∈R[0, 1]2R×(Nt(Nτ−q))

using the LASSO sparse regression model that has been shown
to be efficient in MI tasks within the following optimizing
framework (Feng et al., 2019):

u∗ = argmin
u
‖1pqu− l‖22 + λ‖u‖1 (7)

where l∈R
2R is a vector with the class labels, u∈R

Nt(Nτ−q) is
a sparse vector to be learned, λ∈R

+ is a positive regularization
parameter for controlling the sparsity of u. Lastly, a SVM-based
algorithm is implemented on the reduced subset of selected
features 1̂pq to train the bag classifier. Algorithm 1 summarizes
the similarity approach for MIL representation developed in
this section.

Algorithm 1: Expanded similarity of MIL representation

Ensure: Optimal bag formed by atom combination from
instances having a window-size vector 1̂pq

1: 1pq = φ

2: for q= [τinit ,Nτ ] do
3: for p=

[
q,Nτ

]
do

4: Sτ = [s(̂d
k
τ ,Br,τ ) : ∀r, k] Calculate similarity

matrix
5: 1pq ← Sp1τ

6: l̃
pq
i = SVM(1pq)

7: 1̂pq= argmax∀pq E

{
li − l̃

pq
i

}

3. EXPERIMENTAL EVALUATION

As illustrated in Figure 1, the proposed enhancement of bag-level
representation employs a CSP-based feature set, and appraises the
following procedures: (i) Frequency-temporal decomposition of
EEG raw data; (ii) Feature extraction of t-f atoms through a CSP
approach, (iii) Optimization of t-f atoms by Multiple-Instance
Logistic Regression; (iv) Extension of similarity assessments
for MIL representation over a wider domain; and (v) Feature
selection performed by LASSO strategy, feeding a classifier of
MI bi-class tasks. Intending to evaluate the contribution of atom
optimization, we consider two scenarios of training: including
this stage and without it (gray line in Figure 1).

3.1. Experimental Set-Up
The experiment is performed for each subject, for which
approximately 138 trials per subject are presented. For validation
purposes, the feature set is extracted from EEG data using the
algorithm of Common Spatial Patterns, for which the filter
dimension is adjusted to M = 3, corresponding to the more
representative terms of C′ as suggested in Blankertz et al. (2008).
Besides, we employ classification accuracy as the performance
criterion that is estimated by a support vector machine algorithm
through a 10-fold cross-validation scheme. In the proposed
expanded representation stage, the investigated range of τ is
adjusted to discrete values [0.2 − 2.0] s to embrace the whole
motor imagery period, while the slicing 1τ is empirically
adjusted to 100 ms. In Table 1, we report the total number of
instances vectors according to τ value. Moreover, in classification
stage, the SVM kernel bandwidth and LASSO regularization
coefficients were fixed through an exhaustive search within a
range of [10−3, 10−2, 10−1, 100, 101, 102, 103] and [10−10 − 9−1]
in a logarithmic scale, respectively.

3.2. Computation of CPS-Based t-f Atoms
Table 2 displays the optimal time window (heuristically
determined), performing the highest accuracy for each subject as
well as for the whole set. As a result, the optimal span of discrete
τ ranges extensively from 0.2 till 2.0 s, implying that each subject
differently rules all changes of J and, therefore, posing a difficulty
in performing the group analysis across the whole subject set.
Note that there is no dependence between the window length
and achieved accuracy.

For the sake of illustration, Figure 2 represents the CSP cost
function value J (i.e., RQ value) that is estimated over frequency
domain at each optimal time window τ . As seen in the left
plot, the subject marked as A08 performs the best at a small
window τ = 0.3 s, meaning that the rapid dynamics are relevant
in differentiating between classes. Instead, the worst case (A02)
demands τ = 0.2 s, that is, the relevant dynamics are also
fast, but widely scattered over time as observed in the center
plot. Therefore, the choice of time window remains crucial to
characterize the changes in neural activity through the baseline
atom representation.

Another aspect is the spectral relevance that is assessed as
the marginal values of J on the frequency bands (bars painted
in gray color). Even that left and center plots in Figure 2,
indicate that the optimal frequency bands are subject-specific,
the right plot shows the Rayleigh quotient of the whole subject
set is mostly localized within µ (8–13 Hz) and β (13–25 Hz)
rhythms as widely-accepted. The applied group analysis performs
concatenation of all single-subject data into a single group array,
i.e.,

⋃
∀m Xl

m fromwhich a latent structure of sources is computed
(Padilla-Buritica et al., 2019).

3.3. Performance of MIL Representation
Using t-f Atoms
Using the enhanced representation in Equation (6), we
validate the present proposal in discriminating against
the bi-task MI dynamics. Thus, using the most-likely-
cause estimator in Equation (5) as the similarity metric,
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FIGURE 1 | Scheme of bag-of-patterns representation proposed for classification of bi-class motor imagery tasks. Within the MIL framework using t-f atoms, the

suggested improvement is remarked by a dashed box.

TABLE 1 | Amount of instances performed by each tested time-window.

τ [s] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Nt 91 54 41 29 24 19 16 12 11 9 7 6 5 4 3 2 2 1 1

6Nt 91 145 185 215 239 258 274 286 297 306 313 319 324 328 331 333 335 336 337

The last row reports the cumulative sum across all range of considered τ .

TABLE 2 | The highest accuracy scores performed by each subject by fixing the optimal time window (τ ∗), and across the whole subject set (fixing τ = 2 s).

A08T A09T A03T A01T A05T A07T A06T A04T A02T Average Whole set

τ 0.3 1.0 1.5 2.0 1.5 2.0 0.2 1.5 0.2 1.5

aτ∗ 97.7 ± 3.2 100.0 ± 0.0 98.9 ± 2.5 93.7 ± 5.3 90.6 ± 4.9 94.8 ± 6.1 73.2 ± 7.0 65.3 ± 6.5 63.6 ± 5.4 86.4 ± 4.5 89.4 ± 4.7

aτ=2 95.8 ± 3.3 97.3 ± 3.8 98.0 ± 2.6 93.7 ± 5.3 88.8 ± 4.6 94.8 ± 6.1 67.6 ± 16.4 64.0 ± 9.8 60.3 ± 10.6 84.5 ± 6.9 88.0 ± 5.2

FIGURE 2 | Estimation of J using the optimal time window τ . (Left) the subject A08 (achieving the best accuracy), (Center) the patient A02 (worst accuracy), and

(Right) the group analysis performed at the admitted value τ = 2 s for validating the tested MI Dataset 2a. Spectral relevance is colored in gray bars.

we investigate the influence of τ (the relationship
window between time series) on the produced t-f
dynamics that are the most relevant in discriminating
between classes.

Figure 3 display the accuracy achieved by estimating the
higher-level structure similarity for each one of the available
combinations of atom-based instances of time-frequency
representation, that is, Sτ , and 1pq, for which the graphical
meaning is drawn to get a better understanding of the proposed
dictionary expansion. The red-box represents the expansion
that achieves the best performance in each subject. Due

to the symmetry of matrix accuracy in τ , only its upper
part is reported and ranked in decreasing order of accuracy
achieved by each subject. Namely, the x axis represents
the considered time-window sizes, while y axis shows all
possible expansions, that is, the different combinations of
time-window sizes present in an expanded bag. Thus, the
diagonal of the matrix represents the bags composed of
instances formed from a single-time-window size. Besides,
the last row of the image represents the performance of the
three subjects with the lowest performance using the bag
optimization stage.
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FIGURE 3 | Accuracy performed at different window length combinations of atom-based instances. The last row beneath the dotted line displays the subject

performance with a lower accuracy (A06T, A04T, and A02T) after using the optimization of the atom-based MIL representation stage.

In terms of distinguishing between MI tasks, the measured
similarity matrix values allow extracting the relevant dynamics
from expanded MIL representations, facilitating an accuracy
enhancement over a wide range of τ . Further, we rely on the
LASSO fits estimated by the feature selection task in Equation
(7), which increases the model interpretability by eliminating
irrelevant variables that are not associated with the response
variable and this way also reducing the overfitting (Roth, 2004;

Fonti and Belitser, 2017). Namely, besides information about
feature relevance, some indication is given about the degree up
to which a feature is relevant or can be replaced by others.
Nevertheless, the solutions tend to be not consistent estimations
of the underlying “true” weight vector u, regarding its exact value
as quoted in Pfannschmidt et al. (2019). As shown in the Figure 4,
therefore, we compute the normalized absolute LASSO weights
at each time instant, but including the estimation performed for
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FIGURE 4 | Temporal dynamics from the absolute LASSO weights performed within the motor imagery period. Each time series is a cross-validated fold. The last row

displays the subjects with lower accuracy after the optimization of the atom-based MIL representation stage.

10 cross-validated folds. It is worth noting that computation of
LASSO fits directly through the Rayleigh quotient in Figure 2

does not provide an understandable representation of brain
dynamics at each time instant since the optimal vector u∗

holds the extracted CSP features, but contributing across the
whole MI period. Instead, the learned sparse vector from the
bag-of-patterns representations reveals a dynamic behavior that
somehow resembles an elicited ERP waveform, rising at the
beginning and declining in the closing periods.

For subjects A08T, A09T, and A03T, the measured similarity
values enable an accuracy that is high practically regardless
of the examined window of atom-based instances, though
each subject has a distinct dynamic behavior. In the case of
subjects A01T, A05T, and A07T, their performance accuracy
is a bit reduced, while the time range of optimal windows
also shrinks. Moreover, the relevant dynamics of enhanced
MIL representation are extracted by larger values of τ (close
to 2 s) so that the LASSO fits remain constant over a large

window of bag representation instances. In the last triad of
subjects (A06T, A04T, and A02T), the relevant dynamics are
scattered all over the range of considered short-time window
τ , but appearing in a noticeably worse accuracy. Note that the
dynamic learned by the sparse vector of A02T has low values.
The last row in Figure 4 represent the rise of accuracy performed
by optimizing the similarity of enhanced MIL representation
through the procedure in section 2.4. As a result, the LASSO fits
may increase prominently and remain constant over extensive
window lengths.

To evaluate the influence of the used optimization procedure,
we perform the pairwise similarity between subjects across the
trial set. The left plot of Figure 5 presents the case when
optimization is omitted, showing an apparent clustering of three
groups of patients. However, the last triad of patients, achieving
the worst accuracy, turns out to be very similar to the best triad,
resulting in an inconsistency. In turn, the right plot degrades the
similarity of the worst triad between subjects, as well as with other
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FIGURE 5 | Pairwise similarity between subjects across the trial set assessed when omitting the optimization of t-f atoms (Left) and using the Multiple-Instance

Logistic Regression (Right).

TABLE 3 | Comparison of SVM accuracy achieved by the proposed bag-level representation.

Subject TSGSP SFBCSP SFTOFSRC Proposal Proposal*

A08T 95.8 97.0 ± 2.9 96.9 ± 3.4 99.0 ± 1.7 99.2 ± 1.6

A09T 81.3 97.8 ± 3.1 94.6 ± 3.4 98.7 ± 2.1 97.3 ± 3.2

A03T 93.8 98.8 ± 1.7 98.5±1.9 97.7 ± 2.6 99.2 ± 1.6

A01T 87.0 91.8 ± 4.7 91.8 ± 3.9 96.0 ± 1.1 94.8 ± 3.5

A05T 90.4 90.6 ± 3.7 95.7 ± 2.1 93.0 ± 3.1 95.3 ± 4.4

A07T 91.4 94.7 ± 6.1 76.3 ± 5.7 88.0 ± 4.5 96.2 ± 4.6

A06T 63.9 67.9 ± 6.9 71.0 ± 6.4 74.5 ± 4.8 72.4 ± 7.9

A04T 74.3 63.5 ± 10.6 69.0 ± 7.1 70.3 ± 6.8 69.5 ± 9.3

A02T 64.7 58.4 ± 8.3 62.8 ± 5.9 64.0 ± 5.9 66.2 ± 5.3

Average 82.5 84.5 ± 5.3 84.0 ± 4.4 86.8 ± 3.5 87.8 ± 4.6

Each method performing the best individual accuracy is marked in bold. Abbreviation Proposal denotes the enhanced representation without optimizing the t-f atoms, while notation

* includes this procedure. Each underlined subject achieves confident differences of performance with either proposal version.

patients. Therefore, we may hypothesize that the use of Multiple-
Instance Logistic Regression allows for improving the performed
accuracy by better extracting the discriminating dynamics of
MIL representations.

For the sake of comparison, we contrast the accuracy
performance achieved the proposed enhancement of bag-level
representation using a CSP-based feature set against the
following three state-of-the-art approaches based on Filter-Bank
preprocessing and CSP-based feature extraction procedure: (i)
Sparse Filter Bank Common Spatial Patterns (SFBCSP) (Zhang
et al., 2015) used as baseline approach, (ii) Spatial-Frequency-
Temporal Optimized Feature Sparse Representation-based
Classification(SFTOFSRC) (Miao et al., 2017), which includes
a time-decomposition stage in the data preprocessing to
generate a column vector of extracted CSP features for sparse
representation-based classification, and (iii) Temporally
Constrained Sparse Group Spatial Patterns(TSGSP) (Zhang
et al., 2018) that adding a LASSO-based regularization term
in the time domain. Table 3 displays the accuracy of the

compared LASSO-based CSP algorithms reported for each
subject, showing that all of them are outperformed by the
proposed enhancement of bag-level representation using an
SVM instance classifier, at least, in terms of the average across the
whole subject set. Furthermore, by optimizing the higher-level
structure similarity of bag-based representation, the performed
accuracy increases further, improving most of the subjects
that perform a low signal-to-noise ratio. Lastly, we evaluate
the significance in terms of the disagreement of performing
individual accuracy between the proposal and each of the
comparison methods. To this end, the paired t-test is conducted
at a fixed confidence value of p < 0.1, employing the scores
achieved on the cross-validation folds (this information is not
available for TSGSP). As seen in Table 3, there are confident
differences of performance with the proposal (underlined
subjects) for most of the individuals using SFTOFSRC. However,
using SFBCSP, only a few subjects achieve a distinctive
accuracy, probably because of the obtained higher dispersion of
that approach.
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TABLE 4 | Algorithm complexity of developed learning procedures.

Proposal Proposal*

Time [h]a 36 36Nλ

Complexity O(n2) O(Nλn
2)

Nτ , number of considered time windows τ ; Nλ, amount of searching cycles in LASSO

regularization terms. a Indicated time per subject.

4. DISCUSSION AND CONCLUDING
REMARKS

Intending to extract patterns of the brain activity that allow
improving the class separation, we propose the enhancement
of bag-level representation using a CSP-based feature set.
For this purpose, we exploit the baseline short-time CSP
feature extraction, introducing an expanded atom-based MIL
representation, covering more extensive window lengths. The
obtained results in a public dataset prove that the accomplished
accuracy is very competitive, providing robustness to the time
variation of EEG recordings and favoring the class separability.
Nevertheless, the following aspects for implementing our
proposal are to be mentioned:

– Construction of CSP-based t-f atoms: As seen in Table 2

and Figure 2, there is not a clear relationship between
the window length and achieved accuracy. These facts
indicate that a frequency band decomposition of multi-
channel EEG combined with an accurate time segmentation
is necessary to improve the MI classification accuracy. The
alone optimization of frequency bands without considering
the influence of time may fail in finding the optimal feature set
for classification (Miao et al., 2017). In addition, the obtained
results show that the performance of the enhanced bag-level
representation is influenced by the CSP-based representation,
demanding high values of SNR for the acquired EEG data.
This fact is evidenced enough by the subject A02T, whose
performance is seriously diminished because of the low SNR.

– Atom-based MIL representation: With the aim to improve
the contribution of time-frequency CSP-based atoms, we
perform the Multiple-Instance Logistic Regression, that
allows discarding irrelevant or redundant information in
discrimination MI tasks. As a result, the performed accuracy
importantly increases, as shown for the subjects achieving the
worse outcomes without optimization. This improvementmay
be explained due to the LASSO fits increase prominently and
remain constant over extensive window lengths.

– Accurate similarity of expanded MIL representation: The
benefit of mapping the CSP feature space to an expanded
bag representation is to disclose the data distribution,
capturing/encoding more meaningful information (local
and global).

– Computational burden: As regards the complexity of
developed learning algorithms, however, it is so high that
real-time processing during training does not apply. The
learning procedure includes an exhaustive analysis within
the parameter setting stage, which holds approximately

10Nτ ≈ 190 possible expanding configurations, where
Nτ is the number of considered time windows τ . Table 4
summarizes the algorithmic complexity of compared
approaches. As a result, in comparison with the baseline
algorithm with no Multiple-Instance Learning, the
computational burden of training procedures, for the tested
database, rises as much as 1,500 times! Nevertheless, once
the corresponding training procedures are performed, the
validating classification algorithms of developed approaches
may be suitable for real-time processing.

Consequently, the proposed enhanced bag-of-patterns
representation promotes in motor imagery the following
two contributions:

– Accuracy improvement of bi-conditional tasks. The
effectiveness of conventional CSP extraction is very affected
by the time window of EEG segments due to the significant
inter- and intra-subject variation. To cope with this issue, we
propose to build representations based om bag-of-patterns
using the expanded atom-based instances extracted from the
spectral-temporal Rayleigh quotient. As a result, the designed
dictionary using the higher-level structures allows capturing
the structural dynamics of EEG data more carefully over
a wide range of τ . Therefore, it increases the classification
accuracy, outperforming the baseline sparse CSP-based
systems reported in the literature.

– Better understanding of dynamic brain behavior. A better
understanding of dynamic brain-behavior through the learned
LASSO fits. In the designed dictionary of higher-level
structures, the model interpretability is increased since the
sparse feature selection eliminates irrelevant variables, which
are not associated with the response variable. Thus, the
learned sparse vector from the bag-of-pattern representations
reveals a dynamic behavior that somehow resembles an elicited
ERP waveform, rising in the beginning and declining in the
closing periods.

However, the Multiple-instance learning algorithms often
provide a large number of redundant or irrelevant features,
which limits their application for large datasets. Intending
to optimize the bag-of-patterns representations, we include
a multiple instance Regularization with LASSO penalty and
an embedded feature selection that improves further the
performed accuracy, increasing the subject performance with a
low SNR.

As future work, the authors intend to work out two main
issues: computational burden and robustness. To address the
former concern, we plan to introduce an instance selection
stage, relying on a filter-type measure of performance, like
the Rayleigh coefficient. In the latter case, to improve the
robustness across trials, the authors are exploring more
powerful representations based on bag-of-patterns, using the
disgregation/selection of filter-banked components and testing
other distances between high-level structures of time series.
Further, the computational complexity must be minimized,
encouraging validation of the proposed approach on more
extensive EEG databases with a higher number of electrodes,
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multiple labels, and larger populations. Also, we plan to
include other motor imagery tasks, extending the present
methodology to the multi-class case and applying a set of binary
CSP subproblems.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: http://www.bbci.de/competition/iv/#
download.

AUTHOR CONTRIBUTIONS

DC-H, JC-A, GC-D, and CA-M conceived of the presented
idea. DC-H and JC-A developed the theory based on
Multiple Instance Learning Representation and performed
the computations. GC-D and CA-M verified the analytical
methods. DC-H and GC-D encouraged. JC-A to investigate
the influence of the selection of time-window in the feature
extraction procedures, and supervised the findings of this

work. All authors discussed the results and contributed to the
final manuscript.

FUNDING

This research was supported by Doctorados Nacionales 2017,
conv.785 funded by COLCIENCIAS, and this manuscript is
the result of the research developed by “PROGRAMA DE
INVESTIGACIÓNRECONSTRUCCIÓNDEL TEJIDO SOCIAL
EN ZONAS DE POSCONFLICTO EN COLOMBIA Código
SIGP: 57579 con el proyecto de investigación Fortalecimiento
docente desde la alfabetización mediática Informacional y la
CTel, como estrategia didáctico-pedagógica y soporte para la
recuperación de la confianza del tejido social afectado por
el conflicto. Código SIGP 58950. Financiado en el marco de
la convocatoria Colombia Científica, Contrato No. FP44842-
213-2018”. In addition, experimental evaluation of this study
was supported by the co-author master thesis “Time-series
representation framework based on multi-instance similarity
measures” available in Caicedo-Acosta (2019).

REFERENCES

Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., and Zhang, H. (2012). Filter bank
common spatial pattern algorithm on BCI competition IV datasets 2a and 2b.
Front. Neurosci. 6:39. doi: 10.3389/fnins.2012.00039

Bailly, A., Malinowski, S., Tavenard, R., Guyet, T., and Chapel, L. (2016).
Dense bag-of-temporal-SIFT-words for time series classification. CoRR

abs/1601.01799. doi: 10.1007/978-3-319-44412-3_2
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Muller, K. (2008).

Optimizing spatial filters for robust eeg single-trial analysis. IEEE Signal Process.
Magaz. 25, 41–56. doi: 10.1109/MSP.2008.4408441

Caicedo Acosta, J. C. (2019). Time-series representation framework based on

multi-instance similarity measures (Master’s Thesis). Universidad Nacional de
Colombia-Sede Manizales, Manizales, Colombia.

Caicedo-Acosta, J., Cardenas-Pena, D., Collazos-Huertas, D., Padilla-Buritica,
J. I., Castano-Duque, G., and Castellanos-Dominguez, G. (2019). “Multiple-
instance lasso regularization via embedded instance selection for emotion
recognition,” in Understanding the Brain Function and Emotions, eds J.
Ferrández Vicente, J. Álvarez-Sánchez, F. de la Paz López, J. Toledo Moreo,
and H. Adeli (Cham: Springer), 244–251.

Chen, P., Chen, C., Yang, C., Chang, S., and Lee, K. (2017). MILR:
Multiple-instance logistic regression with LASSO penalty. R J. 9, 446–457.
doi: 10.32614/RJ-2017-013

Chen, Y., Bi, J., and Wang, J. Z. (2006). MILES: multiple-instance learning
via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28,
1931–1947. doi: 10.1109/TPAMI.2006.248

Cheplygina, V., Tax, D., and Loog, M. (2015). Multiple instance learning with
bag dissimilarities. Pattern Recogn. 48, 264–275. doi: 10.1016/j.patcog.2014.
07.022

Feng, J. K., Jin, J., Daly, I., Zhou, J., Niu, Y., Wang, X., et al. (2019).
An optimized channel selection method based on multifrequency csp-rank
for motor imagery-based bci system. Comp. Int. Neurosci. 2019:8068357.
doi: 10.1155/2019/8068357

Fonti, V., and Belitser, E. (2017). “Feature selection using LASSO,” in Amsterdam

Research Paper in Business Analytics (Amsterdam).
Frau-Meigs, D. (2007).Media Education. A Kit for Teachers, Students, Parents and

Professionals. UNESCO.
Gui, Z.-W., and Yeh, Y.-R. (2014). “Time series classification with temporal bag-

of-words model,” in Technologies and Applications of Artificial Intelligence,
eds S.-M. Cheng and M.-Y. Day (Cham: Springer International Publishing),
145–153.

Guillot, A., and Debarnot, U. (2019). Benefits of motor imagery for human space
flight: a brief review of current knowledge and future applications. Front.
Physiol. 10:396. doi: 10.3389/fphys.2019.00396

Liang, S., Choi, K.-S., Qin, J., Pang, W.-M., Wang, Q., and Heng, P.-A. (2016).
Improving the discrimination of hand motor imagery via virtual reality
based visual guidance. Comput. Methods Programs Biomed. 132, 63–74.
doi: 10.1016/j.cmpb.2016.04.023

Lin, J., and Li, Y. (2009). “Finding structural similarity in time series data using bag-
of-patterns representation,” in Scientific and Statistical Database Management,
ed M. Winslett (Berlin; Heidelberg: Springer), 461–477.

Miao, M., Wang, A., and Liu, F. (2017). A spatial-frequency-temporal
optimized feature sparse representation-based classification method for motor
imagery EEG pattern recognition. Med. Biol. Eng. Comput. 55, 1589–1603.
doi: 10.1007/s11517-017-1622-1

Padfield, N., Zabalza, J., Zhao, H., Vargas, V., and Ren, J. (2019). EEG-based
brain-computer interfaces using Motor-Imagery: techniques and challenges.
Sensors 19, 1–34. doi: 10.3390/s19061423

Padilla-Buritica, J., Hurtado, J., and Castellanos-Dominguez, G. (2019).
Supervised piecewise network connectivity analysis for enhanced confidence
of auditory oddball tasks. Biomed. Signal Process. Control 52, 341–346.
doi: 10.1016/j.bspc.2019.04.020

Passalis, N., Tsantekidis, A., Tefas, A., Kanniainen, J., Gabbouj, M., and Iosifidis, A.
(2017). “Time-series classification using neural Bag-of-Features,” in 2017 25th

European Signal Processing Conference (EUSIPCO) (Kos), 301–305.
Pfannschmidt, L., Jakob, J., Biehl, M., Tino, P., and Hammer, B. (2019). Feature

Relevance Bounds for Ordinal Regression. CoRR abs/1902.07662.
Ratanamahatana, C. A., and Keogh, E. (2004). “Making time-series classification

more accurate using learned constraints,” in Proceedings of the 2004 SIAM

International Conference on Data Mining (Lake Buena Vista, FL), 11–22.
Roth, V. (2004). The generalized LASSO. IEEE Trans. Neural Netw. 15, 16–28.

doi: 10.1109/TNN.2003.809398
Shin, Y., Lee, S., Lee, J., and Lee, H.-N. (2012). Sparse representation-based

classification scheme for motor imagery-based brain–computer interface
systems. J. Neural Eng. 9:056002. doi: 10.1088/1741-2560/9/5/056002

Suica, Z., Platteau-Waldmeier, P., Koppel, S., Schmidt-Trucksaess, A., Ettlin,
T., and Schuster-Amft, C. (2018). Motor imagery ability assessments in
four disciplines: protocol for a systematic review. BMJ Open 8:e023439.
doi: 10.1136/bmjopen-2018-023439

Wang, J., Liu, P., She, M., Nahavandi, S., and Kouzani, A. (2013). Bag-of-words
representation for biomedical time series classification. Biomed. Signal Process.

Control 8, 634–644. doi: 10.1016/j.bspc.2013.06.004

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 155

http://www.bbci.de/competition/iv/#download
http://www.bbci.de/competition/iv/#download
https://doi.org/10.3389/fnins.2012.00039
https://doi.org/10.1007/978-3-319-44412-3_2
https://doi.org/10.1109/MSP.2008.4408441
https://doi.org/10.32614/RJ-2017-013
https://doi.org/10.1109/TPAMI.2006.248
https://doi.org/10.1016/j.patcog.2014.07.022
https://doi.org/10.1155/2019/8068357
https://doi.org/10.3389/fphys.2019.00396
https://doi.org/10.1016/j.cmpb.2016.04.023
https://doi.org/10.1007/s11517-017-1622-1
https://doi.org/10.3390/s19061423
https://doi.org/10.1016/j.bspc.2019.04.020
https://doi.org/10.1109/TNN.2003.809398
https://doi.org/10.1088/1741-2560/9/5/056002
https://doi.org/10.1136/bmjopen-2018-023439
https://doi.org/10.1016/j.bspc.2013.06.004
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Collazos-Huertas et al. Enhanced t-f MIL in MI Tasks

Wang, K., Xu, M., Wang, Y., Zhang, S., Chen, L., and Ming, D.
(2019). Enhance decoding of pre-movement eeg patterns for brain-
computer interfaces. J. Neural Eng. 17:016033. doi: 10.1088/1741-2552/
ab598f

Xu, Y., Zhang, Z., Yang, J., Li, X., and Zhang, D. (2015). A survey of
sparse representation: algorithms and applications. IEEE Access 3, 490–530.
doi: 10.1109/ACCESS.2015.2430359

Yamawaki, N., Wilke, C., Liu, Z., and He, B. (2006). An enhanced time-
frequency-spatial approach for motor imagery classification. IEEE

Trans. Neural Syst. Rehabil. Eng. 14, 250–254. doi: 10.1109/TNSRE.2006.
875567

Zhang, Y., Nam, C. S., Zhou, G., Jin, J., Wang, X., and Cichocki, A.
(2018). Temporally constrained sparse group spatial patterns for motor
imagery BCI. IEEE Trans. Cybernet. 49, 1–11. doi: 10.1109/TCYB.2018.28
41847

Zhang, Y., Zhou, G., Jin, J., Wang, X., and Cichocki, A. (2015). Optimizing spatial
patterns with sparse filter bands for motor-imagery based brain-computer

interface. J. Neurosci. Methods 255, 85–91. doi: 10.1016/j.jneumeth.2015.
08.004

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer FG declared a shared affiliation, with no collaboration, with
the authors to the handling editor.

Copyright © 2020 Collazos-Huertas, Caicedo-Acosta, Castaño-Duque and Acosta-

Medina. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 155

https://doi.org/10.1088/1741-2552/ab598f
https://doi.org/10.1109/ACCESS.2015.2430359
https://doi.org/10.1109/TNSRE.2006.875567
https://doi.org/10.1109/TCYB.2018.2841847
https://doi.org/10.1016/j.jneumeth.2015.08.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification
	1. Introduction
	2. Materials and Methods
	2.1. Motor Imagery Dataset 2a
	2.2. Construction of Time-Frequency CSP-Based Atoms
	2.3. Optimization of t-f Atoms for MIL Representation
	2.4. Similarity-Based Enhancement of Expanded MIL Representation

	3. Experimental Evaluation
	3.1. Experimental Set-Up
	3.2. Computation of CPS-Based t-f Atoms
	3.3. Performance of MIL Representation Using t-f Atoms

	4. Discussion and Concluding Remarks
	Data Availability Statement
	Author Contributions
	Funding
	References


