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Hardware architectures composed of resistive cross-point device arrays can provide
significant power and speed benefits for deep neural network training workloads
using stochastic gradient descent (SGD) and backpropagation (BP) algorithm. The
training accuracy on this imminent analog hardware, however, strongly depends on
the switching characteristics of the cross-point elements. One of the key requirements
is that these resistive devices must change conductance in a symmetrical fashion
when subjected to positive or negative pulse stimuli. Here, we present a new training
algorithm, so-called the “Tiki-Taka” algorithm, that eliminates this stringent symmetry
requirement. We show that device asymmetry introduces an unintentional implicit cost
term into the SGD algorithm, whereas in the “Tiki-Taka” algorithm a coupled dynamical
system simultaneously minimizes the original objective function of the neural network
and the unintentional cost term due to device asymmetry in a self-consistent fashion.
We tested the validity of this new algorithm on a range of network architectures
such as fully connected, convolutional and LSTM networks. Simulation results on
these various networks show that the accuracy achieved using the conventional
SGD algorithm with symmetric (ideal) device switching characteristics is matched
in accuracy achieved using the “Tiki-Taka” algorithm with non-symmetric (non-ideal)
device switching characteristics. Moreover, all the operations performed on the arrays
are still parallel and therefore the implementation cost of this new algorithm on
array architectures is minimal; and it maintains the aforementioned power and speed
benefits. These algorithmic improvements are crucial to relax the material specification
and to realize technologically viable resistive crossbar arrays that outperform digital
accelerators for similar training tasks.

Keywords: deep learning, resistive device, analog hardware accelerator, resistive processing unit, training
algorithms, memristor, crossbar array

INTRODUCTION

In the past few years, deep neural networks (DNN) (LeCun et al., 2015) have made tremendous
advances, in some cases surpassing human level performance, tackling challenging problems such
as speech recognition (Hinton et al., 2012; Ravanelli et al., 2017), natural language processing
(Collobert et al., 2012; Jozefowicz et al., 2016), image classification (Krizhevsky et al., 2012; He
et al., 2015a,b; Chen et al., 2017), and machine translation (Wu, 2016). Training of large DNNs,
however, is a time consuming and computationally intensive task that demands datacenter scale
computational resources composed of state of the art GPUs (Krizhevsky et al., 2012; Coates et al.,
2013). There have been many attempts to accelerate deep learning workloads beyond GPUs by
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designing custom hardware utilizing reduced precision
arithmetic to improve the throughput and energy efficiency
of the underlying CMOS technology (Gupta et al., 2015).
Alternative to digital approaches, resistive cross-point device
arrays are proposed to further increase the throughput and
energy efficiency of the overall system by performing the vector-
matrix multiplications in the analog domain. In addition, these
device arrays can perform the weight update operation locally
with no weight movement and therefore they bring further
benefits compared to digital approaches.

Resistive cross-point devices, so called resistive processing
unit (RPU) (Gokmen and Vlasov, 2016) device arrays that can
simultaneously store and process data locally and in parallel,
are promising candidates for intensive DNN training workloads.
The concept of using resistive cross-point device arrays (Burr
et al., 2015, 2017; Chen et al., 2015a,b; Prezioso et al., 2015;
Agarwal et al., 2016b; Gokmen and Vlasov, 2016; Fuller et al.,
2017) as DNN accelerators has been tested on a variety of
network architectures and datasets mainly by simulations but
also with some limited hardware demonstrations. Considering
state-of-the-art learning algorithms, to par training accuracy
compared to the conventional digital hardware a restrictive set
of RPU device specifications must be met. As shown empirically
(Agarwal et al., 2016a; Gokmen and Vlasov, 2016; Gokmen
et al., 2017), a key requirement is that these analog resistive
devices must change conductance symmetrically when subjected
to positive or negative voltage pulse stimuli. This requirement
differs significantly from those needed for memory elements and
accomplishing such symmetrically switching analog devices is
a difficult task. Substantial efforts are devoted to engineer new
material stacks or adopt the existing ones, originally developed
for memory (Burr et al., 2015) and battery (Fuller et al., 2017;
Tang et al., 2018) applications, to achieve the symmetry criteria
needed for DNN training. Besides material engineering efforts,
CMOS only (Li et al., 2018) and CMOS assisted solutions in
tandem with existing memory device technologies (Ambrogio
et al., 2018) are also considered but introduce an overhead of
making the cross-point element increasingly more complex.

Here, we present a new technique that can address the
issue of non-symmetric device switching characteristics at the
algorithm level, in a physical-hardware invariant form. In
the rest of the paper we show that the device switching
characteristics introduces an additional cost term into the
optimization objective of the conventional SGD algorithm. The
presence of this additional term entails poor training results
for non-symmetric devices as the system is in competition with
minimizing the objection function of the neural network against
this unintentional cost term. In this new technique we introduce
a coupled dynamical system that simultaneously minimizes the
objective function of the original SGD algorithm as well as
the unintentional cost term due to device asymmetry in a
self-consistent fashion. This algorithm learns by continuously
exchanging information between two system’s components and
hence we call it the “Tiki-Taka” algorithm. We show that the
“Tiki-Taka” algorithm is general enough to handle a large range
of non-symmetric device switching behaviors and therefore
applicable to a variety of device technologies. We tested the

algorithm by performing training simulations using various
device switching characteristics on three different network
architectures: fully connected, convolutional and LSTMs. In
all cases the results of the training performed with the “Tiki-
Taka” algorithm using non-ideal device characteristics are
indistinguishable from the ones achieved with the SGD algorithm
using ideal devices. We also discuss the implementation cost
of the “Tiki-Taka” algorithm on realistic RPU device arrays
in terms of area, power and speed and show that the overall
cost is minimal.

MATERIALS AND METHODS

Array Operations: Forward, Backward,
and Update
The stochastic gradient descent (SGD) using the backpropagation
algorithm is composed of three cycles – forward, backward and
weight update – that are repeated many times until a convergence
criterion is met. For a single fully connected layer where N inputs
neurons are connected to M output (or hidden) neurons, the
forward cycle involve computing a vector-matrix multiplication
(y =Wx) where the vector x of length N represents the activities
of the input neurons and the matrix W of size M × N that
stores the weight values between each pair of input and output
neurons. The resulting vector y of length M is further processed
by performing a non-linear activation on each of the elements
and then passed to the next layer. Once the information reaches
to the final output layer, the error signal is calculated and
backpropagated through the network. The backward cycle on a
single layer also involves a vector-matrix multiplication on the
transpose of the weight matrix (z =W>δ), where the vector
δ of length M represents the error calculated by the output
neurons and the vector z of length N is further processed using
the derivative of neuron non-linearity and then passed down
to the next (previous) layer. Finally, in the update cycle the
weight matrix W is updated by performing an outer product of
the two vectors that are used in the forward and the backward
cycles and usually expressed as W ←W − η (δ ⊗ x) where η is
a global learning rate. Consistently, the SGD update rule for each
parameter wij corresponding to ith column and jth row (the layer
index is dropped for simplicity) can be written as

wij ← wij − η1wij (1)

where 1wij is the gradient of the objective function with respect
to parameter wij, and has a form 1wij = xi × δj, where xi is the
input activation for the ith column and δj is the backpropagated
error signal for the jth row.

The above three operations performed on the weight matrix
W during the SGD\BP algorithm are implemented using 2D
crossbar arrays of resistive devices all in parallel and constant
time using the physical properties of the array. For instance,
the stored conductance values in the crossbar array form the
matrix W, however, physically only positive conductance values
are allowed and therefore to encode both positive and negative
weight values a pair of RPU devices is operated in differential
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mode. For each parameter wij in the weight matrix W, there exists
two devices that encode a single weight value

wij = K(gij − gij,ref ) (2)

where gij is the conductance value stored on the first RPU device,
gij,ref is the conductance value stored on the second device used
as a reference both corresponding to ith column and jth row
and K is the gain factor that is controlled by a combination
of factors, such as integration time, integration capacitor and
voltage levels, at the peripheral circuitry. In the forward cycle,
the input vector x is transmitted as voltage pulses through each
of the columns and resulting vector y is read as a differential
current signal from the rows (Steinbuch, 1961). Similarly, the
backward cycle can be performed by inputting voltage pulses
from the rows and reading the results from the columns. These
two cycles simply rely on Ohm’s law and the Kirchhoff’s law in
order to perform the vector-matrix multiplications. In contrast
to the forward and backward cycles, implementing the update
cycle is trickier and employs the device switching characteristics
to trigger the necessary conductance change1gtotal,ij that should
practically match the required weight change η1wij of the SGD
algorithm, such that K1gtotal,ij ∼= η(xi × δj). To perform the
local multiplication operation needed to calculate1wij = xi × δj,
different pulse encoding schemes (Xu et al., 2014; Burr et al.,
2015; Gokmen and Vlasov, 2016) are proposed all of which
reduce the multiplication to a simple coincidence detection
that can be realized by RPU devices. For instance, in the
stochastic update scheme numbers that are encoded from the
columns and rows (xi and δj) are translated to stochastic bit
streams using stochastic translators (Gokmen and Vlasov, 2016).
These stochastic translators adjust the pulse probabilities at the
periphery, and hence they control the total number of the pulse
coincidences happening at each crossbar element. In this scheme
these pulses are sent into the crossbar array simultaneously for
all rows and all columns and then for each coincidence event the
corresponding RPU device changes its conductance by a small
amount 1gmin. However, there exist many pulses in the pulse
stream so that the total conductance change 1gtotal, ij required
by the algorithm is implemented as series of small conductance
changes 1gmin per pulse coincidence. As a result, the weight
update happens as a series of coincidence events each triggering a
conductance increment (or decrement) and the expected number
of coincidences is

E(# of pulse coincidences at ith column and jth row)

=
η(xi × δj)
K1gmin

(3)

where K1gmin , 1wmin is the expected weight change due to a
single coincidence event. We note that the pulses generated at
the peripheral are applied to all RPU devices among the column
(or the row), therefore stochastic translators can assume a single
1gmin (or equivalently1wmin) value for the whole array when the
pulse probabilities are calculated to result in the desired weight
change at each RPU. However, we show next the actual changes
triggered by each RPU device per pulse coincidence 1gij may

differ from the 1gmin, and this mismatch will create artifacts in
the SGD algorithm, which prevent its proper convergence.

Expected vs. Actual Weight Update
Using the formula of the expected number of pulse coincidences
from Eq. 3, the actual algorithmic weight change caused by the
update cycle performed by the RPU devices can be derived as

1wij,actual = 1wij


1gpij

(
gij
)

1gmin
if 1wij < 0

1gnij
(
gij
)

1gmin
if 1wij > 0

(4)

where 1gpij and 1gnij are the actual device responses for the
incremental conductance changes for positive and negative
stimuli at the coincidence event. They may also be functions of
the current device conductance gij. We assume that the update
pulses are applied only to the first set of RPU devices and the
reference devices are kept constant. This requires a bi-directional
switching RPU device as we discuss in detail later. However,
to enable both positive and negative conductance changes the
polarity of the pulses are switched during the update cycle and
hence there exists two branches for each device used for the
updates. Using Eq. 4 in Eq. 1 results in an actual update rule
implemented by the RPU devices

wij ← wij − η1wij

[
1gnij(gij)+1gpij(gij)

21gmin

]

− η
∣∣1wij

∣∣ [1gnij(gij)−1gpij(gij)

2 1gmin

]
(5)

that captures the deviation of the expected device conductance
changes from the actual ones realized by the RPU devices. It can
be interpreted as separating the even and odd part of the RPU
switching behavior. Here we emphasize again that 1gmin is the
single value expected by the periphery during pulse generation,
whereas 1gpij (or 1gnij) are the actual changes triggered by each
RPU device. Since the pulses generated at the periphery are
common for the whole array (columns and rows) it is impossible
to compensate for the mismatch between 1gmin and 1gpij (or
1gnij) at the periphery as each RPU device has a different 1gpij
(or 1gnij) value due to device-to-device variability. Without loss
of generality Eq. 5 can be rewritten as

wij ← wij − η1wijFij(wij)− η
∣∣1wij

∣∣Gij(wij) (6)

where Fij(wij) and Gij(wij) are the symmetric (additive) and
antisymmetric (subtractive) combinations of the positive and
negative update branches parametrized using the weight values
corresponding ith column and jth row. Note that the functions Fij
and Gij can generally be functions of the current weight value wij
as well as vary from one cross-point to another due to device-
to-device variability. Although we used the stochastic pulsing
scheme for the derivation of Eq. 5 and 6, the equations are general
and do not depend on the underlying pulse implementations
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up to some rounding errors. Table 1 compares the desired SGD
update rule (Eq. 1) to the hardware induced update rule (Eq. 6),
that has contributions from the device switching characteristics.

To understand the significance of the hardware induced
update rule, the behavior of Eq. 8 is described below for
three different device switching characteristics, as illustrated in
Figure 1. For the first device, that changes the conductance
in a linear fashion and has the same value for the positive
and negative branches, the hardware induced update rule
simplifies back to the desired SGD update rule as F (w) =
1 and G (w) = 0. This is the case usually considered as the
ideal device behavior required for good convergence. For the
second device, that changes conductance in a non-linear but
symmetric fashion for both up and down branches, then
again G (w) term drops, and Eq. 8 simplifies to a form w←
w− η1wF (w), where more specifically F (w) = 1− 1.66w for
the example device illustrated in Figure 1B. Although this
update rule is different from the original SGD update rule, the
existence of F (w) only modifies the effective learning rate and
therefore does not affect the convergence. Indeed, empirically
it is shown that RPU devices need to have only symmetrical
switching characteristics and the linearity is not required for good
convergence (Agarwal et al., 2016a; Gokmen and Vlasov, 2016;
Gokmen et al., 2017, 2018). Only if updates are performed on two
separate devices that change their conductances monotonically,
such as PCM devices with one-sided switching, then pair-wise
matching and linearity are mandated to satisfy the symmetry
requirement (Haensch et al., 2019). Finally, for the third
device with non-symmetric device switching characteristics the
hardware induced update rule becomes w← w− η1wF (w)−
η |1w|G (w). Since |1w| can only be non-negative, the last term
is solely dictated by the functional form of G (w) and will act as an
unintentional cost term introduced into optimization objective
by the underlying hardware behavior. For the device illustrated in
Figure 1C, where F (w) = 0.65− 0.54w and G (w) = 1.12w, the
hardware induced update rule becomes w← w− ηF(w)1w−
η |1w| (1.12w) which corresponds to an optimization objection
that is a combination of the original problem with an additional
quadratic cost term w2. This is similar to adding `2 regularization
term into the optimization objective but unfortunately its
magnitude cannot be controlled and more strictly its amplitude
is proportional to the updates |1w|. This creates a competition
between the original optimization objective of the neural network
and an internal cost term due to device characteristic; providing
theoretical justification to the empirically observed poor training
results obtained for non-symmetric RPU devices.

Note that even for the non-symmetric device illustrated in
Figure 1C there exists a single point (conductance value) at
which the strengths of the conductance increment and decrement

TABLE 1 | Summary of the update rules.

Desired SGD Update Rule Hardware Induced Update Rule

w← w− η1w (7) w← w− η1wF (w)− η |1w|G (w) (8)

All sub-indexes corresponding to ith column, jth row and the layer index is
dropped for simplicity.

are equal. This point is called the symmetry point of the
updated device and it may correspond to any weight value (not
necessary to zero as illustrated in Figure 1C) due to the device-
to-device variations. As we show next there exists a method,
symmetry point shifting technique (Kim H. et al., 2019), that
can guarantee that the symmetry point of the updated device
matches the conductance of the corresponding reference device
and hence satisfy the condition Gij

(
wij = 0

)
∼= 0 for all elements

of the matrix. Note that the strengths of conductance increment
and decrement are equal at the symmetry point and therefore
G
(
at the symmtery point

)
= 0 by definition. We will show below

that this property is accomplished by copying the symmetry
point of the active device to its reference. However, the behavior
of Gij

(
wij
)

away from zero is still dictated by the updated
device characteristics and for actual hardware implementations
of RPU devices, each device would show different Gij

(
wij
)

characteristics due to device variability. Combination of device
variability and conductance state dependent updates makes it
impossible to compensate for this non-symmetric behavior for
individual devices without breaking the parallel nature of the
array operations. However, the “Tiki-Taka” algorithm, as we
describe below, eliminates the undesired effects of the device
asymmetry for realistic RPU devices without breaking the array
parallelism during training.

Symmetry Point Shifting Technique
The first step of the symmetry point shifting techniques is to
apply a sequence of alternating (positive and negative) update
pulses to the whole array all in parallel to all columns and all
rows. In an alternating pulse sequence, the two consecutive pulses
eliminate the η1wijFij(wij) term from Eq. 8 and the dynamics of
the whole array is dictated by the individual Gij

(
wij
)

terms. The
behavior of Gij

(
wij
)

is expected to be different for each device
due to the device variability and initial conductance variations,
however, after sufficiently long sequence of pulses is applied, at
steady state all elements are expected to converge to a point
where Gij

(
wij
)
∼= 0, although the corresponding weight value is

not necessarily at zero, wij 6= 0.
This behavior is expected from any device where dependence

of conductance increments (and decrements) on current
conductance value can be described by a single curve (bi-
directional switching behavior), such as the device illustrated in
Figure 1C. As shown in Figure 1C, if the device conductance is
smaller than the symmetry point (gij < sij) then the conductance
increments are stronger than the decrements (1gpij > 1gnij), and
similarly, if the device conductance is larger than the symmetry
point (gij < sij) then the conductance decrements are stronger
than the increments (1gpij > 1gnij). Therefore, independent of
the initial conductance value, this alternating pulse sequence
pushes the device conductance toward the symmetry point,
as illustrated in Figure 2. Note that a convergence toward
the symmetry point is expected independent of the functional
form the conductance increments and decrements as long
as there exists a conductance value where the strengths of
conductance increments and decrements are equal in magnitude.
Indeed, symmetry point measurement and shifting technique is
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FIGURE 1 | Three different device switching characteristics are illustrated. (A) Ideal device: conductance increments and decrements are equal in size and do not
depend on device conductance. (B) Symmetric device: conductance increments and decrements are equal in strength, but both have a dependence on device
conductance. (C) Non-symmetric device: conductance increments and decrements are not equal in strength and both have different dependencies on device
conductance. However, there exists a single point (conductance value) at which the strengths of the conductance increment and decrement are equal. This point is
called the symmetry point and for the illustrated example matches the reference device conductance and hence happens at w = 0.

experimentally illustrated for RRAM (Kim H. et al., 2019) and
ECRAM (Kim S. et al., 2019) devices, and this general behavior is
expected for most physically plausible RPU devices. For instance,
it is not realistic to expect alternative pulse sequence to give
divergent conductance behavior, and instead, two consecutive
pulses would push the conductance of the updated device
toward the symmetry point sij at which the up and down
conductance changes are equal in strength and satisfy1gpij

(
sij
)
=

1gnij
(
sij
)
. However, it is not always guaranteed that all devices

would have a symmetry point. For instance, PCM devices show
only one-sided incremental switching (SET) behavior whereas
a single RESET pulse completely switches the device back to
the high resistance state (Burr et al., 2017; Haensch et al.,
2019). Therefore, for one-sided devices, such as PCM, either the
symmetry point cannot be defined, or it can be defined at the
conductance extremum (RESET conductance) making it unfit for
the “Tiki-Taka” algorithm. However, for device arrays composed
of RRAM, ECRAM or similarly behaving two-sided switching
devices (Haensch et al., 2019), the alternating pulse sequence
would bring the conductance of each updated RPU device close
to its symmetry point sij for the whole array. After this initial
alternating pulse sequence is applied, as a second and last step
these conductance values sij are transferred to the corresponding

reference devices so that gij,ref ∼= sij and hence Gij
(
wij = 0

)
∼= 0

for all elements in the matrix. Since this is a onetime cost, the
conductance transfer can be performed iteratively in a closed loop
fashion to overcome hardware limitations.

“Tiki-Taka” Algorithm
In “Tiki-Taka,” each weight matrix of the neural network is
represented by a linear combination of two matrices

W = γA+ C (9)

where A is the first matrix, C is the second matrix and γ is a
scalar factor that controls the mixing of the two matrices. The
elements of A and C matrices, aij and cij, respectively, are also
encoded by a pair of devices and we use upper left superscripts
a and c consistently to refer to the properties of the elements
(and devices) in A and C. For instance, agij and cgij denote
the conductance values stored on devices used for updates, and
similarly agij,ref and cgij,ref denote the conductance values stored
on devices used as references corresponding to ith column and
jth row. For “Tiki-Taka” to be successful, important criteria,
aGij

(
aij = 0

)
∼= 0 for all elements of A, must be realized by the

hardware. Therefore, we assume that the symmetry point shifting
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FIGURE 2 | Illustration of the symmetry point shifting technique. Response of two separate devices to the alternating (up and down) pulse sequence starting from
different initial conductance values.

technique is applied to A before starting the training procedure
described below.

Training Procedure
To simplify the exposition of the key idea, we shall omit for now
the non-linear activation functions. In its most general form, the
weight matrix W is a linear combination of two matrices A and
C and γ is a scalar factor that controls the mixing of the two
matrices. During training, the weight updates are accumulated
on A that has symmetric behavior around the zero point, and
then moved to C. The operations performed during “Tiki-Taka”
is summarized in Table 2 along with the ones performed during
the SGD\BP algorithm for comparison.

The conventional SGD\BP algorithm is composed of three
cycles: (1) forward, (2) backward and (3) weight update; whereas
for “Tiki-Taka” there exist five cycles: (1) forward, (2) backward,
(3) update A, (4) forward A, and (5) update C. The first two

(forward and backward) cycles of the “Tiki-Taka” algorithm are
identical to the ones in SGD\BP, as “Tiki-Taka” also uses the
conventional BP algorithm to calculate the gradients. However,
instead of using a single weight matrix, the linear combination
of two matrices is used to perform the forward and backward
computations. The third (update A) cycle is identical to the
weight update cycle of the SGD\BP algorithm and the update
operation on A is performed using the outer product of the two
vectors that are used in the forward and the backward cycles.
These three cycles are repeated ns times before the fourth and fifth
cycles of the “Tiki-Taka” algorithm are performed. In the fourth
(forward A) cycle a vector-matrix multiplication is performed
on A using an input vector ut . We discuss different choices for
ut later but in its most simple form ut is a single column of
an identity matrix (a one-hot encoded vector) where for each
artificial time step a new column is used in a cyclic fashion and
the sub index t denotes that time index. This operation effectively
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TABLE 2 | Operations for SGD\BP algorithm and “Tiki-Taka” algorithm
on a single layer.

SGD\BP Algorithm

for each data in training dataset
{

(1) y = Wx
(2) z = W>δ
(3) W ← W + η (δ ⊗ x)
}

“Tiki-Taka” Algorithm
k = 0
t = 0
for each data in training dataset
{

k = k + 1
(1) y = (γA+ C)x
(2) z = (γA+ C)>δ
(3) A← A− η (δ ⊗ x)

if (k = = ns)
{
k = 0
t = t + 1

(4) v = Aut

(5) C← C+ λ (v⊗ ut)

}
}

For simplicity, only the operations performed on the weight matrices are shown.

reads a single column of A into the resulting vector v. In the
fifth (update C) cycle, C is updated using the outer product
of the same two vectors ut and v from the fourth cycle. This
update operation changes only the elements corresponding to
a single column of C proportional to the values stored in A,
and λ is the learning rate used for updating C. Note that since
different ut is used at different time steps eventually all elements
of C get updated.

In this algorithm the updates performed on A accumulate the
gradients from different data examples and therefore A is actively
used. In contrast, the updates on C are very sparse and only a
single column of C is updated while the remaining elements are
kept constant. Therefore, there is a big difference in the update
frequency of the elements in these two matrices and C learns on a
much slower time scale only using the information accumulated
on A. As described above, the gradient accumulation happening
on A has artifacts due to the hardware induced update rule,
however, thanks to the symmetry point shifting technique the
sign of the average gradient information is very likely to be
correct (up to a limit that is dictated by the hardware noise).
For instance, any kind of randomness in updates due to the
random sampling of the data examples pushes the elements
of A toward zero while the true average gradients push them
away from zero. Therefore, when the elements of A are read,
all elements are likely to have the correct sign information of
the accumulated gradients although the amplitudes are probably
underestimated. This information is then transferred to C which
effectively grows the total weight in the correct direction that
minimizes the objective function. At the end of the training
process, at the steady state (independent of the choice of γ value),
we expect the elements of C would get very close to a point
in space, cij ∼= wij,opt , where the original objective function is in
its local minima and the elements of A would be close to zero,
aij ∼= 0. This is indeed a stable point for the coupled system to the
first order. When cij ∼= wij,opt , by definition the average gradients
from different data samples are close to zero,

〈
1wij

〉
∼= 0, but

since
〈∣∣1wij

∣∣〉 is always finite due to stochastic data sampling the
hardware induced update rule for A drives all elements toward

zero, aij ∼= 0, which in return diminishes the updates on C. We
note that the hardware induced update rule for C also has artifacts
that repels cij away from wij,opt , however, these updates are sparse
and happens across much slower time scales, rendering such
artifacts negligible.

In contrast, for the SGD\BP algorithm even if the weights
somehow get close to an optimum point corresponding to a
local minimum, wij ∼= wij,opt , the randomness in the updates
pushes the weights away from the optimum point toward the
symmetry point (or toward zero if symmetry point shifting
technique is applied). Using the same arguments presented
above, at a local minimum not only the average gradients
from different data samples are close to zero, 〈1wij〉 ∼= 0, but
also it is guaranteed that 〈

∣∣1wij
∣∣〉 > 0 due to random data

sampling. Therefore, at an optimum point the hardware induced
updates are totally predominated by the non-symmetric device
switching characteristics, Gij

(
wij
)
, and therefore optimum points

are not stable points for the SGD\BP algorithm running on
RPU hardware. The only stable points that SGD\BP can find
are the ones that has a tension between original optimization
objective and the internal cost term due to device asymmetry,
such that 〈1wij〉Fij

(
wij
)
∼= −〈

∣∣1wij
∣∣〉Gij

(
wij
)
, and therefore

give non-satisfactory training results. The artifacts of the
hardware induced update rule for the SGD\BP algorithm are
mitigated using the “Tiki-Taka” algorithm where the optimum
points of the original objective function are turned into
stable points for the coupled dynamical system. Therefore,
this new training approach is expected to give superior
results compared to the SGD\BP algorithm when running
on RPU hardware.

RESULTS

To test the validity of the proposed “Tiki-Taka” algorithm we
performed DNN training simulations on three different network
architectures: (1) FCN-MNIST – a fully connected network
trained on MNIST dataset, (2) CNN-MNIST – LeNet5 like
convolutional neural network trained on MNIST dataset, and
(3) LSTM-WP – a doubly stacked LSTM network trained on
Leo Tolstoy’s War and Peace (WP) novel. For all these three
networks, the training performance of the SGD\BP algorithm
with realistic RPU device specifications was studied carefully
in previous publications (Gokmen and Vlasov, 2016; Gokmen
et al., 2017, 2018). It was shown that a very tight symmetry
requirement is needed to achieve training accuracies comparable
to the ones achieved with high precision floating point numbers.
Here, we use the same network settings from those publications,
such as the activations, the layer sizes and the layer mappings
onto the arrays; and follow a similar methodology for the
RPU models, such that they capture the device-to-device and
cycle-to-cycle variations of the RPU devices as well as the non-
idealities of the peripherical circuitry driving the arrays. However,
we emphasize that different from those studies, here we use
a significantly non-symmetric device switching behavior as
described below to evaluate the performance of the “Tiki-
Taka” algorithm.
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RPU Baseline Model
The RPU-baseline model uses the stochastic update scheme
in which the numbers that are encoded from the periphery
(xi and δj) are implemented as stochastic bit streams. Each
RPU device then performs a stochastic multiplication via simple
coincidence detection. In our simulation tool, each coincidence
event triggers an increment or decrement in the corresponding
device conductance using a device switching characteristics.
As a baseline model we use a non-symmetric device behavior,
similar to one shown in Figure 1C, and this behavior introduces
a weight update (conductance change) that depends on the
current weight value (current device conductance) and the
direction of the update. The dependence of the incremental
weight updates for both branches are assumed to be linear:
for the positive branch 1wp

min (w) = 1wmin0(1− slopep × w)
and for the negative branch 1wn

min (w) = 1wmin0(1+ slopen ×
w), where slopep and slopen are the slopes that control the
dependence of the weight changes on the current weight values,
and 1wmin0 is the weight change due to a single coincidence
event at the symmetry point corresponding to the zero weight
value. In the RPU-baseline model in order to account for the
device-to-device variability for each RPU device there exists
three unique parameters that are sampled independently from
Gaussian distributions at the beginning of the training and then
used throughout the training. The average values of 1wmin0,
slopep and slopen are respectively 1× 10−3, 1.66 and 1.66 with
standard deviations of 0.3× 10−3, 0.42 and 0.42. Therefore,
in the baseline model it is likely to find a device (in one of
the cross-points in one of the layers) similar to one illustrated
in Figure 1C with 1wmin0 = 0.65× 10−3, slopep = 1.66 and
slopen = 0.58 as all values are within 3σ values of the model.
However, we emphasize that it is very unlikely to have two devices
to have identical behaviors due to the device-to-device variability
introduced by the sampling process. Moreover, to capture the
cycle-to-cycle variations for each coincidence event an additional
30% Gaussian noise is introduced to 1wp

min or 1wn
min relative

to their expected values for each device before incrementing or
decrementing the corresponding weight value. In this model, the
weight saturations, corresponding to conductance saturations,
are automatically taken into account due to the weight dependent
updates, and the weight values cannot grow bigger than 1/slopep
or smaller than −1/slopen. For statistically the most likely device
in the model this corresponds to weight bounds between −0.6
and 0.6 but note that for each device slopep and slopen are sampled
independently and therefore they don’t necessarily match and
deviate from the nominal values. In the context of “Tiki-Taka,”
since we use a new set of random variables for each device
in the model there is no correlation between the elements of
A and C, and in this context the weight changes refer to the
changes that occur in the elements of A and C. Note that the
baseline model already implicitly assumes that the symmetry
point shifting technique is applied before training as the expected
weight changes for the positive and negative branches are
equal in strength at the zero weight value, 1wn

min (w = 0) =
1wp

min (w = 0) for each matrix element. Therefore, this model
assumes that the symmetry point shifting technique is applied
perfectly without any noise both to A and C, such that all

reference device conductances are set to the symmetry point of
the corresponding device used for updates. Later we relax this
assumption to test the tolerance of “Tiki-Taka” to the symmetry
point variations.

We emphasize that the chosen mean values for slopep =
slopen = 1.66 that control the device asymmetry are the largest
possible values that can be used without introducing any side
effects. For instance, it is shown in Ref. (Gokmen and Vlasov,
2016) that the acceptable criteria for the weight bounds is
between −0.6 and 0.6 and this range is consistently used in
Refs. (Gokmen et al., 2017, 2018). Therefore, increasing the
slope parameters beyond 1.66 would limit the weights into
a range that is tighter than the acceptable criteria. Although
“Tiki-Taka” is expected to deal with the device asymmetry, it
cannot improve over these weight bounds resulting in side
effects into the training. The chosen mean value for slopep =
slopen = 1.66 is therefore the most aggressive asymmetric
device switching behavior that can used without violating the
other RPU specs derived in Ref. (Gokmen and Vlasov, 2016).
However to show the robustness of the “Tiki-Taka” algorithm
to various device switching behaviors, we also tested a case
where the mean slopes for positive and negative branches are
not matched over the population of devices and we call this
model the Skewed-RPU model. Furthermore, in another model,
the Quadratic-Skewed-RPU model, we added a quadratic term
to the dependence of the weight increment (and decrement) on
the current weight value. The switching behavior all these models
including the device variabilities are illustrated in the top panel
of Figure 3.

In addition to the non-idealities mentioned above, for any
real hardware implementations of RPU arrays the results of
the vector matrix multiplications will be noisy as well and this
noise is considered by introducing an additive Gaussian noise,
with zero mean and standard deviation of σ = 0.06. Moreover,
the results of the vector-matrix multiplications are bounded
to a value of |α| = 12 to account for signal saturation. The
input signals are assumed to be between [−1, 1] with a 7-bit
input resolution, whereas the outputs are quantized assuming
a 9-bit ADC. Although the input signals going into the array
and the output signals coming from the arrays are bounded,
we use the noise management and the bound management
techniques described in Ref. (Gokmen et al., 2017). We note
that apart from the non-symmetric update behavior used for
RPU devices, all other hardware constraints, such as variations,
noise, limited resolutions and signal bounds, are identical to
the ones used in publications (Gokmen and Vlasov, 2016;
Gokmen et al., 2017, 2018).

Fully Connected Network on MNIST
(FCN-MNIST)
The same network from Ref. (Gokmen and Vlasov, 2016),
composed of fully connected layers with 784, 256, 128 and 10
neurons, is trained with the standard MNIST dataset composed
of 60,000 training images. For hidden and output layers sigmoid
and softmax activations are used, respectively. For the floating
point (FP) model, training is performed with the SGD algorithm
using a mini-batch size of unity and a fixed learning rate of
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FIGURE 3 | Bottom panel shows the test errors of FCN on MNIST dataset for three different RPU models. In all figures at the bottom panel open white circles
correspond to a model where the training is performed using high precision floating point (FP) numbers and the SGD algorithm. Black and blue lines correspond to
the model where training is performed using the SGD algorithm and the “Tiki-Taka” algorithm, respectively. The panels (A–C) are for the three different RPU models
where the device behavior used in each model are shown in the top panel. In all models each device behavior is sampled from a distribution of devices in order to
account for the device-to-device variability. Statistically the most likely device is illustrated with the dotted line. Variations in the slopes are shown with continues lines
for the 1σ and 3σ envelope and the 1σ variation in 1wmin0 is shown by the error bar signal at w = 0. (A) RPU-baseline model assumes a linear relation between
1wmin and w. The up and down weight changes have an average slope of –1.66 and 1.66, respectively and both have 1σ variation of 0.42. 1wmin0 is on average
1× 10−3 with 1σ variation of 0.3× 10−3. (B) Different from the RPU-baseline model Skewed-RPU model has different average slopes for the up and down weight
changes, –1.66 and 0.58, respectively and with 1σ variations of 0.42 and 0.15. 1wmin0 is on average 0.65× 10−3 with 1σ variation of 0.2× 10−3. (C) Different from
the Skewed-RPU model, the Quadratic-Skewed model further introduces additional negative quadratic term to the dependence of 1wmin on w for both up and
down changes.

η = 0.01. As shown by open symbols in Figure 3, the FP-model
reaches a classification error of 2.0% on the test data after 50
epochs of training. The same SGD based training using the
RPU-baseline model however results in about 15% test error
that is significantly higher than the error achieved by the FP-
model. This is indeed expected, as the device characteristics in the
RPU-baseline model is highly non-symmetric and well above the
acceptable device symmetry criteria described in Ref. (Gokmen
and Vlasov, 2016). When the training is performed using “Tiki-
Taka” for the same the RPU-baseline model, the test error drops
back to a value close to 2%. This level of error is indistinguishable
from the one achieved by the FP-model, and shows that in
contrast to SGD, “Tiki-Taka” gives good training results even

with highly non-symmetric devices. We emphasize that the “Tiki-
Taka” algorithm is no more sensitive to other hardware issues
(such as stochastic updates, limited number of steps, noise, ADC,
and DAC) than the SGD algorithm as the RPU-model captures
all those hardware constraints. Moreover, we also tested the
validity of the “Tiki-Taka” algorithm for other device switching
behaviors as illustrated in Figures 3B,C. Independent of the
model used for training the “Tiki-Taka” algorithm gives results
that are indistinguishable from the one achieved by the FP-model
whereas the conventional SGD results in test errors much higher
than the FP-model.

Note that different from a single learning rate used for
SGD, there exist additional hyperparameters for the “Tiki-Taka”

Frontiers in Neuroscience | www.frontiersin.org 9 February 2020 | Volume 14 | Article 103

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00103 February 25, 2020 Time: 9:5 # 10

Gokmen and Haensch Training Algorithm for Resistive Device Arrays

algorithm, as illustrated in Table 2, namely the learning rates η
for updating A and λ for updating C, the parameter γ controlling
the mixing between A and C, the parameter ns controlling the
period of updates performed on C, and the choice of ut used
for the forward A cycle. In order to present the best results
possible by “Tiki-Taka” we performed training simulations at
different hyperparameter settings. For the results presented in
Figure 3 the learning rates η and λ are fixed at 0.01 and 0.02,
respectively, the parameters γ and ns are set to unity, and for ut a
fixed set of one-hot encoded vectors are used in a cyclic fashion.
Additional training results studying the sensitivity of “Tiki-Taka”
to some of these hyperparameters are shown in Figure 4 for the
FCN-MNIST problem using the RPU-baseline model.

In Figure 4A, the training results for cases γ = 1 and γ = 0
are shown while all other hyperparameters are unchanged. When
γ = 1, the gradient updates happening on A are directly visible
in the next cycle while calculating the gradients corresponding
to another image. In contrast, for γ = 0, the learning can
happen only indirectly thorough the updates performed on C
that are sparse and less frequent. As described above we don’t
expect the steady state solutions to be any different between
cases γ = 1 and γ = 0. Consistently, these two simulations
show very similar training curves that improve significantly over
the SGD training and reach test accuracies comparable to one
achieved by the FP-model. However, the training process is
governed by the dynamics of the coupled system and not by the
equilibrium properties. Therefore, one may argue that the case
γ = 0 learns slightly slower than case γ = 1 due to infrequent
updates to explain the slight difference observed between the two

cases for FCN-MNIST problem. Furthermore, these simulations
also consider other possible hardware issues due to stochastic
pulsing, variations as well as noise. Therefore, one may also
expect case γ = 0 to perform better gradient estimations on A
before transferring that information on to C and hence to show
better training performance overall than case γ = 1. Although,
there exist these interesting tradeoffs while choosing the mixing
term, large improvements over the SGD training are consistently
observed as illustrated in Figure 4A independent of γ .

In Figure 4B, we present the training results at various
learning rates λ used to update C. It is clear that choosing a
too large or a too small λ values are both undesirable. In the
case of a too small λ, where λ → 0, “Tiki-Taka” implements the
original SGD algorithm (assuming γ = 1). In this setting only
A learns using the same SGD algorithm on a weight space that is
shifted by values stored in C, but, A cannot find good solutions
because of the artifacts introduced by the hardware induced
update rule. On the other extreme choosing a large λ results in
an unstable behavior for the coupled system. In our simulations,
we try a few λ values that are close to the learning rate η. We
believe choosing similar learning rates keeps the updates on both
systems comparable in strength and therefore the couple system
can minimize the both objective functions simultaneously in a
self-consistent fashion. The simulation results at three different λ
values, 0.005, 0.02 and 0.04, are show in Figure 4B, all of which
are achieving comparable test errors at the end of 50 epochs.

Other important hyperparameters of the “Tiki-Taka”
algorithm are the ut vectors used while doing a forward pass on
A and ns, the period used to update C. Note that there exist three

FIGURE 4 | Test error of FCN on MNIST dataset trained using Tiki-Taka algorithm and the RPU-baseline model at different hyperparameter settings. (A) The
comparison of the training results at two different mixing terms, γ = 1 and γ = 0, corresponding to blue and red curves, respectively. (B) The comparison of the
training results at three different learning rates on C matrix, λ = 0.005,0.02 and 0.04, corresponding to magenta, blue and green curves, respectively. (C) The
comparison of training results at three different choices of ut vectors. Blue curves use one-hot encoded vectors in a cyclic fashion. Cyan and gray curves
respectively use the vectors of Hadamard-2 and Hadamard-4 matrices in a cyclic fashion. For all figures, open white circles correspond to a model where the training
is performed using high precision floating point numbers using the SGD algorithm, and black curves corresponds to the RPU-baseline model where the training is
performed using the SGD algorithm.
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weight matrices for FCN-MNIST, each having the dimensions of
256 × 785, 128 × 257, and 10 × 129 including the bias terms,
where each weight matrix is represented by a pair of matrices
A and C in the “Tiki-Taka” algorithm. Therefore, even when
ns = 1 and a fixed set of one-hot encoded vectors is used for ut ,
for the first layer it takes 785 images for all elements of C to get
updated only once. Similarly, 257 and 129 images are required
for the following layers. Larger ns values can be used to reduce
the number of updates happening on C compared to A and for
each layer ns can be chosen independently. Increasing the update
period on C makes the artifacts of the hardware induced update
even less important for C. However, note that the randomness
of the updates on A tends to push the values of A toward zero
due to the hardware induced update rule and hence slowly
erases true gradient information accumulated on A from earlier
time steps (images). Therefore, increasing ns beyond a certain
value would not make the gradient accumulation more accurate
and therefore there exists an upper bound on how large ns can
be increased meaningfully. On the contrary, one may want to
perform updates more often than the case supported by ns = 1
in order to use the hardware induced updates for regularization
purposes. As illustrated before, the randomness in the updates
attracts the corresponding matrices toward zero which has effects
similar to the `2 regularization for some specific device switching
characteristics, but the strength wasn’t controllable for the SGD
algorithm. In contrast, in “Tiki-Taka” we can control the strength
of this term by performing updates on C using various ut vectors.
For instance, instead of using a set of one-hot encoded vectors
in a cyclic fashion, the vectors of the normalized Hadamard-2
matrix padded with zeros, such as

[ 1
2

1
2 0 0 · · ·

][ 1
2 −

1
2 0 0 · · ·

]
,[

0 0 1
2

1
2 · · ·

]
and so on, can be used in a cyclic fashion. This

results in twice more updates on each element of C, yet a
similar information is transferred from A to C. Because of the
cancelations happening between two back-to-back updates on
C, it would experience a stronger regularization toward zero
thanks to the hardware induced update rule. Examples of the
training performed using the vectors of the Hadamard-2 and
Hadamard-4 matrices are shown in Figure 4C. These examples
show that similar information can be transferred from A to C
independent of the choice of ut and yet the choice of ut can
be used as a knob to control the regularization term. We note
that FCN-MNIST is a simple problem and does not overfit and
hence does not require regularization, however, it is important
to understand the consequences of different hyperparameters,
so they can be tuned properly when they are really needed for
large scale networks.

Convolutional Neural Network on MNIST
(CNN-MNIST)
The CNN network used here is the same network from Ref.
(Gokmen et al., 2017) and is composed of two convolutional
and two fully connected layers. The first two convolutional layers
use 5× 5 kernels each having 16 and 32 kernels, respectively.
Each convolutional layer is followed by a subsampling layer
that implements the max pooling function over non-overlapping
pooling windows of size 2× 2. The output of the second pooling

layer, consisting of 512 neuron activations, feeds into a fully
connected layer consisting of 128 tanh neurons, which is then
connected into a 10-way softmax output layer. Including the
biases there exist four weight matrices with dimensions of
16× 26 and 32× 401 for the first two convolutional layers
and, 128× 513 and 10× 129 for the following two fully
connected layers.

We note that different from the fully-connected layers,
convolutional layers have weight sharing that changes the
vector operations performed on the weight matrices to matrix
operations that are implemented as a series of vector operations
on the arrays as described in Ref. (Gokmen et al., 2017). For
“Tiki-Taka” this means that the first 3 cycles corresponding to
the convolutional layers are now matrix operations and can
be written as y = (γA+ C)X, z = (γA+ C)TD, and A← A−
η (D⊗ X), where X and D are the inputs and the errors feed
into the weight matrices in the forward and backward directions,
while the 4th and 5th cycles remains as before. The weight
sharing factors for the two convolutional layers are 576 and 64,
respectively. Therefore, when ns = 1 and a one-hot encoded
vector is used as ut , the A matrix of the first convolutional layer
is updated 576 times before a single column of C is updated.
Similarly, for the second convolutional layer A is updated 64
times, before C gets a single column update. All other operations
remains identical for fully connected layers.

CNN-MNIST simulation results are shown in Figure 5. For
the FP-model, trained with η = 0.01 and mini-batch of unity,
the network achieves a test error of 0.8%. However, when
RPU-baseline model is trained with the SGD algorithm, the
test error is very high at around 8%. This large discrepancy
from the FP-model significantly drops when the RPU-baseline
model is trained with the “Tiki-Taka” algorithm, resulting in
1.0% test error. To understand the cause of this remaining
0.2% offset from the FP-model, we repeat the SGD training
assuming a model with perfect symmetry (slopep = slopen = 0
for all devices) but with the remaining hardware constraints.
This perfectly symmetric case trained with the SGD algorithm
gives a test accuracy not any better than the one achieved by
the non-symmetric case trained with “Tiki-Taka,” suggesting that
the remaining 0.2% discrepancy from the FP-model is due to
other hardware constraints and not due to the device asymmetry.
These results further highlight the power of this new training
technique that compensates for non-symmetric device behavior
at the algorithm level.

Sensitivity to Symmetry Point Variations
The simulations results presented so far assume the symmetry
point shifting techniques is applied perfectly and hence the
update strength for positive and negative branches are equal in
strength at w = 0. It is clear that the symmetry point shifting
technique cannot be perfect due to hardware limitations: To test
the tolerance of the “Tiki-Taka” algorithm to the symmetry point
variations, we performed training simulations by relaxing this
assumption such that the condition 1wn

min (ws) = 1wp
min (ws)

happens at a weight value ws that is different for each element
in A and C. This is simply achieved by setting the reference
device conductance different from the symmetry point of the
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FIGURE 5 | Test error of CNN on MNIST dataset. Open white circles
correspond to a model where the training is performed using high precision
floating point (FP) numbers using the SGD algorithm. Black and blue lines
correspond to the RPU-baseline model where training is performed using the
SGD algorithm and the “Tiki-Taka” algorithm, respectively. The orange
points\line correspond to SGD based training of a RPU model where all
devices are perfectly symmetric while all other variations are identical to
RPU-baseline model.

corresponding device used for the updates in the RPU baseline
model. The simulation results for both FCN-MNIST and CNN-
MNIST are presented in Figure 6 using the modified RPU-
baseline model, where ws value for each device is sampled from
a Gaussian distribution with zero mean but varying standard
deviation, σws. When the standard deviation of the distribution is
σws ≤ 0.01, the training results are indistinguishable from the one
achieved with no variations, and therefore, these results provide
σws = 0.01 as the acceptable threshold value for the symmetry
point variations.

It is important that this acceptable threshold value of σws =

0.01 is achieved by the symmetry point shifting technique. The
symmetry point shifting technique may introduce two sources
of noise while matching the reference device conductance to the
symmetry point of the active (updated) device: (1) the noise in
the converge to the symmetry point of the updated device and
(2) the noise in the conductance transfer to the reference device.
Given than the weight change due to a single coincidence event
at the symmetry point is about 1wmin0 = 0.001, which is 10
times smaller than the threshold σws = 0.01, the alternating pulse
sequence would result in convergence to the symmetry point
that is much smaller than this acceptable threshold. Furthermore,
using the ratio of this acceptable threshold value σws = 0.01 to a

nominal weight range of 1.2, this specification can be mapped to
physical quantities. For instance, the matching of the reference
device conductance to the symmetry point of the updated device
must be accurate within a few percent compared to the whole
conductance range. Therefore, after this initial converge, the
stored conductance on the update device needs to be copied to the
reference device within a few percent accuracy. Given that this is
a onetime cost, this conductance transfer can be performed using
a closed loop programming while achieving this required few
perfect matching. Therefore, we emphasize that the acceptable
threshold for symmetry point variations can be achieved with the
symmetry point shifting technique and does not introduce any
additional constraints to the required device specifications.

LSTM Network on War and Peace
Dataset (LSTM-WP)
As a third example, the validity of the “Tiki-Taka” algorithm is
tested on a more challenging LSTM network. This network is
composed of 2 stacked LSTM blocks each with a hidden state
size of 64 and it is identical to one studied in Ref. (Gokmen
et al., 2018). As a dataset Leo Tolstoy’s War and Peace (WP)
novel is used and it is split into training and test sets as 2,933,246
and 325,000 characters with a total vocabulary of 87 characters.
Following the same mapping described in Ref. (Gokmen et al.,
2018) results in 3 different weight matrices with sizes 256× (64+
87+ 1) and 256× (64+ 64+ 1) for the two LSTM blocks and
a third matrix of size 87× (64+ 1) for the last fully connect
layer before the softmax activation. Note that each matrix is now
mapped to 2 separate matrices in “Tiki-Taka.” The simulation
results corresponding to the SGD algorithm and “Tiki-Taka” for
various RPU models are shown in Figure 7. For all models the
training is performed using fixed learning rate η = 0.005, mini-
batch of unity and time unrolling steps of 100. Additionally,
the hyperparameters of the “Tiki-Taka” algorithm are λ = 0.005,
γ = 1, ns = 5, and for ut one-hot encoded vectors are used in
a cyclic fashion.

The simulation results presented in Figure 7A for LSTM-
WP are qualitatively in good agreement with the ones presented
for FCN-MNIST and CNN-MNIST above. For instance, the
RPU-baseline model trained with the SGD algorithm results
in a test error (cross-entropy loss) significantly larger than
the one achieved by the FP-model. However, the same RPU-
baseline model performs much better when “Tiki-Taka” is used
for training, further validating this new approach for training
DNNs. The perfectly symmetric case trained with the SGD
algorithm is also shown as a comparison, and interestingly, it
shows quantitative differences compared to ones presented for
FCN-MNIST and CNN-MNIST: First, the perfectly symmetric
case trained with the SGD algorithm cannot reach the level
of accuracy achieved by the FP-model. Second, the RPU-
baseline model trained with “Tiki-Taka” cannot reach the level
of accuracy achieved by the perfectly symmetric case trained
with the SGD algorithm. The former is understandable as it
is shown in Ref. (Gokmen et al., 2018) that LSTM networks
are more challenging to train on crossbar arrays; and even
for perfectly symmetric devices, FP model accuracies cannot
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FIGURE 6 | Sensitivity of the “Tiki-Taka” algorithm to the symmetry point variations for FCN-MNIST and CNN-MNIST. The same hyperparameter settings from
Figures 3 and 5 are used for FCN-MNIST and CNN-MNIST, respectively. Different colors correspond to RPU-baseline models at different symmetry point variations.

be reached due to the limited number of states on RPU
devices. Given that “Tiki-Taka” only addresses issues arising
due to device asymmetry, it is not expected to reach the same
level of accuracy of the FP model. It is only reasonable to
expect it to perform at the same level of accuracy achieved by
the perfectly symmetric case trained with the SGD algorithm,
as all other hardware constraints are the same. Therefore,
it is worth investigating the quantitative difference observed
between the RPU-baseline model trained with the “Tiki-
Taka” algorithm and the perfectly symmetric case trained with
the SGD algorithm.

When the same RPU models with significant device
asymmetry are used, it is clear that the training results
using “Tiki-Taka” outperforms the results achieved by the
SGD algorithm. This relaxes the acceptable device symmetry
requirement by a large margin at equivalent accuracy, however,
it is also obvious that reducing device asymmetry improves the
training accuracy of the “Tiki-Taka” algorithm if the accuracy
is already far from ideal to start with. Therefore, one can
easily blame the very aggressive device asymmetry used in
the RPU-baseline model to explain the quantitative difference
observed between the “Tiki-Taka” algorithm and the perfectly
symmetric case trained with the SGD algorithm. Trivially this
deficit can be minimized by using a less asymmetric device
switching characteristics (data not shown). However, there
exist other hardware issues that may hinder the convergence,
and more interestingly there may exist different tradeoffs
between device switching characteristics and other hardware

limitations for “Tiki-Taka” that are otherwise not applicable to
the SGD algorithm.

To understand whether other existing hardware limitations
play a role in the convergence of the “Tiki-Taka” algorithm
we performed additional simulations using the same device
model but assuming different hardware settings at the peripheral
circuits. For instance, the simulation results presented in
Figure 7B assume that the noise level for the vector-matrix
multiplications is reduced by 10× from its original value in
the RPU-baseline model. This reduction does not affect the
performance of SGD based training both for the RPU-baseline
model and the perfectly symmetric case. However, “Tiki-Taka”
based training improves and the difference observed in Figure 7A
between the RPU-baseline model trained with “Tiki-Taka” and
the perfectly symmetric case trained with the SGD algorithm
disappears in Figure 7B. More interestingly, in Figure 7C when
we repeat the same experiment using an RPU-baseline model
where only the noise spec of the forward A cycle in the “Tiki-
Taka” algorithm is reduced by 10×, the training result remains
unchanged and are very close to the perfectly symmetric case
trained with the SGD algorithm. These simulation results show
that the noise introduced during the transfer of the information
accumulated on A to C may play a role in the convergence of the
“Tiki-Taka” algorithm.

We emphasize that the hardware induced update rule for
C also has artifacts that push the elements of C away from
the optimum points at equilibrium. Although these artifacts
are less important compared to the SGD algorithm, increased
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FIGURE 7 | Test cross-entropy error for LSTM network trained on WP dataset. Open white circles correspond to a model where the training is performed using high
precision floating point (FP) numbers using the SGD algorithm. (A) Black and blue lines correspond to the RPU-baseline model where training is performed using the
SGD algorithm and the “Tiki-Taka” algorithm, respectively. The orange points\line correspond to SGD based training of an RPU model where all devices have a
perfectly symmetric switching characteristics while all other variations are identical to RPU-baseline model. (B) Shows the same training results from (A) at 10×
reduced noise levels for all vector-matrix multiplications. (C) Pink curve corresponds to the RPU-baseline model trained using “Tiki-Taka” but the noise spec of the
forward A cycle in the “Tiki-Taka” algorithm is reduced by 10×. The maroon curve also uses the RPU-baseline model trained using “Tiki-Taka” where the update C
cycle of the “Tiki-Taka” algorithm is modified to C← C+ λ (f(v)⊗ ut), where f(v) is a pointwise thresholding function that returns v only if |v| > 0.06 and otherwise
zero. Black, blue lines and orange points\line are plotted again from (A) for comparison.

noise in updating C due to the randomness in reading A clearly
impacted the training accuracy of the “Tiki-Taka” algorithm as
illustrated above. Therefore, in order to further filter the updates
happening on C, we changed the update C cycle of the “Tiki-
Taka” algorithm as follows C← C + λ (f (v)⊗ ut), where f (v)
is a pointwise thresholding function that returns v only if |v| >
Tv and otherwise zero. The simulation results of this modified
“Tiki-Taka” algorithm for the RPU-baseline model is shown in
Figure 7C, where Tv is set to the 1σ value of the read noise from
the baseline model, Tv = 0.06. Although the improvement is not
large, this filtering approach performs slightly better than the
original unfiltered version and it suggests that there may exists
other strategies that may outperform this simple thresholding-
based filtering.

Speed, Area and Power Costs
Compared to the SGD algorithm, the “Tiki-Taka” algorithm
introduces additional computations and requires additional
hardware resources (crossbar arrays) to perform those
computations, and therefore, their area, power and speed
costs need to be sized properly.

The “Tiki-Taka” algorithm requires two sets of weight matrices
for each layer hence it may increase the area requirement by a
factor of 2. In this worst-case scenario A and C matrices can
simply be allocated on two separate RPU tiles resulting in twice
more area. However, if the RPU devices are integrated at the
back-end-of-line (BEOL) in-between metal levels and stacked

up as multiple layers, then this area cost can be eliminated.
Given that the operations performed on A and C matrices are
identical to the ones performed during the SGD algorithm,
the same peripheral circuity can be used to drive the lines
corresponding to A and C matrices selectively to perform the
forward, backward and update cycles in a time multiplex fashion.
In this setting, the computations for the forward and backward
cycles corresponding to γ = 1 case can also be realized by driving
the lines of A and C matrices simultaneously while integrating
the results from both matrices into the same capacitor. Also
note that the update cycle on both matrices uses the common
stochastic multiplication scheme. Therefore, 4 layers of stacked
crossbar arrays can be operated as A and C matrices needed
for “Tiki-Taka” without changing the peripheral circuitry design.
Given that the same hardware specifications derived in Ref.
(Gokmen and Vlasov, 2016) are sufficient for the “Tiki-Taka”
algorithm, speed and power of each cycle remains identical to
the ones performed in the SGD algorithm. However, “Tiki-Taka”
introduced additional cycles to the training and its speed can
be easily accounted by simply looking at the ns parameters used
during training.

For the FCN-MNIST example ns = 1. This setting means
that the “Tiki-Taka” algorithm repeatedly performs (1) forward,
(2) backward, (3) update, (4) forward and (5) update cycles, 2
additional cycles compared to 3 cycles performed during the
SGD algorithm. Since there are not any significant differences
between the execution times of the forward, backward and
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update cycles, the ratio of the wall clock times of “Tiki-Taka”
to the SGD algorithm would be 5/3. Increasing ns further
decreases this difference as illustrated for the LSTM-WP example
where ns = 5. In this setting, for every 15 (3 by 5) cycles
in the SGD algorithm, the “Tiki-Taka” algorithm introduces 2
additional cycles and hence it runs only ∼15% slower than the
SGD algorithm. In contrast to the fully connected and LSTM
networks where the weight sharing is uniform for all layers, the
wall clock time of CNN networks are mainly dictated by the
first convolutional layer with the largest weight sharing factor
(Gokmen et al., 2017). For the CNN-MNIST example this weight
sharing factor is 576. Therefore, even ns = 1 is used, for the
first convolutional layer the “Tiki-Taka” algorithm introduces
2 additional cycles only after 3 × 576 cycles. This is a tiny
difference and makes the run times of these two algorithms
indistinguishable for CNN networks.

We note that there are additional computations that need to
be performed outside the crossbar arrays, such as generation of ut
and calculation of f (v). These computations can easily be handled
by the digital units that are already responsible for calculating the
activations and derivates used in the SGD algorithm. All these
additional digital operations performed during the “Tiki-Taka”
algorithm are local to the layer and are much simpler than the
calculation of activations and derivates, therefore, their relative
costs are no more than the relative costs already accounted above
for the crossbar arrays.

DISCUSSION AND SUMMARY

We emphasize that throughout the manuscript we assumed that
one crossbar array is used to perform the updates and another
separate array is used as fixed reference conductances. The
“Tiki-Taka” algorithm therefore assumes that the updated RPU
devices change their conductance bidirectionally and therefore
it is not directly applicable to one-sided switching devices
such as PCM. The stability and convergence of the “Tiki-Taka”
algorithm rely on the fact that the random sequence of updates
on the A matrix eventually drive all elements of A toward
zero. This is indeed achieved by the symmetry point shifting
technique, and if this technique is generalized for one-sided
switching devices then “Tiki-Taka” can also be used for devices
like PCM. However, note that “Tiki-Taka” cannot eliminate the
conductance saturation problem. PCM elements change their
conductance gradually at one polarity (SET) and very abruptly
at the opposite polarity (RESET). Therefore, only SET pulses
are send either in the first or the second PCM array depending
on the polarity of the weight updates. This eventually results
in saturation in the conductance values and therefore require
a serial reset operation. None of these complications arise for
bidirectional devices and the “Tiki-Taka” algorithm can run with
a very limited speed penalty using only parallel operations on the
crossbar arrays.

We derived the hardware induced update rule in presence
of non-symmetric devices and then showed its relevance to
the SGD algorithm. For instance, for some specific device
switching characteristics the hardware induced update rule looks

similar to adding `2 regularization term in the optimization
objective. However, the strength of this additional term is large
and not controllable, and hence resulting in poor training
results. Note for the γ = 0 case of “Tiki-Taka” the weights of
the neural network are stored in C which are updated using
the gradients accumulated on A. In this setting the hardware
induced rules on A and C matrices show resemblance to the
momentum-based SGD algorithm providing further intuition
into the “Tiki-Taka” algorithm. However, careful investigation
shows that the “Tiki-Taka” algorithm is not just an instance of the
momentum-based SGD and may require further investigation.
We presented an empirical approach for different network
topologies that show that “Tiki-Taka” surpasses the conventional
SGD in accuracy for relaxed symmetry requirements for analog
cross-point devices. This is an important step forward to take
advantage of analog cross points for deep learning training
with currently available switching materials. As a rigorous
mathematical theory explaining the successes of SGD in form
of backpropagation is still elusive, an interesting avenue to
proceed is to theoretically analyze the stability and convergence
properties of the “Tiki-Taka” algorithm for some realistic
device switching characteristics by applying, for example, the
same techniques used for the stability analysis of discrete or
continues dynamical coupled system. To extend this work
to larger deep learning networks is a general task for the
feasibility of analog cross-point arrays, not only restricted to the
work presented here.

In summary, we proposed a new DNN training algorithm,
so called “Tiki-Taka” algorithm, that uses a coupled system
in order to simultaneously minimize the objective function
of the original network of interest and the hidden cost term
that is unintentionally introduced due to non-symmetric device
switching characteristics. Training simulations performed on
various network architectures show that even a very aggressive
device asymmetry can be compensated by “Tiki-Taka” giving
indistinguishable training results compared to ones achieved with
the perfectly symmetric (ideal) devices. We emphasize that the
asymmetry behavior used in our simulations and shown to be
sufficient for “Tiki-Taka” is already experimentally observed by
many device technologies but declared unsatisfactory due to
asymmetry. Assuming other device specifications are within the
tolerable margins, all those non-symmetric device technologies
can now be used for deep learning applications, as the “Tiki-
Taka” algorithm significantly relaxes the challenging symmetric
switching criteria needed from the resistive cross-point devices.
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