
fnins-13-01041 October 14, 2019 Time: 15:20 # 1

REVIEW
published: 15 October 2019

doi: 10.3389/fnins.2019.01041

Edited by:
Rubem C. A. Guedes,

Federal University of Pernambuco,
Brazil

Reviewed by:
Stéphane Auvin,

Hôpital Robert-Debré, France
Giangennaro Coppola,

University of Salerno, Italy

*Correspondence:
Angela M. Poff

abennett@health.usf.edu
Dominic P. D’Agostino

ddagosti@health.usf.edu

Specialty section:
This article was submitted to

Neuroenergetics, Nutrition and Brain
Health,

a section of the journal
Frontiers in Neuroscience

Received: 27 November 2018
Accepted: 13 September 2019

Published: 15 October 2019

Citation:
Poff AM, Rho JM and

D’Agostino DP (2019) Ketone
Administration for Seizure Disorders:

History and Rationale for Ketone
Esters and Metabolic Alternatives.

Front. Neurosci. 13:1041.
doi: 10.3389/fnins.2019.01041

Ketone Administration for Seizure
Disorders: History and Rationale for
Ketone Esters and Metabolic
Alternatives
Angela M. Poff1* , Jong M. Rho2,3† and Dominic P. D’Agostino1,4*

1 Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine,
University of South Florida, Tampa, FL, United States, 2 Departments of Pediatrics, Clinical Neurosciences, Physiology and
Pharmacology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine,
University of Calgary, Calgary, AB, Canada, 3 Division of Pediatric Neurology, Rady Children’s Hospital-San Diego, University
of California, San Diego, San Diego, CA, United States, 4 Institute for Human and Machine Cognition, Ocala, FL,
United States

The ketogenic diet (KD) is a high-fat, low-carbohydrate treatment for medically
intractable epilepsy. One of the hallmark features of the KD is the production of ketone
bodies which have long been believed, but not yet proven, to exert direct anti-seizure
effects. The prevailing view has been that ketosis is an epiphenomenon during KD
treatment, mostly due to clinical observations that blood ketone levels do not correlate
well with seizure control. Nevertheless, there is increasing experimental evidence
that ketone bodies alone can exert anti-seizure properties through a multiplicity of
mechanisms, including but not limited to: (1) activation of inhibitory adenosine and
ATP-sensitive potassium channels; (2) enhancement of mitochondrial function and
reduction in oxidative stress; (3) attenuation of excitatory neurotransmission; and (4)
enhancement of central γ-aminobutyric acid (GABA) synthesis. Other novel actions
more recently reported include inhibition of inflammasome assembly and activation of
peripheral immune cells, and epigenetic effects by decreasing the activity of histone
deacetylases (HDACs). Collectively, the preclinical evidence to date suggests that
ketone administration alone might afford anti-seizure benefits for patients with epilepsy.
There are, however, pragmatic challenges in administering ketone bodies in humans,
but prior concerns may largely be mitigated through the use of ketone esters or
balanced ketone electrolyte formulations that can be given orally and induce elevated
and sustained hyperketonemia to achieve therapeutic effects.

KEY POINTS

- Cellular metabolism plays a key role in the modulation of neuronal excitability.
- The high-fat, low-carbohydrate ketogenic diet (KD) is a validated treatment for

persons with epilepsy. and is also effective in preventing seizures in animal models.
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- Beta-hydroxybutyrate (βHB) and acetoacetate (AcAc), the ketone bodies that increase
during KD treatment, exert anti-seizure effects in animal models of epilepsy and
neurometabolic disorders.

- Although human clinical trials are still needed, therapeutic ketosis with ketone esters
represents a clinically viable formulation for the potential treatment of epilepsy and
other seizure disorders.

Keywords: ketogenic diet, metabolic therapy, beta-hydroxybutyrate, acetoacetate, ketosis, exogenous ketones,
ketone esters, epilepsy

INTRODUCTION

The traditional paradigm for discovery of new anti-seizure drugs
(ASDs, also referred to as antiepileptic drugs or AEDs) has
involved the assessment of agents blocking acutely provoked
or kindled seizures, and which has led to the development of
medications that largely influence cellular membrane-bound ion
channels and transporters localized to synapses in the central
nervous system (CNS) (Rogawski et al., 2016). More recently,
however, it has become clear that metabolic factors – whether
substrates or enzymes involved in cellular bioenergetics and
metabolism – can profoundly influence neuronal excitability
(Rogawski, 2016). Research linking brain metabolic changes to
neuronal excitability has been driven by efforts to understand
how the high-fat, low-carbohydrate ketogenic diet (KD) exerts its
anti-seizure – and potential neuroprotective – effects in persons
with epilepsy (Neal et al., 2008; Tanner et al., 2011; Rho and
Stafstrom, 2012; Stafstrom and Rho, 2012; Gano et al., 2014;
Rogawski et al., 2016).

While the efficacy of the KD in the clinical arena is clearly
established (Freeman et al., 1998; Neal et al., 2008, 2009;
Lambrechts et al., 2017), the mechanisms underlying its beneficial
effects remain incompletely understood. Of the many hypotheses
proposed (Rogawski et al., 2016), – a historical and unresolved
question – is whether ketone bodies (i.e., β-hydroxybutyrate
[βHB], acetoacetate [AcAc] and acetone [ACE]) are direct
mediators or whether they are epiphenomena, instead indicative
of a shift from glycolysis to fatty acid oxidation. Certainly, the
current human clinical data do not yet strongly support the view
that ketone bodies possess anti-seizure properties independent of
their serving as fuel for ATP production, mostly because clinical
and a few experimental studies have shown that blood ketone
levels do not correlate directly with seizure control (Gilbert
et al., 2000; Thavendiranathan et al., 2000; van Delft et al.,
2010; Dallerac et al., 2017), despite increasing evidence in the
preclinical literature (Kim et al., 2015; Simeone et al., 2018) and
more recent clinical evidence to the contrary (Buchhalter et al.,
2017). And all three major ketones (βHB, AcAc and ACE) have
been shown to have anti-seizure effects in prior animal studies
(Keith, 1931; Rho et al., 2002; Likhodii et al., 2003; Kim et al.,
2015). For a comprehensive review of ketone bodies as anti-
seizure agents, see Simeone et al. (2018). In this manuscript, we
review the literature surrounding exogenous administration of
ketogenic agents as a potential anti-seizure therapy. As the field
is in its infancy, there is little published clinical data available;

therefore, we place particular focus on the scientific rationale
and pre-clinical evidence which support the translation of these
therapies into currently ongoing and future human trials.

KETONE METABOLISM

The pathways involved with ketone body synthesis and
metabolism have been firmly established for decades. Fatty acids
are converted to acetyl-CoA which then enters the tricarboxylic
acid (TCA) cycle. Under conditions where fatty acid levels
increase and exceed maximal TCA cycle function, such as
during fasting or treatment with the KD, acetyl-CoA is diverted
to ketogenesis. Two molecules of acetyl-CoA are used to
form acetoacetyl-CoA via acetoacetyl-CoA thiolase. Acetoacetyl-
CoA is then condensed with another molecule of acetyl-
CoA to form 3-hydroxy-3-methylglutaryl CoA (HMGCoA) in
a non-reversible step catalyzed by the rate-limiting enzyme
HMG-CoA synthase 2 (HMG-CoAS2). The ketone body AcAc
is then produced via the breakdown of HMG-CoA, which
releases a molecule of acetyl-CoA. AcAc in turn can either be
interconverted to βHB through the βHB-dehydrogenase enzyme
or can be spontaneously decarboxylated to acetone and released
primarily through the kidneys or lungs. Ketone bodies can then
pass through the blood-brain-barrier through monocarboxylic
acid transporters (MCTs) and enter the brain interstitial space.
After being transported into mitochondria, ketone bodies can be
converted back through several enzymatic steps to acetyl-CoA
which enters the TCA cycle in neurons or glia to produce ATP.
Alternatively, ketone bodies may exert other biological effects
such as those described below.

EVIDENCE FOR THE ANTI-SEIZURE
EFFECTS OF KETONE BODIES

Not surprisingly, given the key hallmark feature of the KD
is systemic ketosis, investigators focused on ketone bodies as
possible mediators of anti-seizure effects. Indeed, ketone bodies
were shown as early as the 1930’s to protect against acutely
provoked seizures in rabbits (Keith, 1931, 1932, 1933, 1935),
findings that were replicated and expanded decades later in
multiple rodent models of seizures and epilepsy (Likhodii and
Burnham, 2002; Rho et al., 2002; Likhodii et al., 2003; Minlebaev
and Khazipov, 2011; Kim et al., 2015; Yum et al., 2015). Notably,
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in vivo anti-seizure effects were reported for either BHB, AcAc or
ACE. However, the question of whether one or a combination
of these ketone bodies affords even greater efficacy has not
been answered. Taken together, these and other studies provide
compelling evidence that ketone bodies can induce significant
anti-seizure effects, and thus one cannot readily dismiss the
possibility that these metabolic substrates contribute directly to
the clinical effects of the KD.

In contrast to preclinical data referenced above, ketone bodies
(when administered in vitro at low millimolar concentrations)
were unable to affect either excitatory or inhibitory hippocampal
synaptic transmission (Thio et al., 2000) and did not affect
voltage-gated sodium channels (Yang et al., 2007) in normal
hippocampus, unlike how current anti-seizure drugs are believed
to generally work (Rogawski et al., 2016). Notwithstanding
these observations, there are two aspects of ketone body
action that overlap with synaptic function, but in distinct
ways. First, ketone bodies (notably, AcAc) were shown to
block neuronal excitability and seizures by inhibiting the
presynaptic release of glutamate by modulating vesicular
glutamate transporters or VGLUTs (Juge et al., 2010). Second,
BHB was shown to alter the aspartate-to-glutamate ratio by
driving the aspartate aminotransferase reaction (specifically, by
decreasing the transamination of glutamate to aspartate) such
that glutamate decarboxylation to GABA is increased (Erecinska
et al., 1996; Daikhin and Yudkoff, 1998). The increase in
GABA production would then be expected to enhance inhibitory
neurotransmission and dampen seizure activity. Despite the
rational neurochemical data, more direct evidence for this
mechanism has not emerged (Yudkoff et al., 2001; Lund et al.,
2009, 2011; Valente-Silva et al., 2015; Zhang et al., 2015), and
this GABAergic hypothesis of ketone body action has not been
reconciled with the fact that patients with epilepsy who were
refractory to GABAergic medications often respond to the KD
(Freeman et al., 2006).

The central challenge within the field of diet-based treatments
for epilepsy has been to demonstrate clear causal links between
cellular metabolism and plasmalemmal membrane excitability.
A strong candidate molecular target was discussed nearly
20 years ago, i.e., ATP-sensitive potassium channels that, when
activated by reduced ATP-to-ADP ratios, cause membrane
hyperpolarization (Schwartzkroin, 1999). Using brain slices from
normal and genetically engineered mice, Yellen and colleagues
(Ma et al., 2007) showed that ketone bodies decreased the
spontaneous firing of GABAergic interneurons in the substantia
nigra pars reticulata (which is a known subcortical modulator of
seizure propagation in the brain). Moreover, they demonstrated
that this action required KATP channels and GABAB receptors
(Ma et al., 2007). However, it remains unclear whether KATP
channels can be directly activated by ketone bodies, as other
investigators have shown that both the KD and ketone bodies
increase cellular levels of ATP, which would inhibit KATP
channel opening (DeVivo et al., 1978; Bough et al., 2006;
Kim et al., 2010). One potential mechanism reconciling these
discrepant observations was provided by Kawamura et al.
(2010) a few years later. These investigators showed that
under low-glucose conditions (observed during KD treatment),

ATP efflux from pyramidal neurons in CA3 hippocampus
leads to conversion of ATP to adenosine by ectonucleotidase
enzymes and subsequent activation of inhibitory adenosine
receptors (A1Rs) which are coupled to KATP channel activation
(Kawamura et al., 2010).

In more recent years, other novel targets for ketone body
action have been reported. Kim et al. (2015) reported that BHB
blocks spontaneous recurrent seizures in the Kcna1-null mouse
model of epilepsy, and does so by inhibiting mitochondrial
permeability transition – a critical death switch for the cell (Izzo
et al., 2016). Further, while other studies have revealed ever
increasing complexity of ketone body action on biological targets,
they involved non-epileptic and/or extra-CNS tissues. Among the
most intriguing are the following: (1) systemic anti-inflammatory
effects induced by BHB via inhibition of nucleotide-binding
domain (NOD)-like receptor protein 3 (NLRP3) inflammasome
assembly (Youm et al., 2015); (2) neuroprotective and anti-
inflammatory effects of BHB through an interaction with the
hydroxycarboxylic acid 2 (HCA2) receptor (Rahman et al., 2014);
and (3) inhibition of histone deacetylases (HDACs) and anti-
oxidant effects in renal tissue by BHB (Shimazu et al., 2013).
All of these mechanisms, although incompletely understood
in the context of epileptic brain, expand the biological profile
of BHB and provide further evidence that a strategy based
on ketone body administration or inducing prominent ketosis
might yield significant and measurable anti-seizure effects in the
clinical setting.

HISTORY AND PRAGMATIC
CHALLENGES OF IMPLEMENTING
THERAPEUTIC KETOSIS – RATIONALE
FOR KETONE ESTERS

Administering the KD to implement therapeutic ketosis for
seizure disorders is not without its challenges. The restrictive
and precise macronutrient composition required to maintain
and sustain nutritional ketosis can be difficult to implement.
So while fundamental research may be spurred by the intrinsic
curiosity and appeal of understanding how a dietary treatment
can control epileptic seizures, a longstanding goal has been
to determine whether a “KD in a pill” could be developed
(Rho and Sankar, 2008). Indeed, investigators have sought
ways to circumvent conventional means to administer the
KD, one through more liberal and less restrictive diets such
as the modified Atkins diet (Eric Kossoff et al., 2016) or
the Low-Glycemic Index Therapy (LGIT) (Muzykewicz et al.,
2009). Experimentally, other researchers have focused on ketone
bodies and pragmatic formulations that could eventually be
administered to humans to safely induce a dose-dependent and
therapeutic hyperketonemia (Veech, 2004; D’Agostino et al.,
2013; Hashim and VanItallie, 2014).

The idea of administering a ketogenic agent to induce and
sustain therapeutic ketosis for parenteral and oral nutrition has
been around for decades (Miller and Dymsza, 1967). Researchers
in the 1950s at Massachusetts Institute of Technology, in
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collaboration with the Air Force Research Laboratory (AFRL),
focused their efforts on high energy-dense compounds that
had the greatest nutritional potential for long-duration manned
spaceflight (Bornmann, 1954). Numerous agents were tested, but
the ketogenic compound R,S-1,3-butanediol (BD; also known
as R,S-1,3-butylene glycol) was selected as the most promising
energy source, leading to further studies to determine its safety,
stability, and potential as a food additive and preservative
(Dymsza, 1975). Data were collected on rodents, dogs, pigs, and
humans given this ketogenic compound, and although it induced
hypoglycemia concomitant with ketonemia, it was deemed
remarkably safe. R,S-1,3-butanediol met the criteria needed for
the optimal synthetic “space food”, but the “unpleasant taste
problem” and lack of FDA approval prevented its use for military
or space flight applications.

Despite the palatability challenges, investigators remained
intrigued with the potential applications of BD given its metabolic
characteristics that mimicked fasting – mild hypoglycemia and
safe and predictable hyperketonemia. When ingested orally, BD
is metabolized by the liver via alcohol dehydrogenase (ADH) to
β-hydroxybutyraldehyde, which is then rapidly oxidized to BHB
by aldehyde dehydrogenase (Tate et al., 1971). BD contributes
approximately 6 kcal/gm of energy and can produce dose-
dependent millimolar concentrations of ketones in the blood at
a ratio of 6:1 of BHB to AcAc (Tobin et al., 1972; Desrochers
et al., 1992; D’Agostino et al., 2013). Published studies and a
number of unpublished reports pertaining to the nutritional and
metabolic effects of BD, including a human clinical study feeding
study (young male and female subjects given 250 mg/kg body
weight per day in bread for four separate 7-day periods), reported
a blood glucose lowering effect as well (12% lower relative to
controls) (Tobin et al., 1975). This was presumably due to a
redox shift in the liver suppressing gluconeogenesis (Ciraolo
and Previs, 1995). Although the mild hypoglycemic effect was
a potential concern, extensive toxicology studies concluded that
BD is safe with very few adverse health effects in animals
and humans (Scala and Paynter, 1967; Dymsza, 1975; Hess
et al., 1981). Consequently, it was given the status of being
Generally Recognized As Safe (GRAS) in May 1997 by the FDA
(Docket No. 87G-0351).

The early extensive safety and feasibility studies of BD, its
FDA GRAS status, and high stability (i.e., shelf-life) inspired
chemists and researchers to use BD as a backbone for synthesizing
ketone esters (Brunengraber, 1997; Veech et al., 2001). Chemical
synthesis by adding ketones (either BHB or ACAC) to this
ketogenic diol through transesterification makes the resulting
ketone esters the most energy-dense ketogenic supplements on
a per gram basis. In addition to BD-derived ketone esters, there
also exist glycerol-derived ketone esters of BHB. The diol BD and
triol glycerol contain two or three hydroxyl groups, respectively,
and through transesterification, these functional groups can pair
with ketone bodies to make mono-esters, di-esters, or such
as in the case of glycerol, a tri-ester compound known as
glyceryl-tris-3-hydroxybutyrate (Hashim and VanItallie, 2014).
Although deriving ketone esters utilizing glycerol as a backbone
is feasible (Birkhahn and Border, 1978), the simultaneous
elevation of glucose (glycerol is a gluconeogenic precursor)

upon hydrolysis and subsequent increase in glycolysis can be
unfavorable in the context of inducing anti-seizure effects. The
advantage of BD as a backbone is that it delivers ketones upon
esterase hydrolysis (in both gut and liver) and also metabolizes
completely to BHB to further elevate and sustain ketosis in
a predictable manner. Furthermore, dietary interventions that
reduce glucose availability, Muzykewicz et al. (2009) and drugs
targeting glycolysis such as 2-deoxyglucose (2-DG), Stafstrom
et al. (2009) induce anti-seizure effects independent of ketone
elevation, so mild hypoglycemia as a “side-effect” is theoretically
advantageous for choosing ketogenic supplements that can be
effective in controlling epileptic seizures.

The BD-derived ketone esters have been shown to induce
a dose-dependent hyperketonemia (1–7 mM) in mice, rats,
dogs, pigs, and humans (Desrochers et al., 1995; Clarke et al.,
2012; Pascual et al., 2014; Newport et al., 2015). The emerging
data indicate that these compounds produce no negative health
effects when given acutely or chronically, aside from an aversive
taste and the potential for dose-dependent gastrointestinal side
effects. There are a growing number of promising metabolic
alternatives to ketone esters that have improved or neutral
taste and are considerably less expensive to produce. Emerging
ketogenic supplements and formulas are being evaluated for
their therapeutic efficacy (Borges and Sonnewald, 2012; Kesl
et al., 2016) and their anti-seizure potential is discussed
below (Table 1).

EVIDENCE FOR THE EFFICACY OF
KETOGENIC AGENT-BASED THERAPIES
FOR EPILEPSY

The science and clinical applications of therapeutic ketosis
for neurological applications is growing rapidly, but work
evaluating exogenous ketogenic agents remains largely in the
pre-clinical space (Stafstrom and Rho, 2012). In addition
to ketone esters, there are numerous alternative sources of
ketones and ketogenic precursors being developed and shown
to produce dose-dependent elevations in blood BHB and AcAc
in animals, human case report and pilot studies (Puchowicz
et al., 2000; Clarke et al., 2012; D’Agostino et al., 2013; Kesl
et al., 2016). Ketone supplemental therapies allow for a calculated,
rapid induction and maintenance of physiologic ketosis that
mimics levels associated with KD treatment for epileptic
seizures (Figure 1). In humans it is likely that 2–3 doses/day
would be needed to maintain therapeutic hyperketonemia.
Ketone supplementation also appears to fundamentally shift
metabolic physiology and fuel utilization (Cox et al., 2016),
so its potential for supporting physical endurance and military
applications is emerging. Since metabolic shifts can affect so
many cellular and molecular processes simultaneously, it is
not surprising that there is a growing list of mechanisms that
have been implicated for exogenous ketones, as previously
discussed. However, efficacy may vary depending on the model
and endpoints utilized, as well as the physicochemical and
pharmacological properties of the individual ketogenic agents
and formulations.
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TABLE 1 | Studies evaluating anticonvulsant efficacy of ketogenic agents in pre-clinical models.

Authors Ketogenic
agent

Route of
admin

Species Model System Result References

Rho et al., 2002 AcAc, ACE,
L-BHB

i.p. Mice Frings audiogenic-induced Sz ↑Latency to Sz(D-BHIB no
efect)

Rho et al., 2002

Likhodii et al., 2003 ACE i.p. (acute)
Oral in H20
(chronic)

Rat PTZ-induced Sz ↑Sz threshold
↓Sz activity

Likhodii and
Burnham, 2002

Likhodii et al., 2003 ACE i.p. Rat Maximal Electroshock Test Amygdala
Kindling Test
AY-9944Test

↑Sz threshold
↓Sz activity

Likhodii et al., 2003

Minlebaev and
Khazipov, 2011

DL-βHB i.p. Suckling
Rat

Fluorthyl-induced Sz ↓Sz activity Minlebaev and
Khazipov, 2011

Wlaz et al., 2012 Caprylic
Acid (C8)

Oral Mice i.v. PTZ-induced Sz
6Hz Psychomotor Sz Maximal
Electroshock Test

↑Sz threshold (6Hz& i.v.
PTZ Sz)
No effect MEST

Wlaz et al., 2012

D’Agostino et al.,
2013

BD-AcAc2 Oral Rat Hyperbaric Hyperoxia-induced
CNS-OTSz

↑Latency to Sz D’Agostino et al.,
2013

Wlaz et al., 2015 Capric Acid
(C10)

Oral Mice 6Hz Psychomotor Sz Maximal
Electroshock Test i.v. PTZ-induced Sz

↑Sz threshold (6Hz & MEST)
No effect i.v. PTZSz

Wlaz et al., 2015

Viggiano et al.,
2015

BD-ACAL2 Oral Rat PTZ-induced Sz ↑TPTZ threshold for Sz
induction

Viggiano et al.,
2015

Yum et al., 2015 D-βHB i.p. (acute
and chronic)

Rat NMDA-induced Sz No effect (acute)
↓Sz frequency (chronic)

Yum et al., 2015

Kim et al., 2015 BHB s.c.
(osmotic
pump)

Mice Kcna-null Mutant Mice ↓Sz frequency (in vivo)
↓Spontaneous Sz-like events
(hippocampal slice)

Kim et al., 2015

Chang et al., 2015 4-ethyloctanoid
acid (4-EOA)

Oral Mice 6Hz Psychomotor Sz Maximal
Electroshock Test S.c. Metrazol Sz
Threshold Test Corneal Kindled Mouse
Model

↑Sz control
↑Sz threshold

Chang et al., 2015

Kovacs et al., 2017 BD-AcAc2

KS-MCT
Oral Rat WAG/Rjj rats, absent Sz ↓Spike Wave Discharges Kovacs et al., 2017

Ciarlone et al.,
2016

BD-AcAcz Oral Mice Ube3a m-/p+ and WT mice
Audiogenic-induced Sz Kanic
acid-induced Sz

↑Latency to Sz
↓Sz Activity
↓Sz Severity

Ciarlone et al.,
2016

A number of pre-clinical studies in varied seizure models have revealed anticonvulsant effects of exogenous ketogenic agents, including ketone salts, MCTs,
and ketone esters.

KETONE ESTERS

Currently, it appears that certain ketone esters hold great
anti-seizure potential based upon previous work and on their
pharmacokinetic profiles, although the current limitation is that
research to date has largely been performed in pre-clinical animal
models. When ketone esters are administered, gastric esterases
liberate ketones (BHB or AcAc) as a free acid from a backbone
molecule. This varies depending upon the specific formulation,
but a ketogenic precursor such as BD would be ideal. As
previously discussed, BD is subsequently metabolized by the liver
to produce BHB (D’Agostino et al., 2013). Thus, the ketone esters
currently available are unique in that they can directly elevate
ketones and supply ketogenic precursors that can favorably
change metabolic parameters like the glucose-ketone index (GKI)
(Meidenbauer et al., 2015). Additionally, synthetically derived
ketone esters are currently the most potent form of exogenous
ketones available, but their potency also necessitates a thorough
investigation of their long-term safety and toxicity which is
currently lacking. When given at tolerable doses, the potential

for side-effects like ketoacidosis are theoretically possible, so
human studies are needed to assess at what dose and time interval
exogenous ketones should be administered.

The first ketone esters appeared in the late 1970s. Birkhahn
and colleagues synthesized a monoester of glycerol and
AcAc (monoacetoacetin) for parenteral nutrition. These studies
demonstrated that monoacetoacetin induced hyperketonemia
comparable to fasted rats at a high dose of 50 g/kg per day
(Birkhahn et al., 1977, 1979; Birkhahn and Border, 1978). In
an attempt to increase the caloric density of monoacetoacetin,
they synthesized both a monoester and triester of glycerol and
BHB. Later, Desrochers and colleagues synthesized monoesters
and diesters of AcAc with BD, and these had distinctly different
pharmacokinetic profiles – i.e., they elevated both AcAc and
BHB (Desrochers et al., 1992, 1995). Pigs given oral boluses
of the ketone ester R,S-1,3-butanediol acetoacetate diester (BD-
AcAc2), at 15% of the daily caloric requirement exhibited
a peak total ketone level of 5 mM within 30 min, before
slowly returning to baseline after several hours (Desrochers
et al., 1995). No deleterious side-effects were observed through
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FIGURE 1 | Exogenous ketogenic agents induce therapeutic ketosis within hours of oral ingestion. (A–C) Blood ketones following intragastric administration (time 0)
of water, R,S-1,3-butanediol acetoacetate diester (BD-AcAc2), and 1,3-butanediol (BD) in Sprague Dawley rats. (A) β-hydroxybutyrate (βHB) level was elevated
compared with control after either ketogenic compound (P < 0.001). (B) Acetoacetate (AcAc) level was increased significantly by BD-AcAc2 (P < 0.001) compared
with water or BD. (C) Acetone level increased significantly more after treatment with BD-AcAc2 (P < 0.001). (D) Blood ketones (R-BHB only) following intragastric
administration (time 0) of BD-AcAc2 in male human (n = 1). Figure adapted with permission from D’Agostino et al. (2013), American Physiological Society.
∗Significant difference from control and #significant difference from BD.

intragastric or high-dose IV administration, including an absence
of pathological hypoglycemia and acidosis. These and other
ketone esters have demonstrated an ability to induce a dose-
dependent hyperketonemia (1–7 mM) in mice, rats, dogs, and
humans (Figure 1; Ciraolo and Previs, 1995; Sylvain et al., 1995;
Brunengraber, 1997; Puchowicz et al., 2000; Srivastava et al.,
2012). In a 28-day study, a daily intragastric gavage (5 gm/kg
body weight) of BD-AcAc2 induced significantly elevated blood
ketone levels and significantly reduced blood glucose levels
without significantly altering blood triglyceride or lipoprotein
levels (Kesl et al., 2015). In a 15-week chronic feeding study,
the BD-AcAc2 was administered to Sprague Dawley rats in low-
dose (10 gm/kg/day) (LKE) and high-dose (25 g/kg/day) (HKE)
ad libitum protocols. Serum clinical chemistry of both LKE and
HKE did not reveal any alterations in markers of kidney and
liver function compared to rats fed standard chow (Poff et al.,
2016), suggesting that chronic high-dose feeding was without
overt toxicity. Similarly, Clarke et al. (2012) demonstrated the
safety of a BD-backed BHB monoester in rats and humans,
and this has also been documented in a recent case study of

Alzheimer’s disease, where the subject consumed a relatively high
dose (20–30 g) thrice daily over 20 months (Srivastava et al., 2012;
Newport et al., 2015).

The anti-seizure effects of ketone esters were first reported
in a unique seizure model which uses hyperbaric hyperoxia
(HBO) to reliably induce epileptic-like (i.e., tonic-clonic) seizures
in normal rats, a condition known as CNS oxygen toxicity
(CNS-OT). The rats in this study were eating standard rodent
chow with abundant carbohydrate (>60%) before induced into
hyperketonemia. A single oral dose of the ketone ester BD-
AcAc2 induced rapid (within 30 min) and sustained (>4 h)
ketosis (>3 mM BHB and >3 mM AcAc, 0.5 mM ACE) and
prolonged the latency to seizures by 574% (Figure 1) (D’Agostino
et al., 2013). Elevations in AcAc and ACE levels were necessary
for producing the anti-seizure effects in this particular model
of tonic-clonic seizures. BD alone (not in ester form) elevated
blood BHB levels (>5 mM) but did not significantly alter
AcAc or ACE levels, nor did it prolong the latency to seizure
induction. This encouraging response prompted preliminary
investigations into preventing or delaying seizures with ketogenic
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supplements in a variety of transgenic rodent and chemical-
induced seizure models.

Pentylenetetrazol (PTZ) is a GABAA receptor antagonist
and epileptogenic agent that is used to induce seizures in
rodents for preclinical development of anti-seizure therapies.
In a study by Coppola and colleagues, the dosage threshold
for seizure induction by PTZ was assessed in control (water)
and KE-treated rats (Viggiano et al., 2015). A single oral dose
(4 gm/kg body weight) of BD-AcAc2 elevated blood BHB to
2.7 mM and increased the threshold of PTZ-evoked seizures from
122 ± 6 mg/kg to 140 ± 11 mg/kg. Although AcAc was not
measured in this study, the KE was BD-AcAc2 which produces
an approximate 1:1 ratio of BHB and AcAc in the blood. Thus, it
can be assumed based on PK data (D’Agostino et al., 2013) that
the concentration of AcAc was >2 mM.

More recently, the anti-seizure effect of ketone ester treatment
has been evaluated in other Sz models. For example, it has been
demonstrated that intragastric administration (gavage) of ketone
supplements, such as KE, decreased the absence epileptic activity
(spike-wave discharges: SWDs) in WAG/Rij rats (Kovacs et al.,
2017). The increase in BHB may exert its therapeutic effects on
neurological diseases via modulation of inflammatory systems
(Newman and Verdin, 2014; Youm et al., 2015; Yamanashi
et al., 2017), which are implicated in the pathophysiology of
absence epilepsy (Kovacs et al., 2006, 2011; Tolmacheva et al.,
2012; Russo et al., 2014). For example, BHB decreased the
expression of NLRP3, ASC, caspase-1 and IL-1β (Bae et al.,
2016), attenuated release of IL-1β in human monocytes (Youm
et al., 2015) and mitigated stress-induced increase in TNF-
α and IL-1β in the hippocampus (Yamanashi et al., 2017).
Moreover, BHB attenuates the LPS-evoked increase in IL-1β

and TNF-α level, as well as LPS-generated increase in COX-
2, IL-1β, and TNF-α mRNA expression in BV-2 cells, likely
via inhibition of NF-κB signaling (Fu et al., 2014). It was also
demonstrated that BHB may decrease inflammatory processes
(e.g., expression of COX and IL-1β) via its G-protein-coupled
receptor 109A (GPR109A), which evoked inhibitory influence
on NF-κB signaling pathway in microglial cells (Fu et al.,
2015; Graff et al., 2016). Thus, ketosis suppresses inflammatory
signaling (e.g., NLRP3/TLR4/IL-1R/NF-κB) signaling pathways
and proinflammatory cytokines/enzymes (e.g., IL-1β and COX-
2) that are linked pathophysiologically to epilepsy and other
seizure disorders. Interestingly, BHB induced suppression of
inflammation was independent of TCA cycle oxidation, and
is thus independent of its function as an energy metabolite.
Furthermore, the anti-inflammatory changes associated with
BHB were not dependent on AMPK signaling, reactive oxygen
species (ROS), glycolytic inhibition, UCP, or SIRT2 signaling,
further validating its function as a signaling metabolite with
potential anti-seizure function. Indeed, other research has
shown that inhibition of the NLRP3 inflammasome mitigates
the severity of numerous inflammatory diseases, including
atherosclerosis, type 2 diabetes, Alzheimer’s disease, and gout,
among others (Martinon et al., 2006; Duewell et al., 2010;
Vandanmagsar et al., 2011; Heneka et al., 2013; Youm et al.,
2013, 2015). It is also well established that proinflammatory
mediators evoke epileptogenic and ictogenic properties following

traumatic brain injury (Webster et al., 2017), and thus ketogenic
supplementation like BD-AcAc2 that target these inflammatory
pathways hold potential for treating post traumatic epilepsy,
especially penetrating brain injuries where neuroinflammation is
thought to trigger seizure occurrence.

In addition to classical seizure models, the seizure-prone
Ube3a m-/p+ mouse model of Angelman Syndrome was
studied by supplementing BD-AcAc2 in the food ad libitum for
8 weeks (Ciarlone et al., 2016). The KE therapy improved motor
coordination, learning and memory, and synaptic plasticity and
in AS mice, as well as suppressed Sz frequency and severity.
The kainic acid-induced mouse seizure model was also studied.
KE increased latency to Sz, decreased Sz activity, and decreased
Sz severity. Interestingly, the KE altered brain amino acid
metabolism in AS treated animals by increasing levels of glutamic
acid decarboxylase (GAD) 65 and 67 (Ciarlone et al., 2016), thus
shifting the neuropharmacology of the brain to favor a higher
GABA/glutamate ratio. These pre-clinical findings suggested that
KE supplementation produces sustained ketosis and ameliorates
many symptoms of AS, including seizure activity. Pre-clinical
animal studies with exogenous ketone supplementation therapy
have inspired human clinical trials in patients with Angelman
syndrome (ClinicalTrials.gov Identifier: NCT03644693) and a
wide variety of other neurological and metabolic disorders (e.g.,
NCT03659825, NCT03531554, NCT03226197, NCT03011203,
NCT03889210 NCT03878225).

MEDIUM CHAIN TRIGLYCERIDES

Ketogenic fatty acids such medium-chain triglycerides (MCTs)
have been a therapy for intractable childhood epilepsy since
the early 1970s (Huttenlocher et al., 1971). MCTs are rapidly
absorbed, energy dense (8.3 calories/gram), water-miscible,
tasteless, and have a much greater ketogenic potential than long
chain fatty acids, Huttenlocher et al. (1971) making them an
ideal alternative fat source for the KD. Commercial MCT oil is
comprised primarily of caprylic acid (C8:0, octanoic acid) and
capric acid (C10:0, decanoic acid), and these are absorbed directly
into the bloodstream via the hepatic portal vein without the need
for bile or pancreatic enzymes for degradation. MCT-induced
ketosis (up to 1 mM βHB) occurs independent of carbohydrate
or protein consumption, but is currently limited in clinical usage
due to gastrointestinal (GI) side effects associated with the dose
needed to produce therapeutic ketosis (approximately 40 g/day)
(Huttenlocher, 1976). Similarly, the original MCT-based KD
allowed 60% of its energy from MCTs, but the reported GI distress
in some children (Huttenlocher, 1976; Trauner, 1985; Sills et al.,
1986; Mak et al., 1999) lead to a modified MCT-based (30%) KD
that induced lower levels of ketosis (Neal et al., 2009).

Several pre-clinical studies have demonstrated that specific
MCTs (e.g., C10:0) may have anti-seizure properties through a
mechanism of action independent of ketone metabolism and
signaling (Chang et al., 2015; Augustin et al., 2018). Oral
administration of 4-ethyloctanoic acid (4-EOA) increased Sz
control and Sz threshold in several murine Sz models, including
the 6 Hz psychomotor Sz model, the maximal electroshock test
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(MEST), the s.c. metrazol Sz threshold test, and the corneal
kindled mouse model (Chang et al., 2015). Capric acid (C10
MCFA) increased Sz threshold in the 6 Hz psychomotor and
MEST Sz models, but did not affect outcome in i.v. PTZ-induced
Sz (Wlaz et al., 2015). And caprylic acid (C8 MCFA) increased
Sz threshold in the 6 Hz psychomotor and i.v. PTZ-induced Sz
models, but not in the MEST model (Wlaz et al., 2012).

The addition of MCTs to ketone esters or ketone salts
may offer a novel way to improve or further augment their
anti-seizure/neuroprotective potential (Ari et al., 2018).
A combination of BHB salts and MCT oil has been administered
in ratios of 1:1 to 1:2 mixtures. Formulating in this way
allows for rapid and sustained elevation of ketosis by delivering
exogenous ketones while simultaneously stimulating endogenous
ketogenesis with MCTs. In addition, the combination
formulation allows for a lower dosing of the components
as compared to administering the individual supplements, thus
reducing potential for side effects (gastric hyperosmolality) and
resulting in a distinct blood ketone profile that is sustained over
a longer period of time (D’Agostino et al., 2015). In a 28-day
study in rats, the combination of MCT with a 50% Na+/K+
βHB salt mixture (in 1:1 solution) significantly elevated and
sustained blood ketone levels and reduced blood glucose levels
in a dose-dependent manner (Kesl et al., 2016). In a 15-week
study, Sprague Dawley rats were administered a 1:1 mixture of
Na+/Ca+2 ketone salt+MCT oil (20% by weight which resulted
in approximately ∼25 g/kg/day) in their food fed ad libitum.
The combination-supplemented rats had significantly sustained
and elevated blood ketone levels at weeks 3, 4, 8, 10, and 13
(Kesl et al., 2014). Exogenous ketone supplements have typically
been studied as a single stand-alone supplement, but the unique
combination MCT added to ketone salts or ketone esters appears
to have pharmacokinetic advantages and favorable behavior
effects (Ari et al., 2016; Kesl et al., 2016). Formulating specific
supplements will likely enhance the tolerability, absorption, peak
and sustained levels of ketones in the blood, which may also
translate to greater therapeutic potency and anti-seizure efficacy
(Kovacs et al., 2017; Ari et al., 2018).

KETONE SALTS

The recent commercialization of ketone salt supplements has
fueled interest in these formulations for general health and
wellness, but their clinical efficacy for seizure disorders remains
largely unknown. Originally, researchers attempted to administer
oral BHB or AcAc in their free acid forms; however, this was
prohibitively expensive and ineffective. Subsequently, it was
suggested to buffer the free acid of BHB with sodium, but it
was feared that sodium overload would occur at therapeutic
levels of ketosis. Furthermore, the existing data does not support
elevating BHB alone will effectively prevent seizures in animal
models (Bough and Rho, 2007). A study showed that oral
administration D,LBHB (racemic BHB) treatment for multiple
acyl-CoA dehydrogenase deficiency (MADD) was remarkably
therapeutic for cerebral and cardiac complication in doses from
80 to 900 mg/kg/day (BHB levels 0.19-0.36 mM) in children with

the disease (Hove et al., 2003). Similarly, a successful treatment
of severe cardiomyopathy in a pediatric patient with glycogen
storage disease type III with the KD and racemic ketone (D/L-
BHB) sodium salts was achieved (Valayannopoulos et al., 2011).
Although these results are compelling, these protocols would
require ingesting between 5.6 and 6.3 g sodium/day for a 70 kg
man. Considering the potential safety effects of such a large
sodium load, the costs of the administration of Na+/βHB salts
to achieve ketosis made this approach unrealistic (Veech, 2004).
Since any physiological electrolyte (Na+, K+, Ca2+, Mg2+)
readily ionically bonds with BHB, it was determined that a
balanced ketone electrolyte formulation would be safer and more
feasible for sustaining therapeutic ketosis. Over the last few
years chemists have synthesized these balanced ketone electrolyte
formulations and numerous studies have been published in
animal models (Kephart et al., 2017) and humans (Stubbs et al.,
2017, 2018a). A few pre-clinical studies have evaluated the anti-
convulsant effects of ketone salts delivered exogenously by i.p.
injection (Figure 1). D-BHB i.p. increased latency to Sz in the
Frings audiogenic-induced Sz mouse model (Rho et al., 2002).
I.p. D/L-BHB decreased Sz activity in suckling rats given flurothyl
(Minlebaev and Khazipov, 2011), and chronic, but not acute,
i.p. administration of D-BHB decreased Sz frequency in NMDA-
induced rat Sz model (Yum et al., 2015). Similarly, s.c. delivery
of BHB via osmotic pump decreased Sz frequency in vivo,
and decreased spontaneous Sz-like events (SLE) in hippocampal
slices, from Kcna1-null mutant mice (Kim et al., 2015). At the
time of this writing, millions of doses of commercially available
ketone salt products have been purchased and consumed, and no
severe adverse reactions have been reported on the FDA website.
Widespread use of these products, and better formulations for
palatability and tolerability, may help to advance their clinical
acceptance and implementation as a means to induce and sustain
therapeutic ketosis. Regardless, significant clinical evaluation of
the safety and efficacy of chronic ketone salt consumption for
seizure disorders has yet to be published.

LIMITATIONS

There are a number of studies that highlight the limitations to
ketone salt and ketone esters that are available commercially
or for research applications. These limitations are primarily
due to gastrointestinal symptoms associated with aversive taste
or osmotic load in the GI tract (Leckey et al., 2017; Fischer
et al., 2018). Future studies need to assure that the ketone
supplement formulations are well tolerated and provide an ideal
pharmacokinetic profile of sustained ketone elevation before such
supplements are evaluated in humans (Stubbs et al., 2018b). Of
relevance to this review, it is important to highlight that while
pre-clinical studies have demonstrated that ketone supplements
offer promising anti-convulsant effects in a variety of animal
models, very little work to date has been published evaluating
their potential anti-seizure efficacy or utility in humans.

Historically, issues of palatability and tolerability have limited
the clinical investigation of exogenous ketone supplements. More
recently, commercialization of ketone salt and MCT oil products
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have resulted in formulations that are pleasant to the taste
and unlikely to elicit significant gastrointestinal distress unless
overconsumed. For more potent formulations, such as ketone
esters, it has proven more difficult to mask these flavoring
issues and GI effects. In fact, in a recent study evaluating
the potential utility of BD-AcAc2 as an ergogenic agent in
cyclists, performance was impaired in the group receiving the
ketone ester (Leckey et al., 2017). However, all of the study
participants experienced notable gastrointestinal discomfort
from consuming the supplement, confounding interpretation
of the results (Stubbs et al., 2018b). Still, some ketone ester
formulations have overcome these major obstacles, resulting in
commercially viable products with a much improved taste and
GI effect profile, such as the beta-hydroxybutyrate monoester
(Stubbs et al., 2018a). Ongoing efforts to optimize other ketone
esters such as BD-AcAc2 is promising, and likely to result in
a similar commercialized product soon. Combining multiple
ketogenic agents in a controlled-release formulation appears to
be a promising direction (Meidenbauer et al., 2015).

Another major issue that will need to be addressed to
move ketogenic agents into the clinic is establishing an
understanding of their appropriate method of administration
and dosing regimen. As described, different formulations of
ketone supplements elicit markedly different pharmacokinetic
profiles, with variable concentrations and durations of blood
BHB and/or AcAc produced. Currently, a single dose of most
commercially available ketone salt formulations can elevate blood
BHB by approximately 1 mM for 1–3 h (O’Malley et al., 2017).
If sustained ketosis is required for therapeutic effects, numerous
daily doses of these agents would be needed, which may prove to
be logistically difficult. Furthermore, as ketone salt formulations
often contain large quantities of electrolytes, namely sodium,
frequent dosing may present challenges in complying with
the recommended maximum daily intake guidelines for these
minerals. MCT oil alone can elevate blood ketones modestly
(∼0.5 mM) (Courchesne-Loyer et al., 2015), but can also produce
significant GI distress at large or frequent doses, especially in
naïve patients. Pre-clinical work in rats suggest that adding MCTs
to a ketone salt formulation may provide a method to improve
the sustained elevation of ketosis with less side effects (Kesl et al.,
2016), and therefore may provide a viable option for clinical use.
Ketone esters appear to be able to elevate blood ketones to higher
concentrations and for longer periods of time than any other
currently available ketone formulation (Stubbs et al., 2017), but
carry with them a greater need for safety testing and a higher
risk of inducing hyperketonemia if overconsumed. In addition to
these obstacles, the background diet of the patient would need to
be considered, as it may affect the clinical profile of exogenous
ketone therapy. If an individual is consuming a KD, exogenous
ketone supplements may increase levels of ketosis overall, but also
could potentially reduce rates of endogenous fatty acid oxidation
and ketogenesis which may play a role in the diet’s therapeutic
efficacy. Thus, these and other details regarding dosing protocols
will need to be established for individual clinical applications. We
expect that optimal protocols will depend on the type of ketone
formulation being utilized and the specific condition being
treated, similar to the use of any pharmaceutical agent. Efforts

to optimize the composition and delivery of exogenous ketone
supplements are ongoing – such as efforts to improve palatability,
reduce GI side effects, and prolong sustained ketosis – and will
likely improve tolerability and utility of these agents with time.

CONCLUSION

Considering the multifaceted therapeutic effects and success
of the KD for seizure disorders, the goal of many ketone
supplement researchers has often been described as creating
“the KD in a pill.” As such, exogenous ketone supplements
are being developed as an alternative or adjuvant method of
inducing therapeutic ketosis without the need for a strict dietary
regimen. Considering the promising results of the recent pre-
clinical studies described here, along with advancements in
optimizing ketone supplement formulations, it is possible that
many of the seizure conditions which are known to benefit
from the KD could receive some benefit from exogenous ketone
supplementation by elevating blood ketones and lowering blood
glucose. Importantly, if ketone supplements prove safe and
efficacious in human trials, they may provide a tool for achieving
ketosis in patients who are unable, unwilling, or uninterested
in consuming a classic KD, modified Atkins diet, or LGIT.
Ketone supplementation may also help circumvent some of the
difficulties associated with dietary therapy, as it allows for a rapid
dose-dependent induction of ketosis, which can be sustained
with prolonged consumption and monitored precisely with
commercially available technologies (e.g., blood ketone meters).
Simultaneously, it could provide patients with the opportunity
to reap the benefits of therapeutic ketosis without the practical
and social difficulties of a highly restrictive diet. Moreover, these
agents may represent a means to further enhance or optimize
existing ketogenic therapies by supplying a form of non-glycemic
calories that improves parameters (e.g., GKI) that are associated
with therapeutic benefits.

Research on the potential applications of ketone
supplementation is rapidly growing, and there are currently
several registered clinical trials evaluating their safety and
efficacy in a variety of conditions, including healthy adults,
athletes, and patients with various diseases including Alzheimer’s,
Parkinson’s, Type 2 Diabetes Mellitus, and more1. Encouragingly,
clinical studies evaluating these agents in seizure disorders are
beginning to emerge. An ongoing trial in Angelman syndrome –
a genetic neurodevelopmental disorder characterized intellectual
and developmental disability and seizures – is evaluating
the use of a fat-based nutritional formulation containing
exogenous ketones to support nutritional needs of this patient
population (NCT03644693). As a secondary outcome measure,
the investigators will also be tracking changes in EEG and
seizure activity. Anecdotal reports of individuals consuming
commercially available ketone supplements have suggested
that some individuals experience a subjective improvement
in seizure activity with their use, despite the fact that some of

1www.clinicaltrials.gov
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the more potent formulations, such as BD-AcAc2, are not yet
commercially available. Regardless, it is important to highlight
that there is a lack of published clinical work demonstrating
efficacy of such agents in patients with seizure disorders, and the
relationship between blood ketone elevation and the protective
effects of ketosis on seizures is unclear. Thus, further research
is needed to fully investigate the molecular mechanisms, clinical
utility, and feasibility of exogenous ketone supplements as a
method of inducing therapeutic ketosis for managing seizures.
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