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Prior methods in characterizing age-related white matter hyperintensity (WMH) lesions

on T2 fluid-attenuated inversion recovery (FLAIR) magnetic resonance images (MRI)

have mainly been limited to understanding the sizes of, and occasionally the locations

of WMH lesions. Systematic morphological characterization has been missing. In this

work, we proposed innovative methods to fill this knowledge gap. We developed an

innovative and proof-of-concept method to characterize and quantify the shape (based

on Zernike transformation) and texture (based on fuzzy logic) of WMH lesions. We have

also developed a multi-dimension feature vector approach to cluster WMH lesions into

distinctive groups based on their shape and then texture features. We then developed

an approach to calculate the potential growth index (PGI) of WMH lesions based on the

image intensity distributions at the edge of the WMH lesions using a region-growing

algorithm. High-quality T2 FLAIR images containing clearly identifiable WMH lesions

with various sizes from six cognitively normal older adults were used in our method

development Analyses of Variance (ANOVAs) showed significant differences in PGI

among WMH group clusters in terms of either the shape (P= 1.06× 10−2) or the texture

(P < 1 × 10−20) features. In conclusion, we propose a systematic framework on which

the shape and texture features of WMH lesions can be quantified and may be used to

predict lesion growth in older adults.

Keywords: brain T2 FLAIR hyperintensity, shape, texture, potential growth, morphology

INTRODUCTION

The presence of white matter hyperintensities (WMH) on T2 fluid-attenuated inversion recovery
(FLAIR) magnetic resonance images (MRI) is common in older adults over 65 years old with a
prevalence rate of ∼ 60–80% in the general population (De Leeuw et al., 2001; Wen and Sachdev,
2004). WMH lesions are even more extensive in those with vascular or Alzheimer’s disease (AD)
type of dementia when compared with cognitively normal older adults, suggesting its role in
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dementia pathogenesis and neurocognitive dysfunction
(Bombois et al., 2007; Kloppenborg et al., 2014; Lee et al.,
2016). WMH is also frequently observed in patients with
multiple sclerosis (MS) (Loizou et al., 2015; Newton et al.,
2017). Qualitative and quantitative WMH characterization
has been used as a biomarker to assist cerebrovascular
and neurodegenerative disease diagnosis and to assess
treatment effects (Wardlaw et al., 2013). The pathogenic
mechanisms of WMH are not well-understood, and have
been attributed to cerebral small vessel disease (CSVD), white
matter demyelization, or both, indicating brain white matter
lesions (Greenberg, 2006; Wardlaw et al., 2013). Furthermore,
periventricular and subcortical deep WMHs may have different
pathogenic mechanisms (Schmidt et al., 2011; Poels et al., 2012;
Tseng et al., 2013).

The most commonly used methods for WMH quantification
in brain aging, vascular, and AD type of dementia are to
measure its regional or total volume (i.e., the sum of WMH
voxel size) within the whole brain based on image tissue
segmentation algorithms (DeCarli et al., 2005; Wardlaw et al.,
2013). This method, however, neglects entirely the typological
or morphological features of WMH lesions which may have
important clinical significance as demonstrated in recent studies
in patients with MS (Loizou et al., 2015; Newton et al., 2017).

WMH shape is a basic morphological feature which can
be derived from T2 FLAIR images after tissue segmentation.
Shape feature extraction, recognition, and classification can
be implemented either in the original or the transformed
image space (Khotanzad and Hong, 1990; Mikolajczyk et al.,
2003; Carmichael and Hebert, 2004; Tahmasbi et al., 2011).
Current shape classification methods include mainly the
following: (1) one-dimensional function shape representation
(Kauppinen et al., 1995; Yadav et al., 2007; Zhang and Lu),
(2) polygonal approximation (ShuiHua and ShuangYuan), (3)
spatial interrelation feature (Sebastian et al., 2004; Guru and
Nagendraswamy, 2007; Bauckhage and Tsotsos), (4) moments
(Mukundan, 2004; Celebi and Aslandogan; Taubin and Cooper),
(5) scale-space methods (Zhang and Lu, 2003; Kpalma and
Ronsin, 2006), and (6) shape transform domains (Chen and Bui,
1999; Zhang and Lu). These methods for shape classification may
be suitable for specific applications in various fields but have
major limitations for shape characterization of brain lesions. For
example, method (1) is highly sensitive to noise, and inaccurate
boundary definition can cause large errors; method (2) can
only represent the object appearance but not all shape features;
method (3) may be used to describe the general appearance
of an object, but is limited by the orientation and size of the
object; method (4) contains redundant information in the image
feature vectors and thus unique images cannot be reconstructed
back; method (5) is limited to the shapes which have shallow
concavities/convexities; and method (6) requires the definition
of the shape contour starting point derived from other methods.
In order to characterize the complex shapes of brain lesions, a
technique needs to be invariant to the orientation of a lesion,
be resistant to image noise and be able to define a one-to-one
relationship between feature vector and shape. In this regard,
Zernike transformation can satisfy these criteria (Khotanzad and

Hong, 1990). Similar to Fourier analysis, shape features of an
object captured on MRI can be represented by the coefficients of
shape function of the Zernike polynomial expansion (i.e., Zernike
transform), referred to as Zernike moments (ZMs) (Zernike,
1934). In this study, we applied Zernike transformation to extract
WMH shape features for pattern recognition and classification in
cognitively normal older adults.

Image texture is another morphological feature which can
be categorized through modeling (Chen et al., 1989), structure
(Chow and Rahman, 2007), transformation (Tsai and Hsiao,
2001), and statistics based methods (Haralick et al., 1973;
Iivarinen et al., 1996). Model-based and structure-based methods
work best for repeating texture patterns but are not suitable for
irregular texture patterns such as those in brain lesion images.
The transformation based method works best in identifying sub-
regions with known characteristics, but does not work well on
unknown and potentially complicated patterns such as those
in brain lesion images. Statistical-based methods describe the
texture in the distribution of and relationships between gray-level
values in an image. These statistics-based methods can normally
describe objects better than the structure and transformation
based methods because they are invariant to the orientation,
the size of an object, and also robust to the noise inside the
object (Castellano et al., 2004). Since WMH lesions often have
various sizes, orientations, and locations, and are manifested
across multiple image slices, a statistics-based method is likely to
be the best choice to accommodate these complexities. Therefore,
we adopted a statistical method based on fuzzy logic to construct
the image intensity histogram of WMH lesions for texture
feature extraction.

Finally, we have thought that as a potential imaging biomarker
of brain aging and CSVD, the size, shape, and image texture of
WMH lesion may change with time (Sachdev et al., 2007; Godin
et al., 2011) which may reflect the progression of the underlying
pathological process. In this regard, recent studies have shown
that the immediate surrounding areas of clearly defined WMH
lesions may be at risk for further tissue damage and conversion
to lesions (Maillard et al., 2014; Promjunyakul et al., 2016). These
areas are classified as WMH penumbras (Maillard et al., 2014).
To characterize WMH lesions as well as their penumbras, we
developed a seed-based region-growing algorithm to characterize
WMH boundaries to explore the potential growth of WMH
lesions. We defined this specific WMH boundary characteristic
as potential growth index (PGI). To explore whether the shape
and texture characterization techniques can potentially be used
to predict lesion growth, we assessed whether different shape and
texture patterns are related to PGI.

METHODS AND RESULTS

MRI Acquisition
Full-brain 2D T2 FLAIR images were collected on a Philips
Achieva 3T scanner (Philips Healthcare, Best, the Netherlands)
with the following parameters: axial, time of echo (TE)= 125ms,
time of repetition (TR)= 11 s, time of inversion (TI)= 2,800ms,
field of view (FOV) = 23 cm × 23 cm, slice thickness = 2.5mm,
number of slices = 64 with no gaps, acquisition matrix size =
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352 × 212, and reconstructed matrix size = 512 × 512. All
subjects signed informed consent approved by the Institutional
Review Boards of the UT Southwestern Medical Center and
Texas Health Presbyterian Hospital of Dallas. Six T2 FLAIR brain
image datasets (two male, four female, 75 ± 4 years old and
normal cognition), which contained clearly identifiable white
matter hyperintensity (WMH) lesions with various sizes, were
selected from an healthy aging study we published previously
(Tarumi et al., 2014).

T2 FLAIR Image Segmentation
T2 FLAIR WMH regions were segmented on each 2D image
through the lesion prediction algorithm (LPA) implemented
in the Lesion Segmentation Toolbox (LST) version 2.0.12 for
Statistical Parametric Mapping (SPM12). In LPA, the algorithm
is trained using a logistic regression model on T2 FLAIR brain
images from 53MS patients with severe lesion patterns. LPA was
also validated in other patient populations such as older adults
with diabetes (Maldjian et al., 2013). The fitness of a new T2

FLAIR brain image to this model provides an estimate of lesion
probability for each voxel in the image. In this study, we used
a threshold of 0.5, as suggested by LST, on the obtained lesion
probability maps to identify WMH regions. The segmentation
accuracy was further verified through visual inspection. Figure 1
shows an example of the segmentation.

Lesion Size Distribution
WMH binary masks generated from 2D T2 FLAIR images
(Figure 1) were used to obtain WMH size distribution. To
minimize artifacts, only those masks with more than 10
connected WMH voxels (voxel size: 0.45mm × 0.45mm) on an
image were considered probable lesions and were used for further
characterization, which resulted in a total of 993 WMH lesions.
Fitting each of these lesions within a square, these lesions had a
size range of from 6 × 6 to 176 × 176 voxels. The lesion size
distributions of six subjects are shown in Figure 2. Of note, more
than 93% of these lesions are≤ 60× 60, and only about 1.5% are
≥ 120× 120 voxels.

WMH Shape Feature Extraction and
Classification in 2D
WMH Shape Feature Extraction Using

Zernike Transformation
Zernike transformation has been used extensively in imaging
shape feature extraction and pattern recognition (Papakostas
et al., 2007; Wee and Paramesran, 2007). The coefficients of
Zernike polynomial expansion of an object are referred to as
Zernike moments (ZMs) which are used to represent the shape
features of analyzed objects. In this study, Zernike polynomials
were expressed in polar coordinates defined on a unit disc, which
are a complete set of orthogonal basis functions (Papakostas et al.,
2007;Wee and Paramesran, 2007). The lower-order ZMs describe
global contour and gross shape features, and the higher-order
ZMs describe regional and fine topological details of a shape
(Gwo and Wei, 2016). Of note, the magnitudes of ZMs are not
only rotational invariant but also robust to small perturbations
on the contour of a shape image (Teh and Chin, 1988).

For a 2D image object (a WMH lesion image segmented
from a T2 FLAIR image in this work), using polar coordinates,
the complex Zernike moments of order n with repetition m
can be represented as the inner product of a shape function
f (r, θ)with the basis function of Zernike polynomials,Vnm (r, θ),
specifically as

Znm =
n+ 1

π

2π
∫

0

1
∫

0

f (r, θ)V∗
nm (r, θ) rdrdθ , |r| ≤ 1, (1)

where V∗
nm (r, θ) denotes the complex conjugation of Vnm (r, θ).

The basis function of Zernike polynomial is given by

Vnm (r, θ) = Rnm (r) eimθ , i =
√
−1 (2)

where the radial polynomial, Rnm (r), is defined as follows:

Rnm (r) =

n−|m|
2

∑

k

(−1)k
(

n− k
)

!

k!
(

n+|m|
2 − k

)

!
(

n−|m|
2 − k

)

!
rn−2k (3)

where 0 ≤ |m| ≤ n, n− |m| is an even integer, and n ≥ 0.
Since the shape features represented by ZMs at orders

higher than six are usually too small (small ZM magnitude)
to be detected reliably by human eyes (Charman, 2005), the
maximum Zernike transformation order was set to five in this
study (Figure 3). In Zernike transformation,

∣

∣Vn,+m (r, θ)
∣

∣ =
∣

∣Vn,−m (r, θ)
∣

∣, and
∣

∣Zn,+m

∣

∣ =
∣

∣Zn,−m

∣

∣. The number of distinctive
ZM magnitudes for an expansion up to order n is computed
as follows:

{

(

n+2
2

)2
if ordern is even

(n+3)(n+1)
4 if order n is odd

(4)

Shape feature extraction procedures based on Zernike
transformation are illustrated in Figure 4. In this illustration, we
chose three WMH masks, two with a similar shape but different
sizes, and one with both different shape and size. To simplify
computation complexity, these image masks with different sizes
were first scaled to the same size of 60 × 60 voxels so that the
ZM magnitudes can be compared on a same scale. Each Znmwas
calculated using Equation (1–3). The calculation resulted with 21
ZM complex coefficients with maximum order n = 5. Based on
the magnitudes of the ZM coefficient, only 12 coefficients were
needed to extract shape features since the WMH shape (mask)
generated with tissue segmentation is rotational invariant. As
shown in the right column of Figure 4, the two lesion images
(a) and (b) with a similar shape have similar ZMs magnitudes
at all 12 coefficients. On the contrary, the ZM magnitudes of
WMH lesions with a different shape are different from the
other two.

WMH Shape Classification
We then classified the lesion images to different clusters (groups)
based on the similarity on shape features. Current common
clustering algorithms, such as the K-means clustering algorithm,
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FIGURE 1 | An example T2 FLAIR image from one subject showing multiple white-matter hyperintensity (WMH) lesions; the results of WMH segmentation using the

lesion prediction algorithm (LPA) showing in red, and a WMH binary mask after tissue segmentation, which was used in shape feature extraction.

FIGURE 2 | The histograms of WMH lesion size distributions in two representative subjects. The lesion size bin of 50 represents the lesion size range from 40 × 40 to

50 × 50 voxels. The frequency scale (the left vertical axis) is the counts the number of lesion sizes within a lesion size bin. The cumulative percentage of lesion size

relative to the total lesion counts is labeled on the right vertical axis.

requires data-specific a priori selection on the number of clusters
(Zhao, 2012). For instance, if the number of clusters is too small,
the WMH lesion images with noticeable different shapes may be
grouped inappropriately into a same cluster. On the other hand,
if the number of clusters is too large, lesion images with trivial
differences may be assigned into different clusters, confounding
potential clinical significance. Finding the appropriate number
of clusters using model simulation is one way to resolve this
dilemma (Zhao, 2012). However, this procedure has to be carried
out for all choices of shape feature dimensions. To simplify the
procedures, the estimation of cluster characteristic indices based
on sum of within-cluster dispersions [Wk in Equation (5)] or
its variants were proposed (Ball and Hall, 1965; Calinski and
Harabasz, 1974; Xu, 1997; Tibshirani et al., 2001). For a better
understanding of the influences of the classifiable number of
clusters and the feature dimensions derived from the Zernike
transform onWk, we plottedWk as a function of cluster numbers

and feature dimensions which are equivalent to the numbers
of the distinctive magnitudes of the ZMs (Figure 5). The ZMs
for WMH shapes from one to 10 orders were calculated to
generate 2 to 36 dimensional feature vectors (Equation 4).
Euclidean distance was then calculated to assess the similarity
between the feature vectors. The K-means clustering algorithm
was applied for grouping purpose. Wk was calculated based on
the 2 to 20 cluster groups at each feature dimensions. Wk, in
general, decreases with the increase of the number of clusters but
increases with the increase of the number of feature dimensions
(Figure 5). For a specified feature dimension, a better grouping
result is likely achieved at a lower Wk value by finding a
local minimum. However, in some feature dimensions, a local
minimum cannot be found even after Wk decreases to nearly
constant. For example, when two is selected as the feature
dimension, the Wk value remains small even at small number of
clusters because two-dimensional feature vectors only represents
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FIGURE 3 | (A) The 21 basis functions of Zernike polynomials, Vnm (r, θ), with order n ≤ 5, are illustrated. The polynomials have a radial range of [−1, 1]

(|Vnm (r, θ)| ≤ 1), shown by the color bar on the left column; (B) 12 distinctive magnitude images, which are rotational invariance, are shown, corresponding to the

polynomials in (A).

FIGURE 4 | Three representative white mater hyperintensity masks generated after tissue segmentation with different sizes and shape are shown in the left column.

The images are normalized to the same size of 60 × 60 voxels shown in the middle column. The magnitudes of 12 Zernike moments coefficients based on ZM orders

≤5 of Zernike polynomial expansion are shown in the right column for comparison.

the gross global contour and thus cannot differentiate shapes
with enough details. Therefore, selecting an appropriate feature
dimension is also crucial and will be discussed later. Nevertheless,
once a feature dimension is selected [which was selected to

be 12 in this study based on our exploration of data features
(Figures 4, 5)], the optimal number of clusters can be determined
based on the estimation of cluster characteristics discussed below
(Desgraupes, 2013).
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The distance between two points in a share feature vector
space can be calculated based on Euclidian distance. The overall
distance of all points in a cluster to their mean indicates
the compactness of a cluster, or within-cluster dispersion. To
determine the optimal number of shape clusters for WMH
shape classification, we then employed a gap statistics method
proposed by Tibshirani et al. (2001). This method estimates
the optimal number of clusters by comparing the logarithm
of the sum of within-cluster dispersions of a set of clusters
to that from the reference datasets created through sampling
uniformly at random from the original dataset. The sum of all
within-cluster dispersions decreases gradually with the increase
of number of clusters but becomes nearly constant at some
points as demonstrated in Figure 5. This is so called “elbow”
phenomenon, which has been used to find the optimal number of
clusters (Tibshirani et al., 2001). The algorithm used to estimate
the optimal number of WMH shape clusters based on the gap
statistic is presented below:

1. Group the shape vectors by varying the number of shape
clusters from k = 1, 2, . . . , N (pre-defined as the maximum
to evaluate), and compute the sum of the within-cluster
dispersionWk for each choice k.

Wk =
k

∑

r=1

∑

xi∈Cr

(xi − x̄r)
2 (5)

where xi is a data point, Cr denotes cluster r, and x̄r is the
vector mean of Cr .

Generate reference datasets (total number = B) by
sampling uniformly at random from the original dataset
within its distribution ranges of all dimensions. Although a
better statistically randomness is likely achieved with a large
B, the choice of B is bounded by computation demand. For
each reference dataset b, we can generate k clusters, and we
can calculate the sum of the within-cluster dispersionWkb for
each k based on Equation (5) above, where b= 1, 2, . . . , B; k=
1, 2, . . . , N. The gap statistics for each k is calculated as below:

Gap
(

k
)

=
1

B

B
∑

b=1

log (Wkb) − log (Wk) (6)

2. letl = (1/B)
∑

b

log (Wkb), compute the standard deviation

sdk =

[

1

B

B
∑

b=1

(

log (Wkb) − l
)2

]1/2

(7)

Let sk = sdk
√

(1+ 1/B). Choose the optimal number of shape
clusters kopt by Equation (8)

kopt = smallest k such that Gap
(

k
)

≥ Gap
(

k+ 1
)

− sk+1(8)

In the gap statistic procedure above, N is a pre-selected
number of shape clusters such that kopt can be determined
in the range of [1, N]. B is selected such that the value of
sdk converges. In this study, N and B were set to 20 and
10, respectively.

For the WMH shape datasets in this study, based on the
previous discussion and Figure 5, the “elbow” phenomenon was
sufficiently noticeable when the feature dimension was set to 12.
At this feature dimension, only ZMmagnitudes corresponding to
ZM orders of n= 0 to 5 were used in clustering [cf. Equation (4)].
The Gap values were calculated and displayed in Figure 6; the
optimal number of shape clusters was selected to be six according
to Equation (8).

Figure 7 shows the WMH shape classification results using
the K-means algorithm based on the cluster number of six
and feature dimension of 12. Unique shape difference can be
visualized between the six clusters.

WMH Texture Feature and Classification
Texture Feature Extraction
Image texture characterizes the voxel signal intensity distribution
patterns in a WMH region. Statistics-based methods quantify
the distribution and relationships of voxel signal values in an
image region. These methods often provide better discrimination
indexes than structure and spectral transformation based
methods (Castellano et al., 2004).

WMH lesions often have various sizes, orientations and
locations, andmanifest across multiple image slices. In this study,
the distributions of WMH lesion size measured in the number of
voxels are presented in Figure 8.

Most lesions are small, with 48.64% of lesions ≤40
voxels (8 mm2 on a slice). Therefore, a robust texture
analysis method needs to satisfy three requirements:
(1) Texture feature should be independent of lesion
orientation and location; (2) texture feature should be able
to quantify small lesions, and (3) texture characterization
needs to go beyond a single image slice. A statistics-
based method for WMH texture feature extraction is
described next.

Since WMH lesions manifests across multiple slices, we
used the “WMH3D” term to emphasize the 3D perspective.
Specifically, if a WMH lesion image in a slice connects directly
either above, below, or diagonally to another WMH lesion image
in an adjacent slice, we treat these lesion images belonging
to the same lesion, called it a “WMH3D” for texture analysis.
This treatment also reduces the chance of false positive in
lesion identification. To characterize the voxel signal intensity
distribution, potential voxel spike noise, which is often seen
in images, needs to remove first. This can be accomplished by
setting the voxel intensities within the boundaries of above or
below three standard deviations of the mean values. To reduce
the slice variation in signal intensity, a min-max normalization
was applied to a WMH3D to normalize its voxel intensity based
on the equation,

s
(

x, y, z
)

=
f
(

x, y, z
)

− gMin

gMax− gMin
(9)

where f
(

x, y, z
)

is the intensity of voxel (x, y) at the zth slice and
s∈ [0,1], gMax=Max(voxel intensities of WMH3D) and gMin=
Min (voxel intensities of WMH3D).

For feature extraction, the normalized data were quantized
into one of the pre-selected bins to create a histogram that
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FIGURE 5 | The within-cluster dispersion Wk as a function of the number of shape clusters and feature dimensions. The feature dimensions are the number of

distinctive magnitudes of the ZMs. Wk , in general, tends to decrease with the number of clusters but increase with the number of feature dimensions.

FIGURE 6 | The estimated gap statistic Gap as a function of shape cluster number k (dots and solid curve), error bars are ±sk .

represents voxel intensity distribution of a WMH3D. To
minimize the interference of image noise to the frequency
histogram, we propose a fuzzy logic method (Gwo and Wei,
2013) to allocate voxel intensity values to each of the pre-
selected bins. Specifically, a normalized voxel intensity s is
assigned proportionally two values, called fuzzy values, to
the two neighboring bins according its relative positions
to the bin centers (Figure 9). The fuzzy logic method not
only is able to characterize the local image signal intensity
distribution of a lesion, but also its global distribution,
producing different histogram skewness based on the intensity
mean value.

The fuzzy logic functions used for assigning voxels to the
frequency histogram are presented in Equation (10). The fuzzy
value v[j] at bin j is calculated as:







































v [0] = 1 if s ≤ 1
2n

v
[

j− 1
]

= 2j+1
2 − s× n

v
[

j
]

= s× n− 2j−1
2

}

if s ≤ 2j+1
2n

v
[

j
]

= 2j+3
2 − s× n

v
[

j+ 1
]

= s× n− 2j+1
2

}

if s >
2j+1
2n

v [n− 1] = 1 if s ≥ 1− 1
2n

(10)
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FIGURE 7 | WMH shape classification results using the K-means algorithm based on the cluster number of six and feature dimension of 12. The number of lesion

images in each cluster and the six normalized lesion images closest to the cluster mean in each cluster are shown. All lesion images shown in the figure were

normalized to the size of 60 × 60 voxels.

FIGURE 8 | The distributions of WMH lesion size measured in number of voxels from the six subjects. A number shown in a lesion size bin (the horizontal axis)

represents a lesion size range. For example, lesion size bin of 50 represents the lesion size range of 40 × 40 to 50 × 50 voxels. Frequency (the vertical axis) counts

the number of lesion sizes at the lesion size bins.
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FIGURE 9 | The fuzzy logic functions used for assigning voxels to five bins: bin

[0, 0.2] shown in blue, bin [0.2, 0.4] in orange, bin [0.4, 0.6] in black, bin [0.6,

0.8] in green, and bin [0.8, 1.0] in red. A normalized image intensity value is

assigned to its two neighboring bins based on these assignments functions.

For example, s of 0.45 is assigned to a frequency value of 0.25 to the bin [0.2,

0.4], and 0.75 to the bin [0.4, 0.6] as indicated by the vertical and horizontal

dotted lines.

where n = the total number of bins, and j = 0, ..., n-1. To
choose a proper number of bins, there are two considerations:
(1) When the number of bins increases, the accumulated fuzzy
values in some bins become sparse, especially for small size
lesions. Sparsity is problematic for any statistical analysis method
(Hughes, 1968). The amount of data needed to obtain a reliable
statistical result grows exponentially with the number of bins
(Hughes, 1968); (2) conversely, if the number of bins is too small,
image features may not be differentiated effectively. In this study,
to facilitate WMH texture feature classification discussed below,
we selected five bins for texture feature extraction.

Since the sizes of WMH lesions vary in a wide range
(Figure 8), the image intensity frequency distribution
histograms need to be further normalized before they can be
compared. Herein, each histogram is normalized to have a total
accumulative frequency of 1. For example, for a WMH lesion
shown in the first row in Figure 10, the original distributions of
histogram with five bins and 814 voxels would produce a texture
feature vector of (266.6, 240.2, 153.9, 125.3, 28.0). To compare
with other WMH lesions with different sizes, this vector was
divided by 814 to become the normalized distribution of (0.3275,
0.2951, 0.1891, 0.1539, 0.0343).

WMH Texture Feature Classification
Texture feature classification of individual WMH lesion images
was conducted using a feature vector clustering method similar
to those discussed above in the section of “WMH Shape
Classification.” Of note, the texture feature vector is based on
the histogram presented above using the fuzzy logic method.
The influences of different texture feature dimensions (i.e., the
number of bins used to construct the intensity histogram) and
the numbers of clusters on texture feature classification were
explored using the same strategy discussed above for WMH
shape feature classification. Based on prior works (Shapiro and
Stockman, 2001), Manhattan distance is a more preferred choice
over Euclidean distance in accessing the similarity between
feature vectors described in histograms. Thus, Manhattan
distance was used to assess the similarity between the texture
feature vectors in our work. The sum of within-cluster dispersion
Wk value was calculated with the cluster number from 2 to 20 and

FIGURE 10 | WMH texture feature extraction procedures: (A) source WMH

lesion images, (B) WMH lesion mask images, and (C) WMH texture quantized

images using fuzzy logic method.

the feature dimensions from 3 to 15. As illustrated in Figure 11,
Wk tends to decrease with the increase of the cluster numbers.
A noticeable “elbow” phenomenon was seen for a wide range of
texture feature dimensions from 3 to 15.

The gap statistics discussed above was applied to determine
the optimal number of texture feature cluster for pattern
recognition based on the K-means algorithm for grouping
(Hartigan and Wong, 1979). Figure 12 shows that five is the
optimal number of cluster.

Figure 13 shows the texture classification results,
demonstrating five unique clusters.

WMH Potential Growth Index in 2D
We developed a seed-based region-growing algorithm to
characterize WMH boundary conditions in order to explore
potential growth of WMH lesions (Maillard et al., 2014;
Promjunyakul et al., 2016). We hypothesized that the area of
potential growth of WMH lesions has similar signal intensity
as WMH lesions and is located around the boundary of WMH
lesions. With a pre-defined signal intensity threshold, calculated
by the extreme values in the WMH3D [Equation (9)], we can
use a seed-based region-growing algorithm to find the “potential
growth” voxels around theWMH boundary. The region-growing
algorithm is initiated by selecting the WMH mask boundary
voxels as the growing seeds. At each growing seed voxel, the eight
connected neighbor voxels, defined as A8

(

x, y
)

in Equation (11)
below, are examined iteratively until no more voxels meet a given
criterion in signal intensity.

A8
(

x, y
)

=
{(

x− 1, y− 1
)

,
(

x, y− 1
)

,
(

x+ 1, y− 1
)

,
(

x− 1, y
)

(

x+ 1, y
)

,
(

x− 1, y+ 1
)

,
(

x, y+ 1
)

,
(

x+ 1, y+ 1
)

}

(11)

In the study, the stopping criterion used for iterative seed
growing is determined by comparing a neighboring voxel
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FIGURE 11 | The within-cluster dispersion Wk as the function of the number of texture cluster and feature dimension. Note that a noticeable “elbow” phenomenon

presents for a wide range of texture feature dimensions from 3 to 15.

FIGURE 12 | The estimated gap statistic Gap as a function of texture cluster number k (dots and solid curve), error bars are ±sk .

intensity with the highest and lowest signal intensity, gMax and
gMin of a WMH3D. If the voxel intensity difference from the
gMax is less than a threshold, as defined below in Equation (12),
the corresponding voxel is designated to a growth voxel set,
Rg , and assigned to the boundary seed voxel list Sl for further
searching. The pseudo-code of the seed-based region-growing
algorithm is presented in Figure 14A. Note that Mk is the set of
voxels in a WMH lesion mask, and f

(

p
)

is the signal intensity at
neighbor voxel p of a lesion boundary seed voxel, as defined in
Equation (11).

Threshold = γ ×
(

gMax− gMin
)

(12)

where γ is the threshold control coefficient. The choice of γ

represents the user-defined steepness of the edge around the
WMH boundaries. Of note, if the value of γ is too large, the
potential growth region would spread around all boundaries of
the WMH lesions regardless of lesion shape or texture features.
In this study, we chose γ = 1.02 to demonstrate the presence of
potential growth regions of WMH lesions using the seed-based
growing algorithm (Figure 14B).

After all “potential growth” voxels are found, the potential
growth index (PGI) of a WMH lesion can be calculated. To
calculate this index, first a set of four-connected voxels [Equation
(13)] to a voxel (x, y) on the mask boundary is applied to generate
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FIGURE 13 | The WMH lesion images from six subjects were classified to five clusters based on their texture features. The six lesion images closest to their cluster

means based on the Manhattan distance are shown for each cluster.

successively l layers of apparent masks surrounding the lesion
with a layer thickness of one voxel.

A4

(

x, y
)

=
{(

x, y− 1
)

,
(

x− 1, y
)

,
(

x+ 1, y
)

,
(

x, y+ 1
)

}

(13)

The pseudo-code of generating l layers around a WMH lesion
growing algorithm is presented in Figure 14C. The notations Sl
and Mk are the same as in Figure 14A. l is the number of layers
to be generated and the ith layer voxels are kept in the E[i] list.

These apparent layer masks are used to identify the relative
location of a growth voxel. A growth voxel at an outer layers
of these masks weights more in its contribution to the potential
growth index. Specifically, the weight wi at i

th layer, with total l
layers, is given by the following equation:

wi =
i

∑l
j=1 j

(14)

Once the number of growth voxels at each layers were
calculated, the potential growth index Pg for each WMH lesion
is calculated below:

Pg =
∑l

i=1 GViwi

Vl
(15)

where, GVi = number of “growth voxels” found at the ith layer,
and Vl = the total number of voxels in all l layers for a WMH.

To demonstrate the potential application, all lesion images
were evaluated for their potential growth indices with l set
to three (Figure 14D).

The Relationship Between Potential
Growth Index and WMH Shape and
Texture Features
The relationship between PGI and WMH Shape and texture
features was investigated in the study. The K-means algorithm
is the most commonly used clustering algorithm in unsupervised
learning due to its simplicity and efficiency (Hung et al., 2005),
and thus is appropriate for this proof-of-concept development.
However, the initial cluster seeds in K-means algorithm
can generate different clustering results. To demonstrate the
applicability of the K-means algorithm, we performed 1,000 trials
with randomly selected initial cluster seeds from the feature
vectors of shape and then texture of the lesions (a total of 993
lesions) to examine the clustering results. For the shape and
texture clusters classified as shown in Figures 7, 13 above, one-
way Analyses of Variance (ANOVAs) were performed to evaluate
if there were significant differences in potential growth index
generated from each trial among the shape or the texture clusters.
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FIGURE 14 | (A) The pseudo-code of seed-based region-growing algorithm of WMH lesions; (B) a WMH lesion mask and the potential growth voxels marked in red

color which are identified using the seed-based region-growing algorithm. (C) The pseudo-code of layer generating algorithm for WMH lesions; (D) three

one-voxel-thick layers surrounding the WMH lesion, which are used to locate a growth voxel.

Significant growth index differences for all trials were found
among both shape (P = 2.04×10−10 to P = 1.06×10−2) and
texture (P < 1×10−40 to P < 1×10−20) clusters. Table 1 shows
the most conservative results.

DISCUSSION AND CONCLUSION

In this study, we have developed innovative and proof-of-
concept methods to quantitatively characterize the shape (based
on Zernike transformation) and texture (based on fuzzy logic)
of WMH lesions. A multi-dimension feature vector approach
based on these new features was used to cluster WMH lesions
into distinctive groups to assess whether these features can
potentially be used as image biomarkers. We have also developed
an approach to calculate the potential growth index (PGI) of
WMH lesions using a region-growing algorithm along theWMH
boundaries. From preliminary data analyses of six subjects with

a total of 993 lesions, we observed significant differences in PGI
among the clusteredWMH groups in terms of either the shape or
the texture features. These findings, even though only a proof-of-
concept, suggest that the shape and texture features of WMH can
potentially be used as new imaging biomarkers to predict lesion
growth in brain aging, vascular dementia, or AD.

This work demonstrates the feasibility and potential
usefulness of our methods. However, there are several
limitations, which are beyond the scope of this study to
address completely. In WMH lesion segmentation, we adopted
the mid-range point of 0.5 of the lesion probability map as the
cut-off threshold suggested by the authors of the LST Toolbox.
This threshold appears logical for a wide range of populations.
However, different thresholds might be suitable for different
study populations. Maldjian et al. (2013) suggested to use a
0.25 threshold in their study on older adults with diabetes. The
change of segmentation threshold may introduce small change
in the quantification of lesion sizes, which is not the focus of
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TABLE 1 | Potential growth indices (PGIs) for the classified shape and texture clusters.

SHAPE

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Number of images 105 86 176 237 211 178

PGI 0.1535 ± 0.0790 0.1702 ± 0.0818 0.1376 ± 0.1051 0.1399 ± 0.0885 0.1500 ± 0.0700 0.1636 ± 0.1011

Between-cluster difference: P = 1.06×10−2, F = 3.0070

TEXTURE

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Number of images 128 232 265 160 208

PGI 0.1928 ± 0.1023 0.1863 ± 0.0879 0.1037 ± 0.0683 0.1191 ± 0.0751 0.1656 ± 0.0828

Between-cluster difference: P < 1×10−20, F = 48.4009

Results presented are themost conservative case from 1,000 trials with randomly selected initial cluster seeds from the feature vectors of the shape and texture of the white matter lesions.

our work. The effects of change of segmentation threshold on
characterizations of the WMH shape, texture, and potential
growth should be further studied.

In shape feature extraction, all images were proportionally
scaled to the same size of 60 × 60 voxels. This scaling
procedure resulted in blurring the shape contours of small-
size images and losing the contour details of large-size images.
This one-size-fit-all scaling treatment can lead to quantification
inaccuracy at higher orders of ZM. Nevertheless, we have
observed that high ZM orders are not required to represent
primary WMH shape features. In this study, we limit the feature
characteristics at ZM ≤5. Thus, the scaling factor used in
this study should have minimal effects on the shape feature
extraction results. When there is a large number of WMH
lesions, a more proper procedure in shape analysis can be
applied to reduce the influence of this image scaling issue on
shape feature extraction. Specifically, WMH lesion images can
be first divided into several groups based on the size, and
then are scaled appropriately based on their corresponding size
groups. Shape feature analyses can then be carried in each
size group. It should also be mentioned that image shape
feature extraction using the Zernike transform, in theory, is
independent of the image sizes to be analyzed (Teague, 1980).
The purpose of image scaling in this study was to improve
computational efficiency.

In texture analysis, a linear fuzzy logic method was proposed
to quantize the distribution of voxel signal intensity in a
lesion image. This approach is robust in handling the potential
quantization error due to imaging noise (Gwo and Wei, 2013).
We have chosen a linear approach in fuzzy logic and a number
of bins that appeared to work well on our data. However, we
have not devised a method to systematically obtain an optimal
bin number or type of linear or non-linear fuzzy logic function,
which needs to be investigated in studies with large sample
sizes. For both shape and texture analyses, we have selected the
feature dimensions that appeared reasonable to the dataset of
this study. However, selecting appropriate feature dimensions
and cluster numbers is still a challenging problem in the field of
pattern recognition (Steinbach et al., 2004). Common approach

is data-driven trial and error. For a large dataset, a supervised
machine learning via artificial neural network might lead to
identification of optimized feature dimensions as well as the
number of group clusters (Raschka, 2015).

PGI was developed to explore the possibility of predicting
WMH progression by quantification of image characteristics of
WMH penumbras (Maillard et al., 2014). To do this, multiple
layers surrounding a lesion mask was used to calculate PGI
with a linear weighted function based on the layer locations of
the “growth voxels.” The choice of a linear weighted function
is consistent with the probable locations of WMH lesion
development found in recent studies (Maillard et al., 2014;
Promjunyakul et al., 2016). In our study, we used three layers
sounding the WMH lesions to demonstrate the potential growth.
A large dataset with repeated measures in longitudinal studies
is needed to identify a more appropriate number of layers and
devise an optimal weighting function.

We are fully aware that WMH lesion growth is likely affected
by multiple factors besides the shape, texture and PGI. In this
regard, the potential effects of anatomical locations of WMH
on its progression rate have been investigated in prior works
(DeCarli et al., 2005;Wardlaw et al., 2013). Identification of other
key contributors to WMH growth and the underlying biological
mechanisms are warranted for future studies.

The objective of this paper is to formulate concepts and
to demonstrate the feasibility of the methods used to analyze
the WMH shape, texture, and potential growth. To accomplish
this object, we selected high-quality T2 FLAIR images which
contain a large number of lesions with various sizes from six
subjects as sample cases to develop our theoretical framework.
While only small number of subjects was used in this study,
a relatively large number of lesion (a total of 993) was used
in our development and analyses. Nevertheless, the algorithms
and parameters used for texture feature extraction and potential
growth index estimation in this work were empirical based on
trial and error, or were optimized based on the relatively small
dataset. The algorithms and parameters used in this work need
to be optimized based on larger datasets covering various type
of lesions in future studies. Currently, we are working on the
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application of our methods to over 500 subjects with more than 2
years of brain imaging data from the ADNI (Alzheimer’s Disease
Neuroimaging Initiative) database.

Lastly, due to widely available 2D T2 FLAIR images in clinical
practice and research, we decided to develop our concept in 2D
T2 FLAIR first. On the other hand, we have also begun to expand
our work to 3D imaging to capture the lesion shape, texture and
potential growth in all spatial directions, which benefits from the
recent development in 3D high-resolution T2 FLAIR acquisition
technique (Wiggermann et al., 2016).

In summary, our work demonstrated the concept and
the feasibility that shape and texture features of WMH
lesions observed on T2 FLAIR images can be quantitatively
characterized which are related to the potential growth
index of white matter lesions. Future studies of large
datasets and longitudinal studies based on the systematic

framework proposed in this study are warranted to further
optimize the algorithms and parameters used for white
matter lesion shape and texture feature extraction and

classification as well as PGI estimation. Furthermore, our
approaches for image feature extraction and classification can
potentially be generalized to other types of brain lesions and
imaging modalities.
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