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Cognitive control of emotions depends on intermodular long-distance communications.
However, negative connections between connector hubs are removed by traditional
hard-thresholding approach in graph-theoretical research. Using soft-thresholding
approach to reserve negative links, we explore time-varying features of connector
hubs in intermodular communications during cognitive control of affective pictures. We
develop a novel approach to sparse functional networks and construct negatively linking
connector networks for positive, negative, and neutral pictures. We find that consisting
of flexible hubs, the frontoparietal system dynamically top–down inhibits neural activities
through negative connections from the salience subnetwork and visual processing
area. Moreover, the shared connectors form functional backbones that dynamically
reconfigure according to differently-valenced pictures in order to coordinate both stability
and flexibility of cognitive connector networks. These results reveal the necessity
of conserving negative links between intermodular communications in chronnectome
research and deepen the understanding of how connector networks dynamically evolute
during cognitive control of affective processing.

Keywords: affective pictures, cognitive control, connector hubs, graph theory, negative connections

INTRODUCTION

The ability to cognitive control of emotions is critical to behavioral flexibility and well-being
(Ochsner et al., 2012; Marek et al., 2015). Although patterns of activation during cognitive control
of emotions have been well-characterized, graph theory-based connectivity research has shown
that the brain network composes of functionally separate subnetworks or modules (Buckner et al.,
2009; Barret and Satpute, 2013; Sripada et al., 2014). Furthermore, functional connectome research
has revealed that affective processing at least contains frontoparietal subnetwork (e.g., dorsolateral
prefrontal cortex, inferior and superior parietal lobule), salience subnetwork (e.g., insula, middle,
and posterior cingulate cortex), visual subnetwork (within the occipital lobe), and cerebellum (Wolf
et al., 2009; Lindquist and Barrett, 2012; Oosterwijk et al., 2012). However, with the emergence of
chronnectome (Calhoun et al., 2014), little is known about how affective information is dynamically
represented through distributed large-scale brain networks.
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During affective processing, cognitive control relies on not
only short-distance intramodular processing but also long-
distance intermodular communications (Mesulam, 1990; Wager
et al., 2008; Barret and Satpute, 2013). As a matter of fact,
whole-brain networks contain some important long-distance
communications (e.g., long intra/inter-hemispheric connections)
(Sepulcre et al., 2010; Hermundstad et al., 2013). In graph-
theoretic research, hubs integrate and distribute information
in powerful ways and are further classifies into provincial and
connector hubs (Power et al., 2013; Van den Heuvel and Sporns,
2013). Different from provincial hubs that connect nodes within
a module, connector hubs with high participant coefficients
connect to multiple communities and have access to a variety of
types of different information (Power et al., 2011). Particularly,
the focal damage to a connector hub (e.g., a frontoparietal
hub) caused large-scale long-distance functional deficits (Gratton
et al., 2012). Therefore, focusing on the role of connector hubs
is crucial for understanding of intermodular communication
during cognitive control of affective pictures. However, static
connectomics did not capture temporal structure of brain activity
(Calhoun et al., 2014). Recently, more and more research has
become interested in understanding network dynamics that
support emotional or cognitive states (Fornito et al., 2012;
Shine et al., 2016; Betzel et al., 2017), learning (Mantzaris
et al., 2013), development (Gu et al., 2015), aging (Betzel et al.,
2014), and disease progression (Raj et al., 2015). Time-vary
features of functional network (e.g., connector hubs) are import
for understanding how functional network dynamically evolute
during information communication (Sizemore and Bassett,
2018), which further deepens our understanding the nature of
temporal dynamics of brain activity (Vidaurre et al., 2018).

To obtain a sparse adjacent matrix in graph theoretic analysis,
the traditional hard-thresholding approach eliminates weak
and negative couplings between nodes because these negative
links are often conceived as noise or minor (Rubinov and
Sporns, 2010, 2011). However, not all negative connections are
biologically meaningless (Chang and Glover, 2009; Fornito et al.,
2013). For instance, during cognitive reappraisal of affective
pictures, there exist strong anticorrelations between prefrontal
cortex (PFC) (e.g., dorsomedial PFC or dorsolateral PFC) and
salience/limbic areas (e.g., insula or amygdala) (Ochsner et al.,
2002; Urry et al., 2006; Drabant et al., 2009). Undeniably,
negative connections between modules are quite pervasive in
functional network architectures and play an important role
in behavior (Fox et al., 2005; De pisapia et al., 2012; Fornito
et al., 2013), particularly in the task-evoked networks, although
they were rarely mentioned. Simply removing these negative
links lead to inaccurate representation of affective networks. The
reservation of internetwork anti-correlations are critical for the
precise representation of connector hubs in graph theoretical
analysis because connector hubs are responsible for intermodular
communication (Buckner et al., 2009; Van den Heuvel and
Sporns, 2011). In contrast, the soft-thresholding approaches to
mapping [−1,1] to [0, 1] not only avoid issues related to network
fragmentation but also simply suppress rather than remove
weaker connections (Schwarz and McGonigle, 2011). Here we
aimed to use soft-thresholding approach to explore time-varying

features of connector hubs in intermodular communication
during affective information processing.

This study aimed to explore how connector networks
dynamically evolute during cognitive control of affective
processing. We collected fMRI data from 26 right-handed healthy
undergraduates while they performed a cognitive task (silently
counting backward) during the viewing of affective (positive,
negative, and neutral) pictures. After preprocessing, time-series
of 278 whole-brain parcels were extracted and subjected to a
wavelet decomposition (Shen et al., 2013). Then, we estimated
the dynamic correlation coefficients (DCCs) of all possible pairs
of 278 parcels (Lindquist et al., 2014) and obtained 27 group-
averaged DCC matrices. These DCC matrices were subsequently
Fisher z-transformed and subjected to soft-thresholding. Next,
we used the BCT toolbox1 to calculate graph theoretic features
of these full-connected matrices. Finally, we constructed and
characterized connector networks for affective pictures across 9
time points. Based on the previous study of dynamic networks
(Fornito et al., 2012; Shine et al., 2016; Betzel et al., 2017; Sizemore
and Bassett, 2018; Vidaurre et al., 2018), we expected that
connector networks would exhibit valence-dependent dynamic
connectivity patterns over times; in order to coordinate the
stability and the flexibility of connector networks during dynamic
affective processing, we expected that the shared connector would
keep robust connections and form the functional backbone
correspondent with structural backbone (Hagmann et al., 2008;
Liang et al., 2013; Zhang et al., 2015).

MATERIALS AND METHODS

Participants
The participants consisted of 26 right-hand undergraduates
(14 females, 12 males; mean age 21.25 ± 2.34 years). The
participants self-reported having normal or corrected-to-normal
visual acuity and had no prior history of psychiatric or
neurological disorders. Data from one male and one female
were ruled out because of poor-quality data collection. All
the participants provided the written informed consent before
the experiment and were paid for their participation after the
experiment. All experiments were performed in accordance with
relevant guidelines and regulations. This study was approved by
the Ethical Committee of School of Psychology at East China
Normal University.

Materials
Stimuli consisted of 81 pictures from the Chinese Affective
Picture System (Bai et al., 2005), which is a collection of
standardized photographic materials from the International
Affective Picture System. The images were grouped into three
conditions: 27 positive pictures (e.g., a smiling face), 27 negative
pictures (e.g., a wreckage), and 27 neutral pictures (e.g., a
houshold object). There exist significant valence differences
among the three picture categories [F(2,78) = 90.25, p < 0.001;
M ± SD: Positive = 7.35 ± 0.14; Neutral = 4.79 ± 0.07;

1http://www.brain-connectivity-toolbox.net
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Negative = 2.41 ± 0.12]. The positive and negative pictures
significantly differ from the neutral ones [F(1,75) = 54.62, 59.21,
p < 0.001] but do not significantly differ from each other
[F(1,75) = 1.28, p > 0.05; M ± SD: Positive = 5.69 ± 0.39;
Neutral = 4.45 ± 0.41; Negative = 5.58 ± 0.36]. We used
E-prime1.1 software (Psychology Software Tools, Pittsburgh, PA,
United States) to present these images and control their timing.

Task
On full trials (see Figure 1), a cue of the Chinese word “counting
silently” under a fixation cross was first presented for 2 s. Then,
three images with the same valence were continuously presented
for 18 s, 6 s per picture. Once the cue emerged on the screen,
the participants were required to count backward from 100 by
three’s, i.e., 100, 97, 94, . . ., until all the pictures vanished. During
counting silently, the participants always viewed the pictures.
On the next screen the Chinese word “Assessment” appeared
for 2 s, which prompted the participants to rate the arousal
level of the pictures on a nine-point scale (1 = extremely weak

FIGURE 1 | The illustration of the experimental procedure in the scanner.

FIGURE 2 | The statistical results of arousal rating in the Counting vs. Viewing
condition. The ANOVA analysis with picture types (positive, negative, and
neutral) and task (Counting and Viewing) as within-subject factors indicated
that compared with Viewing, Counting task significantly decreased the arousal
levels of positive and negative pictures but not those of neutral pictures.
∗p < 0.05.

to 9 = extremely strong) by pressing a button. Following the
rating, a 4-, 6-, or 8-s jittered blank screen concluded the trial.
The experiment contained 27 trials, 9 trials per picture type.
The trial order was randomized and counterbalanced across
subjects. After the fMRI experiment completed, the participants
were asked to offline rate the arousal level using the similar
paradigm with simply viewing 81 pictures outside the scanner.
Before entering the scanner, the participants were familiar with
the experimental procedure.

fMRI Acquisition
Structural and functional MRI data were obtained with a 3-
T Trio Tim Magnetic Resonance Imaging scanner (Siemens
company) at East China Normal University. Foam padding
was used to minimize head movement. Whole-brain functional
data were acquired using a BOLD contrast-sensitive echo-planar
T2∗-weighted imaging (EPI) sequence (32 axial slices, slice
thickness = 5 mm; TR = 2000 ms, TE = 30 ms, flip angle = 90◦,
field of view = 240 mm × 240 mm, matrix size = 64 × 64, voxel
size = 3.75 mm × 3.75 mm × 5 mm). The first two functional
volumes were discarded to allow for equilibration effects. A T1-
weighted anatomical image was obtained for each participants
with 1 mm× 1 mm× 1 mm voxels (TR = 1900 ms, TE = 3.43 ms,
flip angle = 7◦).

fMRI Analysis
The preprocessing of functional data was carried out using the
SPM8 software package2. After functional data were corrected
for slice timing and head motion, the T1-weighted images were
coregistered to the mean EPI image. The coregistered data were
spatially normalized into the standard MNI space and resampled
to 3 mm isotropic voxels. Images were high-filtered with a cut-off
of 128 s to remove low-frequency signal drift.

Network Construction
The whole brain was parcellated into a set of subunits with 2 mm
resolution that correspond to the 278 cortical and subcortical

2https://www.fil.ion.ucl.ac.uk/spm/software/spm8/

FIGURE 3 | Neuroanatomical location of 65 connector hubs for three picture
types. Red, for positive pictures; green, for negative pictures; blue, for neutral
pictures; cyan, intersection between positive and negative pictures; fuchsia,
intersection between positive and neutral pictures; yellow, negative and neutral
pictures; maroon, intersection among positive, negative, neutral pictures.
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structures (Shen et al., 2013). These subunits were obtained using
resting-state fMRI and have been shown to be highly functionally
homogeneous and spatially coherent. For each individual fMRI
dataset, regional mean BOLD time-series of each subunit were
extracted using the marsbar toolbox3 separately for the positive,
negative, and neutral picture conditions. These regional time-
series were then subjected to a wavelet decomposition to
reconstruct wavelet coefficients in the 0.03–0.07 Hz range using
the wmtsa toolbox4. Unlike the traditional assumption that the
functional connectivity between time series from distinct brain
regions is constant across time, the DCC provides a model-based
approach toward estimating dynamic correlations and achieves
the best overall balance between sensitivity and specificity in
detecting dynamic changes in correlations (Lindquist et al., 2014).
Therefore, we used the DCC toolbox (Lindquist et al., 2014) to

3http://marsbar.sourceforge.net/
4http://cran.r-project.org/web/packages/wmtsa/index.html

estimate DCCs of these wavelet coefficients time-series between
all possible pairs of 278 brain subunits and averaged the
278 × 278 functional connectivity matrices over all trials and all
participants. The resulting 27 group-averaged DCC matrices (9
TRs× 3 picture conditions) were Fisher z-transformed.

Graph-Theoretic Analysis
To conserve negative and weak edges, we used the soft-
thresholding approach to map a correlation coefficients rij∈[−1,
1] to a weight wij∈[0, 1]. These mappings have recently
been evaluated in a study of the modular organization of
the brain from functional connectivity data (Mumford et al.,
2010). This approach can replace the hard thresholding with a
continuous mapping of all correlation values to edge weights,
suppressing rather than removing weaker connections and
avoiding issues related to network fragmentation. Here, a
soft-thresholding adjacency function was defined by a power

TABLE 1 | Connector hubs for positive pictures.

Node Subunit BA AAL Talairach

X Y Z

1 115 − Pons_R 7 −23 −26

2 133 R.BA53.1 Amygdala_R 25 −2 −16

3 149 L.BA49.1 Putamen_L −23 4 2

4 154 L.BA4.1 Pretcentral_L −57 −9 28

5 159 − Culmen_L −44 −53 −36

6 165 L.BA18.8 Cuneus_L −4 −90 15

7 169 L.BA45.2 Insula_L −32 22 4

8 174 − Cerebellum_8_L −20 −65 −40

9 177 L.BA6.4 Inferior Frontal Gyrus −41 9 31

10 190 L.BA7.6 Occipital_Sup_L −14 −68 29

11 195 L.BA40.1 Inferior Parietal Lobule −57 −28 33

12 201 L.BA37.1 Temporal_Mid_L −57 −48 −9

13 203 L.BA6.6 Middle Frontal Gyrus −24 11 51

14 211 − Cerebellar Tonsil −27 −49 −41

15 216 L.BA13.2 Insula_L −36 7 −1

16 223 L.BA19.9 Cuneus_L −10 −83 32

17 240 L.BA7.4 Parietal_Sup_L −21 −56 57

18 244 L.BA38.1 Temporal_Sup_L −46 0 −12

19 245 L.BA40.3 Inferior Parietal Lobule −55 −38 23

20 249 L.BA7.9 Precuneus_L −3 −67 38

21 255 L.BA7.7 Precuneus_L −12 −39 64

22 260 L.BA48.1 Caudate_L −14 −15 20

23 269 L.BA44.2 Insula_L −35 5 11

24 277 L.BA6.7 Supp_Motor_Area_L −14 −2 63

25 29 R.BA7.6 Superior Parietal Lobule 24 −46 61

26 39 R.BA19.5 Occipital_Mid_R 43 −73 27

27 45 R.BA7.3 Paracentral_Lobule_R 7 −40 62

28 60 R.BA7.5 Superior Parietal Lobule 23 −66 49

29 66 R.BA20.3 Cerebelum_Crus1_R 46 −53 −33

30 80 R.BA7.4 Parietal_Sup_R 21 −56 55

31 96 R.BA18.5 Occipital_Inf_R 23 −90 −3

The first column denotes the nodal number in the Pajek graphs. The second column represents the subunit codes of whole-brain parcellation by Shen et al. (2013). BA,
Broadmann’s area; AAL, automated anatomical labeling.
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function (Schwarz and McGonigle, 2011), wij = [(rij + 1)/2]12.
We used the BCT toolbox to compute the following four graph-
theoretic characteristics of parcel-wise whole-brain networks.
The first analysis used Louvain algorithm to identify community
structures of full-connection networks of 278 nodes at each
time point. Then, we computed the participation coefficients
to examine the role of hubs in interconnecting distinct
modules. We also calculated nodal betweenness centrality and

edge betweenness centrality. In this study, the hubs with
participation coefficient > 0.5 and both node betweenness
centrality and edge betweenness centrality 6= 0 at each time
point were classified into connector hubs. These connector hubs
describe the level of intermodule connectivity and facilitate the
integration of multiple types of information during intermodular
communication. To sparse the full-connected DCC matrices, we
binarized the matrices of edge betweenness centrality and then

TABLE 2 | Connector hubs for negative pictures.

Node Subunit BA AAL Talairach

X Y Z

1 111 R.BA44.2 Frontal_Inf_Oper_R 52 13 12

2 117 R.BA19.1 Lingual_R 14 −58 0

3 123 R.BA38.2 Temporal_Pole_Sup_R 37 12 −24

4 134 R.BA47.2 Frontal_Inf_Orb_R 26 33 −13

5 136 R.BA36.2 Precuneus_R 15 −43 3

6 149 L.BA49.1 Putamen_L −23 4 2

7 154 L.BA4.1 Pretcentral_L −57 −9 28

8 158 − Pons −4 −21 −27

9 159 − Culmen_L −44 −53 −36

‘10 162 L.BA37.3 Cerebellum_Crus2_L −46 −63 −23

11 165 L.BA18.8 Cuneus_L −4 −90 15

12 169 L.BA45.2 Insula_L −32 22 4

13 171 L.BA23.1 Posterior Cingulate −8 −56 21

14 174 − Cerebelum_8_L −20 −65 −40

15 177 L.BA6.4 Inferior Frontal Gyrus −41 9 31

16 190 L.BA7.6 Occipital_Sup_L −14 −68 29

17 194 L.BA39.5 Angular_L −39 −61 44

18 195 L.BA40.1 Inferior Parietal Lobule −57 −28 33

19 200 L.BA10.4 Frontal_Sup_L (aal) −16 60 3

20 202 L.BA19.6 Cerebellum_6_L −26 −67 −20

21 206 L.BA6.1 Inferior Frontal Gyrus −53 1 23

22 207 L.BA13.3 Insula_L −35 −12 0

23 216 L.BA13.2 Insula_L −36 7 −1

24 223 L.BA19.9 Cuneus_L −10 −83 32

25 225 L.BA10.7 Cingulum_Ant_L −7 47 0

26 238 L.BA21.3 Temporal_Mid_L −56 −29 −13

27 240 L.BA7.4 Parietal_Sup_L −21 −56 57

28 244 L.BA38.1 Temporal_Sup_L −46 0 −12

29 24 R.BA39.2 Temporal_Sup_R 48 −59 34

30 251 L.BA8.2 Frontal_Sup_L −21 25 40

31 255 L.BA7.7 Precuneus_L −12 −39 64

32 267 L.BA10.6 Frontal_Sup_Medial_L −10 57 20

33 269 L.BA44.2 Insula_L −35 5 11

34 273 L.BA48.2 Caudate_L −12 7 13

35 35 R.BA37.8 Temporal_Mid_R 54 −56 0

36 42 R.BA54.2 Hippocampus_R 30 −36 0

37 55 R.BA31.2 Cingulum_Mid_R 9 −28 45

38 75 R.BA39.4 Inferior Parietal Lobule 58 −47 24

39 81 R.BA10.1 Cingulum_Ant_R 8 42 2

40 86 R.BA37.7 Cerebellum_Crus1_R 47 −72 −24

41 93 R.BA13.3 Insula_R 40 −6 14

42 94 R.BA40.3 Parietal_Inf_R 51 −46 40
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dot-multiplied them by the correspondent DCC matrices. That
is, we retained the connectivity values between two connectors in
the DDC matrices only if their edge betweenness centrality value
was not equal to zero. Thus, we obtained the connector networks.

RESULTS

Behavioral Data
In order to verify if silently counting validly reduce the
emotional responses evoked by affective picture, a two-way
repeated measure ANOVA with valence (positive, neutral,
and negative) × task (silently counting and simple viewing)
revealed a significant main effect of valence on arousal rating
[F(2,46) = 10.25, η2

p = 0.39, p < 0.001] and a significant
interaction between valence and task [F(2,46) = 9.43, η2

p = 0.32,
p < 0.001]. Post hoc tests indicated that the counting task
produced a lower arousal rating for positive and negative pictures
relative to simple viewing (p < 0.01), but not for neutral
pictures (p > 0.05) (see Figure 2). These results suggest that
participants were involved in the cognitive control of affective
picture processing within the scanner.

Identification of Connector Hubs
We calculated several graph-theoretic features to examine the
role of hubs in interconnecting distinct modules. Participant
coefficient is a measure of diversity of intermodular connections
of individual nodes (Van den Heuvel and Sporns, 2011).

Nodes with high participant coefficient display high correlation
with multiple modules, which facilitates integration of multiple
types of information (Warren et al., 2014). Nodal betweenness
centrality measures the influence of a node on information flow
between additional nodes in the network (Hagmann et al., 2008).
Similarly, edge betweenness centrality measures the influence
of an edge on information flow (Brandes, 2001). At all 9 time
points, nodes with participation coefficient > 0.5 and both nodal
betweenness centrality and edge betweenness centrality 6= 0 were
classified as connector hubs. We retained the connector hubs that
have at least a connection with other connector hubs in different
communities. Finally, we binarized edge betweenness centrality
matrices and dot-multiplied them by the correspondent DCC
matrices. Thus, we sparsed the full-connected DCC matrices into
connector networks (Supplementary Figure S1).

Figure 3 shows 65 connector hubs for positive, negative,
and neutral pictures for their coordinates. The connector
networks contained 31 nodes for positive pictures (see Table 1),
mainly including the frontoparietal nodes (e.g., inferior and
middle frontal gyrus, inferior and superior parietal lobule), the
salience nodes (e.g., insula, putamen, caudate, amygdala), and
the visual nodes (e.g., cuneus, middle and superior occipital
gyrus). For negative pictures, the connector network contained
42 nodes (see Table 2) and their mayjority were located in
the frontoparietal area (e.g., inferior and superior frontal gyrus,
inferior and superior parietal lobe, precentral gyrus, angular
gyrus), the salience system (e.g., insula, putamen, cingulate
cortex, hippocampus), and the cerebellum. For neutral pictures,

TABLE 3 | Connector hubs for neutral pictures.

Node Subunit BA AAL Talairach

X Y Z

1 136 R.BA36.2 Precuneus_R 15 −43 3

2 149 L.BA49.1 Putamen_L −23 4 2

3 154 L.BA4.1 Pretcentral_L −57 −9 28

4 165 L.BA18.8 Cuneus_L −4 −90 15

5 169 L.BA45.2 Insula_L −32 22 4

6 171 L.BA23.1 Posterior Cingulate −8 −56 21

7 174 − Cerebellum_8_L −20 −65 −40

8 190 L.BA7.6 Occipital_Sup_L −14 −68 29

9 198 L.BA20.1 Temporal_Inf_L −49 −11 −26

10 206 L.BA6.1 Inferior Frontal Gyrus −53 1 23

11 216 L.BA13.2 Insula_L −36 7 −1

12 223 L.BA19.9 Cuneus_L −10 −83 32

13 224 L.BA31.1 Precuneus_L −8 −40 47

14 240 L.BA7.4 Parietal_Sup_L −21 −56 57

15 244 L.BA38.1 Temporal_Sup_L −46 0 −12

16 252 L.BA37.6 Fusiform_L −32 −46 −24

17 263 L.BA48.3 Caudate_L −11 18 2

18 266 L.BA54.1 − −28 −20 −9

19 269 L.BA44.2 Insula_L −35 5 11

20 45 R.BA7.3 Paracentral_Lobule_R 7 −40 62

21 5 R.BA40.4 Postcentral_R 57 −20 31

22 80 R.BA7.4 Parietal_Sup_R 21 −56 55

23 90 R.BA37.9 Temporal_Inf_R 54 −48 −14
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FIGURE 4 | Two-dimension depiction of connector networks for positive pictures at 9 time points. The nodal color denotes affiliative community; the nodal size
represents the magnitude of nodal betweenness centrality; the edge depicts binarized edge betweenness centrality and all the edges are negative. The solid lines
represent the functional backbone. The vertex number was consistent with Table 1. The graphs were plotted by the Pajek package.

the connector network included 23 nodes (see Table 3) and
were mainly found in the frontoparietal area (inferior frontal
gyrus, superior parietal lobe, post-central gyrus), the salience
system (insula, putamen, posterior cingulate cortex), and the
visual area (cuneus, superior occipital gyrus). Moreover, all the
connector networks were always composed of seven modules
(see Supplementary Figure S2) and each module possessed more
than one connectors.

Time-Varying Connector Networks in
Affective Processing
Across 9 time points (from TR = 1 to 9), the connector
networks displayed different dynamic connectivity patterns when
participants performed cognitive processing of positive, negative,

and neutral pictures (see Figures 4–6, respectively). The DCC
matrices of connector hubs exhibited time-varying patterns
(see Supplementary Video S1 for positive, Supplementary
Video S2 for negative, and Supplementary Video S3 for
neutral online). However, regardless of picture valences, the
connection values between connectors were always negative
when the connectors belongs to different communities. Their
affiliative communities also reconfigured dynamically over times
(Figures 7A,E,I).

Next, we used the Gretna software5 to calculate the small-
worldness value of connector networks. Small-worldness is a
property of a network with high clustering but low characteristic

5www.nitrc.org/frs/download.php/5534/gretna.zip
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FIGURE 5 | Two-dimension depiction of connector networks for negative pictures at 9 time points. The vertex number was consistent with Table 2. The others were
the same as Figure 3.

path length (Yan et al., 2011). A real network is considered small-
world if the ratio of cluster coefficient to characteristic path
length is greater than one relative to random networks. Previous
research has demonstrated that the small-world feature are quite
universal in structural and functional networks (Varoquaux and
Craddock, 2013). However, small-worldness in this study was
less than one across nine time points (all ps < 0.01) because
standardized cluster coefficients (gamma value) were significantly
less than one (all ps < 0.01) but standardized characteristic path
length (lambda value) were almost close to one. Thus, small-
worldness did not emerge in connector networks (Figure 8).

Positive Pictures
In the frontoparietal system, the left superior parietal lobule
(Node 17, BA7.4) had larger betweenness centrality value

than other 12 connector hubs (p < 0.001, Figure 7B).
In the salience system, betweenness centrality value of
the left insula (Node 23, BA44.2) was larger than other
five salience hubs (p < 0.01, Figure 7C). In the visual
system, the left cuneus (Node 6, BA18.8) exhibited
larger betweenness centrality value than other four hubs
(p < 0.01, Figure 7D).

Negative Pictures
In the frontoparietal system, the superior medial frontal gyrus
(Node 32, BA10.6) in the left hemisphere had larger betweenness
centrality value than other 13 connector hubs (p < 0.001,
Figure 7F). Of 13 hubs in the salience system, the left insula
(Node 33, BA44.2) had the largest betweenness centrality value
(p < 0.001, Figure 7G). The cerebellum had five connector hubs
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FIGURE 6 | Two-dimension depiction of connector networks for neutral pictures at 9 time points. The nodal number was consistent with Table 3. The others were
the same as Figure 3.

that involve negative processing, of which Node 20 exhibited the
largest betweenness centrality value (p < 0.01, Figure 7H).

Neutral Pictures
In the frontoparietal system, the betweenness centrality value
of the left superior parietal lobe (Node 14, BA7.4) was larger
than other seven connector hubs (p < 0.001, Figure 7J).
The left insula (Node 19, BA44.2) exhibited the largest
betweenness centrality value in the salience sytem (p < 0.01,
Figure 7K). In the visual system, the left cuneus had
larger betweenness centrality value than other two hubs
(p < 0.001, Figure 7L).

Shared Hubs in the Functional Backbone
The connector networks for positive, negative, and neutral
pictures always shared 11 hubs in the left hemisphere
(Figure 9). They were involved in affective processing (e.g.,
insula, putamen, and cerebellum), visual processing (e.g.,
cuneus and superior occipital gyrus), and cognitive processing
(e.g., superior parietal lobule, precentral gyrus, and superior
temporal gyrus). After binarizing edge betweenness centrality
matrices composed of 11 nodes, these matrices always kept
invariant functional connectivity patterns on the same picture
condition at all 9 time points (solid lines in Figures 4–6).
Moreover, the shared 11 connectors always kept relatively
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FIGURE 7 | Affiliative community and nodal betweenness centrality of connector networks. (A,E,I) Affiliative community of connector network for positive, negative,
and neutral pictures, respectively. (B–D) Bar graph of nodal betweenness centrality for positive picutres. (F–H) Bar graph of nodal betweenness centrality for
negative pictures. (J–L) Bar graph of nodal betweenness centrality for neutral pictures. The node number was consistent with Tables 1–3, respectively for positive,
negative, and neutral pictures. Bar graphs of nodal betweenness centrality at TR = 5 were used for example.

robust during full trials. These shared connectors kept largely
correspondent to structural cores with high metabolic activity
in the structural backbone. Somewhat similar to a structural
backbone in structural connectivity networks (Hagmann
et al., 2008), the shared connector networks were tentatively
called functional backbone (see secion “Discussion”), which
is necessary for coordinating both the stability and the
flexibility of cognitive control networks during dynamic
affective processing.

DISCUSSION

The current study used graph theory approach to explore how
connector hubs dynamically evolute during cognitive control of
affective pictures. We used soft-thresholding to reserve negative
connections (Schwarz and McGonigle, 2011). Results revealed
that connector networks consisted of cross-modular negative
connectivities, which is impossible to be unveiled by hard-
thresholding. This might be because we were the first time to
use edge betweenness centrality to sparse connector networks,
different from traditional hard-thresholding that just removes
weak links (Rubinov and Sporns, 2010, 2011). Edge betweenness

centrality is the fraction of all shortest paths in the network
that contain a given edge and reflects an edge’ centrality of
in a network but not link strength (Brandes, 2001). Thus,
negative links between connector hubs is not noise or spurious
connections but take an important role in intermodular long-
distance communications. Overall, this study not only provides
a novel method to sparse functional networks but also reveals
that there exist negatively linking connector networks during
intermodular integration of affective information.

Connector networks exhibited valence-related dynamic
connectivity patterns over times, e.g., dynamic community
affiliations and time-varying connections with other parts
of whole-brain networks. These dynamic changes facilitate
intermodular communications of affective information.
However, connector networks did not exhibit small-worldness
because of low cluster coefficient but high characteristic path
length, regardless of picture valences. This implies that these
connector networks contain less direct links but more indirect
links. For example, the frontoparietal subnetwork does not
receive direct afferents from the visual system, but executes
top–down control indirectly via the ventral attention/salience
network, which contains the anterior insula (Seeley et al., 2007;
Vossel et al., 2012; Palaniyappan et al., 2013). This study
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FIGURE 8 | The samll-worldness of connector networks. (A) Gamma values (standardized cluster coefficients). (B) Lambda (standardized characteristic path length).
(C) Small-worldness. Small-worldness = gamma/lambda. Positive, red color; negative, green clolor; neutral, blue color.

requested participants to perform the silent-counting task while
they viewed pictures on the screen. Participants needed to
inhibit visually affective information when pictures appeared on
the screen. Behavioral results indicated that the counting task
significantly decreased arousal rating for positive and negative
pictures but not neutral pictures compared with offline viewing.
Consistent with behavioral findings, the frontoparietal system
(e.g., superior frontal gyrus and superior parietal lobe) through
negative connections dynamically top–down inhibited the neural
activities from salience subnetwork (e.g., insula) and visual
area (e.g., cuneus).

Affective picture processing also exhibited different nodal
betweenness patterns in connector networks. The present
study found that the left superior parietal lobe (BA7.4) in the
frontoparietal system exhibited larger nodal betweenness for
positive and neutral pictures, although connector networks
contained less hubs in the neutral picture condition than in
the positive picture condition. In contrast, connector networks
of negative pictures included larger nodal betweenness in
the superior medial frontal gyrus (BA10.6). These results
were consistent with the frontoparietal control system
consisting of flexible hubs that integrate information from

the external environment (e.g., visual stimuli) with stored
internal representations (e.g., silently counting) and regulate
distributed systems (e.g., visual, salience) according to affective
valences (Vincent et al., 2008; Woolgar et al., 2015). Moreover,
the left insula (BA44.2) had larger nodal betweenness centrality
in the salience system of all connector networks. This might be
attributed to that the insula regulates the interaction between the
salience of the selective attention created to achieve a task and the
salience of emotional arousal and has an important role in the
experience of emotions (Taylor et al., 2009; Quarto et al., 2016).

In particular, five cerebellar hubs participated in network
processing of negative pictures while fewer cerebellar connector
hubs for positive and neutral pictures. As being famous for
sensorimotor control (Bastian, 2011), the human cerebellum
has connections with other brain areas involved in affective
regulation, including the insula, amygdala, hypothalamus, as
well as the neocortex (Baumann and Mattingley, 2012). Patients
with cerebellar diseases had significant higher depressive scores
relative to healthy comparison groups (Wolf et al., 2009).
Neuroimaging studies revealed that the cerebellum was involved
in control processing of aversive stimuli and other basic emotions
(Moulton et al., 2011). However, cerebellar hubs were ignored
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FIGURE 9 | The shared 11 connector hubs of the functional backbone for positive, negative, and neutral pictures at TR = 5.

by several cortical parcellations (e.g., Power et al., 2011; Yeo
et al., 2011; Gordon et al., 2014). Future studies should follow in
interest the centrality of cerebellar hubs in whole-brain network
processing of affective information.

The shared 11 connectors kept robust connections and
formed the functional backbone. The functional backbone mainly
consisted of connector hubs with high metabolic activity and
might be constrained by cortical structural cores (Hagmann
et al., 2008). Different from structural connections, functional
connectivities reflect statistical dependence between nodes
and thus functional hubs have unnecessarily direct structural
connection with other hubs (Sporns, 2014). Under the disturbing
of active tasks, metabolic energy is necessarily redistributed
more to task-specific hubs to complete tasks (Liang et al., 2013;
Zhang et al., 2015). The present functional backbone exhibited
different connectivity patterns among positive, negative, and
neutral pictures, which reconfigured during cognitive control of
differently-valenced affective processing.

From a perspective of temporal dynamics, the existence
of the functional backbone helps not only maintain network
integrity (or task set) across full trials but also flexibly
integrate different types of information from different modules
during cognitive processing. Therefore, the functional backbone
plays a critical role in coordinating both the stability and
the flexibility of cognitive control networks during dynamic
processing of affective information. In particular, the connector
lesions influence processing in multiple systems and produces

impairment across several cognitive domains (Gratton et al.,
2012). Therefore, the functional backbone concept has important
implications for the understanding the relationship between
disruption of whole-brain network architecture and functional
deficits in neurological or psychiatric disorders. Future work
will need to further examine the importance of functional
backbone of connector networks in clinical research with other
experimental paradigms.

The limitations in this study must be mentioned as follows.
First, the sample size is small and future studies should use larger
sample to confirm the results. Second, dynamic networks are
a very active and fast field. Recently, some novel approaches
on temporal dynamic of brain networks have been put forward
(Sizemore and Bassett, 2018; Vidaurre et al., 2018). Future
studies should use these new approaches to further investigate
how connector networks dynamically evolute and verify the
importance of the functional backbone. Third, since the hard-
and soft-thresholding have different ideas about how to deal
with weak and negative connections, future studies might use the
simulating methods to completely compare the soft-thresholding
approach with the traditional approach so as to further clarify
their appropriateness.

In the summary, the present findings lay stress on the
necessity of conserving negative connections between multiple
modules in chronnectome research, and provide evidence for the
existence of functional backbone during dynamic evolution of the
connector networks. These results deepen the understanding of
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the relationship between structural and functional connectivity
during dynamic processing of affective information.
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