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Multiple system atrophy (MSA) is a fatal neurodegenerative disease, and the
pathogenesis is still quite challenging. Emerging evidence has shown that the brain–
gut–microbiota axis served a pivotal role in neurological diseases; however, researches
utilizing metagenomic sequencing to analyze the alteration in gut microbiota of
MSA patients were quite rare. Here, we carried out metagenomic sequencing in
feces of 15 MSA patients and 15 healthy controls, to characterize the alterations
in gut microbial composition and function of MSA patients in mainland China. The
results showed that gut microbial community of MSA patients was significantly
different from healthy controls, characterized by increased genus Akkermansia
and species Roseburia hominis, Akkermansia muciniphila, Alistipes onderdonkii,
Streptococcus parasanguinis, and Staphylococcus xylosus, while decreased genera
Megamonas, Bifidobacterium, Blautia, and Aggregatibacter and species Bacteroides
coprocola, Megamonas funiformis, Bifidobacterium pseudocatenulatum, Clostridium
nexile, Bacteroides plebeius, and Granulicatella adiacens. Further, functional analysis
based on the KEGG database revealed aberrant functional pathways in fecal
microbiome of MSA patients. In conclusion, our findings provided evidence for dysbiosis
in gut microbiota of Chinese MSA cohorts and helped develop new testable hypotheses
on pathophysiology of MSA.
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INTRODUCTION

Multiple system atrophy (MSA) is a sporadic, adult-onset, progressive neurodegenerative disease,
characterized by diverse combinations of parkinsonian features, cerebellar ataxia, autonomic
failure, and pyramidal features. Clinically, MSA is divided into two subtypes: MSA with
predominant parkinsonism (MSA-P) and MSA with predominant cerebellar ataxia (MSA-C)
(Fanciulli and Wenning, 2015). The typical neuropathology of MSA is oligodendroglial cytoplasmic
inclusions (GCIs), mainly composed of α-synuclein (Papp et al., 1989; Gai et al., 1998). Till now,
environmental factors (such as nicotine use and alcohol consumption) and genetic factors (such
as mutations in COQ2, SHC2, and SNCA) are thought to contribute to the risk of MSA together.
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However, the explicit etiology and pathogenic mechanisms
remain unclear (Fanciulli and Wenning, 2015). Due to the
variable manifestations, the diagnostic accuracy of MSA
remains a challenge. The definite diagnosis of MSA requires the
neuropathologic evidence of widespread α-synuclein-positive
glial cytoplasmic inclusions along with olivopontocerebellar
atrophy or striatonigral degeneration in postmortem
examination (Trojanowski and Revesz, 2007). MSA is a
rare severe neurodegenerative disease with 6- to 10-year
mean survival time from symptom onset; however, there
is no cured therapy yet and only symptomatic treatment is
available, which is also quite disappointing (Flabeau et al., 2010;
Fanciulli and Wenning, 2015).

Microbiota, defined as the entirety of microorganisms in a
specific habitat, is gaining increasing importance (Whiteside
et al., 2015). It has been shown to serve pivotal roles in numerous
diseases, such as obesity, cardiovascular diseases, dermatosis,
hepatic diseases, and osteoarticular diseases (Collins et al., 2015;
Li et al., 2016, 2017; Liu et al., 2017; Tan L. et al., 2018; Zhou et al.,
2019). The brain–gut–microbiota axis has put forward a new
promising direction for neuroscience. The gut microbiota could
interact with brain through immune, neural, and neuroendocrine
pathways to regulate brain development, function, and behavior
(Dinan and Cryan, 2017). Therefore, microbiota may serve
pivotal roles in pathogenesis of neurological diseases, which
has been proven in Parkinson’s disease, myasthenia gravis,
multiple sclerosis, etc. (Keshavarzian et al., 2015; Jangi et al.,
2016; Qiu et al., 2018). As for MSA, intestinal inflammation
has been suggested to be related with MSA pathogenesis (Cao
et al., 2018); thus, the gut microbiota may also participate
in pathogenesis of MSA. Engen et al. (2017) discovered the
alteration of gut microbiota in American MSA patients through
16SrDNA sequencing in feces and sigmoid mucosa. Tan et al.
used 16SrDNA sequencing, revealing that the fecal microbiota
was different between MSA patients and healthy persons in
ethnic Chinese of Malaysia (Tan A.H. et al., 2018). The studies
focusing on the change in gut microbiota of MSA patients
were quite rare.

Traditionally, 16SrDNA sequencing is the main approach for
investigating the microbiota based on amplifying and sequencing
the hypervariable loci in 16SrDNA gene of bacteria (18SrDNA
for fungi). This method requires low cost and input template
DNA concentrations; however, it cannot characterize bacteria to
their species/strain levels and is limited when used in analyzing
the functions of the microbiota. Metagenomics is defined as
sequencing the entire DNA (or RNA) content of microbiota in
a sample through high-throughput techniques. Metagenomics,
besides identifying microbial taxa to their species/strain levels,
possesses more superiority in analyzing the function of genes, the
structure and organization of genomes, community structure and
evolutionary relationships within the sample, and identification
of new genes and biocatalysts (Cao et al., 2017; Martinez et al.,
2017; Roumpeka et al., 2017). However, there were no researches
utilizing metagenomic sequencing to analyze the relationships
between gut microbiota and MSA pathogenesis yet. Here, we
carried out metagenomic sequencing to compare the microbiota
community in feces of MSA patients to healthy controls of

mainland China and further explore the key alterations of
functional pathways in MSA patients’ gut microbiota.

MATERIALS AND METHODS

Subjects
Multiple system atrophy patients (n = 15; 8 males, 7 females;
mean age 56.7 ± 8.4 years) were recruited from the Department
of Neurology of Xiangya Hospital; meanwhile, healthy control
volunteers (n = 15; 10 males, 5 females; mean age 53.8 ± 7.5 years)
were recruited from the Physical Examination Center of Xiangya
Hospital. The study was approved by the Ethics Committee
of Xiangya Hospital of Central South University in China. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Multiple system atrophy patients were diagnosed by at
least two neurologists according to the second consensus
statement of diagnostic criteria for MSA (Gilman et al.,
2008). SCA (spinocerebellar ataxia) 1, 2, 3, 6, 7, and 17 and
DRPLA (dentatorubral-pallidoluysian atrophy) were genetically
excluded. The inclusion criteria of healthy control group subjects
were as follows: (1) age, sex, and BMI were matched to MSA
groups; (2) no constipation and diarrhea; and (3) no neurological
diseases. Exclusion criteria for both group subjects were as
follows: (1) the use of antibiotics, glucocorticoids, probiotics,
and immunosuppressants within the 2 months before the sample
collection; (2) hypertension, diabetes, obesity, and metabolic
syndrome; and (3) gastrointestinal diseases and autoimmune
diseases. Besides, both group subjects were from the Han
nationality in central south area of China.

Clinical information of all subjects was collected through face-
to-face interviews between subjects and neurological specialists.
All subjects finished a food frequency questionnaire (FFQ)
through recalling the dietary frequency in the period of 1 year
before the interview. Besides, we especially recorded the intake
of the fish oil in the dietary supplement, since the unsaturated
fatty acid could affect the gut microbiota composition (Zmora
et al., 2019). In addition, we calculated the dietary diversity score
(DDS) of each subject based on the FFQ results. According to
the Chinese Dietary Guidelines, all food items were categorized
into nine groups: grains, vegetables, fruit, meat, fish, eggs, beans,
dairy, and oil (Zhang et al., 2017). If the participant ate any
food from these nine categories at least once a week, one
point was given in that category. Otherwise, the score was zero.
Consuming different food in the same category would not count
repeatedly. The DDS was equal to the sum points of the nine
categories. The symptoms of MSA subjects were assessed through
the Unified Multiple System Atrophy Rating Scale (UMSARS)
and the cognitive status was evaluated by the Mini Mental
State Examination (MMSE). The constipation of all subjects was
assessed by the Wexner constipation score.

Sample Collection and DNA Extraction
Each MSA patient and healthy subject provided a fresh stool
sample in the morning using a fecal collection container, which
was immediately transported on ice to the laboratory and
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preserved at −80◦C. QIAamp Fast DNA Stool Mini Kit (Qiagen,
Germany) was used to extract DNA from fecal samples. The
DNA integrity and concentration were tested by 1% agarose gel
electrophoresis (AGE).

Metagenomic Sequencing
DNA Library Construction and Sequencing
The metagenomic libraries were constructed by using KAPA
Hyper Prep Kit (Kapa Biosystems, United States) according to
manufacturer’s instructions, with an average of 350 bp insert
size. The quality was assessed on a Qubit@ 2.0 Fluorometer
(Thermo Scientific, United States) and the Agilent Bioanalyzer
2100 system (Agilent, United States). Sequencing was performed
on an Illumina HiSeq2500 platform.

Bioinformatics and Statistical Analysis
Reads that mapped to human genome (hg19) were removed from
raw reads and then low-quality reads plus reads with adaptors
were filtrated through Trimmomatic software (version 0.38).
The quality of Illumina raw reads and clean reads was analyzed
by using FastQC software (version 0.11.8). Species taxonomic
assignment was achieved through aligning clean reads to clade-
specific marker genes available on NCBI using MetaPhlAn2
software (version 2.0). Partial least square-discriminant analysis
(PLS-DA) was performed through R software (version 3.4.1).
LDA effect size (LEfSe) analysis was utilized to identify bacterial
taxa with significantly different abundance between MSA and
healthy groups based on LEfSe software (version 1.0). The alpha
cutoff was set to 0.05 and effect size cutoff was set to 2.0. Because
LEfSe required all the pairwise comparison to reject the null
hypothesis to detect a biomarker, no multiple testing corrections
were needed (Segata et al., 2011). Differential abundance analysis
between MSA-C and MSA-P subtypes was performed through
the Welch’s t-test and p-values were corrected through Storey’s
false discovery rate (FDR) control. An FDR q value < 0.05 was
considered statistically significant.

De novo assembly was carried out through Megahit software
(version 0.3.0) to obtain contigs (>500 bp) with five k-mer
parameters 21, 41, 61, 81, and 99. We use Prodigal software
(version 2.6.3) to perform gene (open reading frame, ORF)
prediction on contigs from each sample (genes shorter than
100 bp were removed) and translation to protein sequences.
Then CD-HIT software (version 4.6.8) was utilized to cluster
predicted genes and redundant sequences were removed based
on 95% identity and 90% coverage. The longest sequence of
each cluster was selected to construct non-redundant gene
catalog and the final non-redundant gene catalog contains
1,925,921 microbial genes. Next, we utilized Kallisto software
(version 0.44.0) to calculate gene reads counts and perform
normalization on reads counts to obtain relative gene abundance
through the TMM method implemented in edgeR software
(version 3.14.0). Functional annotations were carried out through
DIAMOND software (version 0.8.22) against the KEGG database
(Kanehisa et al., 2004) and dbCAN database (Yin et al., 2012)
(e value≤1e−5). Then, we calculated the abundance of each
functional feature by summing the abundance of genes annotated
to this feature. For functional features with an abundance

median≥1e−8 in both groups, differential abundance analysis
was performed using the Welch’s t-test in STAMP software
(version 2.1.3). p-values were corrected through Storey’s FDR
method and we applied a cutoff of FDR q value < 0.1 to
indicate results remaining noteworthy. Demographic and clinical
characteristics were compared with Student’s t-test, Fisher exact
test, and Mann–Whitney U test for quantitative and categorical
variables, based on the SPSS software (version 19.0).

RESULTS

The Basic Characteristics of Subjects
The demographic and clinical characteristics of subjects are
summarized in Table 1. In total, 15 MSA patients and 15 healthy
controls were recruited in bioinformatic analysis. There was no
difference observed in age, gender, and BMI between two groups.
As for the diet pattern, no significant difference was detected
in all food category consumption and dietary diversity scores.
No subject consumed the fish oil as the dietary supplement
(Supplementary Table S1). MSA patients including 11 MSA-C
subtypes and 4 MSA-P subtypes had an average disease duration
of 2.3 ± 0.8 years, mean UMSARS I scores of 19.7 ± 5.2, mean
UMSARS II scores of 21.2 ± 6.9, mean UMSARS IV scores of
3.6 ± 0.7, and average MMSE scores of 26.3 ± 2.4. Besides, MSA
patients had higher Wexner constipation scores than healthy
controls (7.3 vs. 1.2, p-value < 0.001).

Taxonomy Annotation and Microbiota
Composition
Metagenomic sequencing resulted in an average of 37.28 ± 3.56
million clean reads each sample. The specific quality of clean
reads in each sample was shown in Supplementary Table S2.
After taxonomy annotation based on NCBI, we summarized the
microbiota composition of each sample on phylum (top 10) and
genus (top 20) levels in Figure 1. In the stacked bar chart, each bar
represented different bacterial taxon and the length represented
the relative abundance. The results showed that Firmicutes,

TABLE 1 | Baseline demographic and clinical characteristics of subjects.

Measure MSA group Healthy group p-value

n 15 15 –

Age (years)∗ 56.7 (8.4) 53.8 (7.5) 0.332

Disease duration (years)∗ 2.3 (0.8) – –

Female/male 7/8 5/10 0.710

BMI (kg/m2)∗ 22.4 (2.4) 22.8 (1.5) 0.533

Subtype (C/P) 11/4 – –

Wexner constipation scores∗ 7.3 (5.2) 1.2 (0.9) <0.001

UMSARS I scores∗ 19.7 (5.2) – –

UMSARS II scores∗ 21.2 (6.9) – –

UMSARS IV scores∗ 3.6 (0.7) – –

MMSE scores∗ 26.3 (2.4) – –

∗Presented as mean (SD); “–”, not applicable or not available; MSA, multiple system
atrophy; BMI, body mass index; C, MSA-C subtype; P, MSA-P subtype; UMSARS,
unified multiple system atrophy rating scale; MMSE, mini mental state examination.
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FIGURE 1 | The microbiota composition of each sample. Each bar represented different bacterial taxon and the length represented the relative abundance. (A) The
relative abundance of top 10 taxa on phylum level. (B) The relative abundance of top 20 taxa on genus level. H, healthy group; M, MSA group.
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Bacteroidetes, and Proteobacteria were dominant phyla in both
MSA and healthy groups. The samples were then analyzed with
PLS-DA on the genus level. The score plots revealed a clear
discrimination of microbial profile between MSA and healthy
control groups (Figure 2), which reflected the alterations in MSA
patients’ gut microbial community.

Differential Microbial Taxa Analysis
We utilized the LEfSe method to elucidate which taxa were
driving divergence between MSA and healthy groups. We
set the LDA score cutoff as 2.0 to distinguish the significant
bacterial difference on different taxonomic levels. The results
are illustrated in Figure 3 and showed a remarkable difference
in gut microbiota between groups (Figures 3A,B). The phylum
Verrucomicrobia was increased whereas phylum Actinobacteria
was decreased in MSA patients. At the genus level, MSA group
possessed more abundant Akkermansia, while Megamonas,
Bifidobacterium, Blautia, and Aggregatibacter were more
abundant in the healthy group. Further, to analyze at the
species level, the relative abundance of Roseburia hominis,
Akkermansia muciniphila, Alistipes onderdonkii, Streptococcus
parasanguinis, and Staphylococcus xylosus in the MSA group
was higher than those in the healthy group, while the healthy
group had more abundant Bacteroides coprocola, Megamonas
funiformis, Bifidobacterium pseudocatenulatum, Clostridium

nexile, Bacteroides plebeius, and Granulicatella adiacens. In
addition, we did not detect the differential taxa at an FDR q value
cutoff of 0.05 between MSA-C and MSA-P subtypes. Since only
four MSA-P patients were included in our study, differential
microbiome analysis between MSA subtypes needs further
verification in larger samples.

Gene Prediction and Non-redundant
Gene Catalog Construction
After de novo assembly, we obtained contigs with a mean number
of 105.97 ± 47.78 thousand in each sample and the assembly
result of each sample was illustrated in Supplementary Table S3.
Then, we performed prediction on contigs to gain gene and
protein sequences. The distribution of gene length in each sample
is shown in Supplementary Figure S1 and Supplementary
Table S4. After clustering on predicted genes, we selected the
longest sequence of each cluster to construct a non-redundant
catalog, and the final non-redundant gene catalog contained
1,925,921 microbial genes.

Differential Functional Pathways Analysis
To further investigate significantly altered functions between
MSA patients and healthy controls’ gut microbiota, we annotated
the gene catalog against the KEGG database and dbCAN
database. Based on the KEGG database, the gene counts under

FIGURE 2 | Score plot of partial least square-discriminant analysis (PLS-DA) showed that the MSA and healthy groups were separated into two clusters. Each dot
represented one sample.
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FIGURE 3 | Taxonomic differences of gut microbiota in MSA and healthy groups predicted on different levels. (A) Histogram of the LDA scores computed for taxa
differentially abundant between groups. (B) Cladogram indicated the phylogenetic distribution of fecal microbiota associated with MSA and healthy subjects. Each
dot represented a taxonomic entity and the taxonomic levels ranged from phylum to species from the inner to outer circles.

each functional pathway were illustrated in Supplementary
Figure S2 and the metabolism function catalog was with the
most genes distributed. As illustrated in Figure 4 (p-value < 0.05,
FDR q value < 0.1), the microbial gene functions including
galactose metabolism (p-value = 0.001, FDR q value = 0.066),
methane metabolism (p-value = 0.003, FDR q value = 0.066),
and pantothenate and CoA biosynthesis (p-value = 0.002, FDR
q value = 0.066) were much higher in fecal microbiome of
the healthy group. In addition, a vital role of the human
intestinal microbiota in hosts is to metabolize the dietary glycans
and the carbohydrates of the host mucus (Koropatkin et al.,
2012). Carbohydrate-active enzymes (CAZymes) encoded by the
gut microbiota are responsible for synthesis, degradation, and
modification of carbohydrates (Yin et al., 2012). The distribution
of gene counts annotated under different CAZyme terms is
shown in Supplementary Figure S3. However, there were no
significantly differential CAZyme terms detected at an FDR cutoff
of 0.1 between two groups.

DISCUSSION

Our study showed that MSA patients had a distinction in
taxa composition and function of gut microbiota compared
to healthy controls based on metagenomic sequencing of
fecal samples. Although fecal microbiota may not reflect gut
bacterial communities exactly, metagenomic sequencing based
on stool could still be informative. It contained bacteria
from mucosal desquamation and was the easiest sampling
technique up to the standard of related investigations (Durban
et al., 2011; Vazquez-Castellanos et al., 2015). Our study
revealed that MSA patients presented a distinctive microbiota
composition compared to healthy controls, characterized by
high abundant genus Akkermansia and species R. hominis,
A. muciniphila, A. onderdonkii, S. parasanguinis, and S. xylosus,
while low abundant genera Megamonas, Bifidobacterium, Blautia,
and Aggregatibacter and species B. coprocola, M. funiformis,
B. pseudocatenulatum, C. nexile, B. plebeius, and G. adiacens.
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FIGURE 4 | Differential KEGG pathways at level 3 for the fecal microbiome of MSA and healthy groups. Mean proportions are shown in stacks for MSA (orange) and
healthy (blue) groups. Difference in mean proportions = mean proportions in healthy group minus mean proportions in MSA groups. q values were calculated through
Storey’s FDR method.

Functional analysis based on the KEGG database showed that
pathways involving galactose metabolism, methane metabolism,
and pantothenate and CoA biosynthesis were less abundant
in fecal microbiome of MSA patients. In dbCAN database,
we did not detect the significantly differential CAZyme terms
between two groups.

Multiple system atrophy is a fatal neurodegenerative disease
as well as synucleinopathy, with challenges in pathogenesis
explication, diagnosis, and therapy. Recently, increasing evidence
has shown that alteration of the gut microbiota could influence
neural development, cognition, and behavior via the bidirectional
interaction with the brain–gut–microbiota axis (Rogers et al.,
2016). In another synucleinopathy, Parkinson’s disease, 16SrDNA
sequencing of sigmoid mucosal and fecal samples revealed
that Ralstonia, Akkermansia, Oscillospira, and Bacteroides were
more abundant while Blautia, Coprococcus, Roseburia, and
Faecalibacterium were less enriched in Parkinson’s disease
patients (Keshavarzian et al., 2015). Besides, colonization
with microbiota from Parkinson’s disease patients was found
to exacerbate physical impairments in germ-free transgenic
Parkinson’s disease mice (Sampson et al., 2016). As for
MSA, Engen et al. found that at the family level, the
abundance of Clostridiaceae and Rikenellaceae were higher
while Lachnospiraceae (genera Ruminococcus, Roseburia, and
Coprococcus) and Ruminococcaceae (genus Faecalibacterium)
were lower in American MSA patients’ fecal sample (Engen
et al., 2017). Tan et al. found that in ethnic Chinese of
Malaysia, MSA patients had more abundant Bacteroides and
less abundant Paraprevotella in fecal microbiota at the genus
level (Tan A.H. et al., 2018). Both two studies were based on
16SrDNA sequencing.

Among different bacterial taxa based on our study, genus
Akkermansia was also found to be increased in gut microbiota
of Parkinson’s disease patients (Keshavarzian et al., 2015;
Petrov et al., 2017). Akkermansia could produce short-chain
fatty acids (SCFAs). SCFAs had several beneficial effects on
host: maintaining epithelial barrier function, diminishing
oxidative DNA damage, regulating cytokine production,
anti-inflammatory effects, and stimulating immune function
(Maslowski and Mackay, 2011). However, Akkermansia was
reported to have proinflammatory properties, upregulating genes
involved in antigen presentation pathway, B and T cell receptor
signaling, IL-4 signaling, and complement and coagulation
cascades (Derrien et al., 2011). These proinflammatory features

may be due to its ability to disturb host mucus homeostasis,
resulting in the breakdown of the gut barrier (Ganesh et al.,
2013). Inflammation served a critical part in MSA pathogenesis
(Fanciulli and Wenning, 2015; Zhou et al., 2018) and gut
inflammation was shown to increase the risk of MSA. Besides,
some gut-inflammation risk genes could also increase the
risk of MSA, such as LRRK2 and NOD2; therefore, putative
proinflammatory bacterial genera may participate in stimulating
MSA process (Franke et al., 2010; Heckman et al., 2014; Engen
et al., 2017; Cao et al., 2018; Villumsen et al., 2019). As for reduced
bacteria, Blautia was a butyrate-producing genus (Keshavarzian
et al., 2015) and butyrate was the most pronounced SCFA, which
had anti-inflammation properties (Maslowski and Mackay,
2011; Pirozzi et al., 2018). Genus Bifidobacterium was also an
inflammation-suppressing bacteria, and bioactive factors from
Bifidobacterium were shown to improve epithelial cell barrier
resistance and, thus, attenuated inflammation (Ewaschuk et al.,
2008), which hinted the suppressive influence of Bifidobacterium
for MSA. However, the detailed roles of these different bacterial
taxa in pathogenesis of MSA still need further exploration.
The bacterial alteration in MSA patients of mainland China
identified from our study was different from that in American
and ethnic Chinese of Malaysia (Engen et al., 2017; Tan A.H.
et al., 2018). Numerous factors may be responsible for the
discrepancy. First, there is the inherent discrepancy between
16SrRNA and metagenomic sequencing, which was reported
previously in other studies (Shah et al., 2011; Poretsky et al.,
2014; Hong et al., 2016). Then, bias due to the small sample size
could not be excluded.

Our functional analysis revealed the aberrant functional
pathways of MSA patients’ gut microbiota based on the KEGG
database, which were all related with metabolism. Galactose
metabolism was attached to the carbohydrate metabolism, and
methane metabolism was related to the energy metabolism.
Moreover, pantothenate and CoA biosynthesis belonged to the
metabolism of cofactors and vitamins. The results revealed the
aberrant metabolism in MSA patients’ gut microbiota. The host–
microbe metabolic axis is a multi-directional interactive chemical
highway between specific host and microbe functional pathways.
The gut microbiota could produce a large array of metabolites
that are necessary for host health, such as bile acids, choline,
SCFAs, aromatic amino acids, etc. Microbe-produced metabolites
could affect host metabolic phenotype, energy homeostasis,
immune, inflammation, etc., and hence regulate disease process
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(Nicholson et al., 2012). Energy failure and inflammation are
significant contributors to MSA pathogenesis (Jellinger, 2014).
For more details about the functional alteration in gut microbiota
of MSA patients and its roles in the MSA process, multi-
omics combination including metabonomics, transcriptomics,
proteomics, etc., was required. In addition, a function experiment
based on the germ-free mice was also necessary.

There were still big challenges in MSA pathogenesis
interpretation, precise diagnosis, and efficient treatment. Going
into the roles of gut microbiota in MSA may shed light on
its pathogenesis. Besides, the bacterial taxa with differential
abundance between MSA patients and healthy persons might
be utilized as novel biomarkers, contributing to the clinical
diagnosis. In addition, rebalancing the gut microbiota dysbiosis
through pre-/probiotics may be a novel therapeutic target
for this untreated disease. However, several limitations need
to be taken into account in our study. Firstly, the sample
size in our study was small due to the low morbidity
and rapidly progressive process of MSA (Geser et al., 2006;
Fanciulli and Wenning, 2015). Thus, the larger-scale researches
including different population were required. Then, our study
was a cross-sectional study and whether the change of gut
microbiota was the initiating stimulator or the result of MSA
pathogenesis remained unclear. Therefore, investigation on the
gut microbiota in longitudinal studies was indispensable across
different periods of MSA process.

CONCLUSION

In conclusion, we found altered gut microbiota composition
and functional pathways in MSA patients. Our study provided
microbial basis for the further multi-omics research and
functional experiments to clarify roles of gut microbiota in MSA,
which may improve our understanding of MSA pathogenesis
and facilitate the development of accurate diagnosis methods,
as well as novel therapeutic strategies targeting modifying gut
microbiota in MSA patients.
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