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The presence of pathologies in magnetic resonance (MR) brain images causes

challenges in various image analysis areas, such as registration, atlas construction

and atlas-based segmentation. We propose a novel method for the simultaneous

recovery and segmentation of pathological MR brain images. Low-rank and sparse

decomposition (LSD) approaches have been widely used in this field, decomposing

pathological images into (1) low-rank components as recovered images, and (2) sparse

components as pathological segmentation. However, conventional LSD approaches

often fail to produce recovered images reliably, due to the lack of constraint between

low-rank and sparse components. To tackle this problem, we propose a transformed

low-rank and structured sparse decomposition (TLS2D) method. The proposed TLS2D

integrates the structured sparse constraint, LSD and image alignment into a unified

scheme, which is robust for distinguishing pathological regions. Furthermore, the well

recovered images can be obtained using TLS2D with the combined structured sparse

and computed image saliency as the adaptive sparsity constraint. The efficacy of the

proposed method is verified on synthetic and real MR brain tumor images. Experimental

results demonstrate that our method can effectively provide satisfactory image recovery

and tumor segmentation.

Keywords: MR brain images, image recovery, tumor segmentation, structured sparsity, low-rank, matrix

decomposition

1. INTRODUCTION

Automated image computing routines (e.g., segmentation, registration, atlas construction) that can
analyze the magnetic resonance (MR) brain tumor scans are of essential importance for improved
disease diagnosis, treatment planning and follow-up of individual patients (Iglesias and Sabuncu,
2015; Mai et al., 2015; Menze et al., 2015; Chen et al., 2018). Lately, a wave of deep learning is taking
over traditional computer aided diagnosis techniques, by learning abundant multi-level features
from large amount of training repository for image representation and analyzing (Litjens et al.,
2017; Shen et al., 2017). Various architectures of deep convolutional neural networks have been
developed and employed for brain tumor segmentation (Pereira et al., 2016; Havaei et al., 2017;
Kamnitsas et al., 2017; Zhao et al., 2018). Despite achieving satisfactory performance, deep learning
based approaches require enormous amount of labeled images to train a segmentation model.
Collecting and labeling useful training samples may last a lengthy duration thus sometimes is
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clinically impractical. In addition, the presence of pathologies
in MR brain images causes difficulties in most of other image
analyses, such as image registration, atlas construction and atlas-
based anatomical segmentation. The recovery of pathological
regions with normal brain appearances can facilitate subsequent
image computing procedures. For example, the recovered images
could further be used for atlas construction and specific patient’s
follow-up (Joshi et al., 2004; Liu et al., 2014; Zheng et al., 2017;
Han et al., 2018). However, there is lack of deep learning based
methods developed for pathological medical image recovery. In
contrast, the low-rank and sparse decomposition (LSD) (Wright
et al., 2009; Candès et al., 2011) scheme, learning normal
image appearance from unlabeled population data, has been
widely employed to decompose pathological MR brain images
into recovered normal brain appearances and pathological
regions (Liu et al., 2015; Tang et al., 2018).

Although the low-rank and sparse analyses of computational
brain tumor segmentation has attracted considerable attention
during last decade, it remains several challenges. First,
conventional LSD methods have to be computed on a series of
aligned images (Otazo et al., 2015; Tang et al., 2018), because
the image misalignment causes undesired structure differences
that would interfere the representation of sparse component.
Thus, the image alignment should be conducted before/during
the LSD computation; however, the image alignment itself is a
challenging task. Second, specific spatial constraint should be
imposed on sparse component to restrict the structured sparsity
of the tumor region in the whole image. Third, LSD methods
often produce recovered images (i.e., low-rank component) with
distorted pathological regions (Liu et al., 2015), due to the lack
of effective constraint between low-rank and sparse components.
Thus it is essential to adaptively balance the low-rank and
sparse components to reliably recover tumor regions meanwhile
retaining normal brain regions.

To address aforementioned issues, this paper presents a
novel method for the simultaneous recovery and segmentation
of pathological MR brain images (see Figure 1). Specifically,
we propose a transformed low-rank and structured sparse
decomposition (TLS2D)method. The proposed TLS2D integrates
the structured sparsity constraint, LSD and image alignment into
a unified framework, which is robust for extracting pathological
regions. Furthermore, the well recovered images can be obtained
using TLS2Dwith the combined structured sparse and computed
image saliency as the adaptive sparsity constraint. Experimental
results on synthetic and realMR brain tumor images demonstrate
that the proposed TLS2D can effectively extract and recover
tumor regions.

2. METHODS

The proposed recovery and segmentation framework is shown
in Figure 2. Our TLS2D first iteratively aligns all images
and decomposes aligned images into low-rank and structured
sparse components. Then the structured sparse components are
combined with the computed saliency maps to generate tumor
probability maps as the adaptive sparsity constraint. The final

FIGURE 1 | The proposed TLS2D method can decompose (A) the MR brain

tumor image into (B) the recovered MR image with quasi-normal brain

appearances, and (C) the extracted tumor region. The red contour in (A)

indicates the manually delineated tumor boundary. The yellow box in

(B) indicates the reliably recovered region.

recovery and segmentation is obtained by imposing the adaptive
sparsity constraint on the TLS2D.

The following subsections present a brief review of classical
LSD, the details of our method and elaborate the novel TLS2D.

2.1. Review of Low-Rank and Sparse
Decomposition (LSD)
Suppose we are given n previously aligned MR brain images
A1,A2, ...,An ∈ R

w×h, wherew and h denotes width and height of
the image, respectively.We can vectorize each imagematrixAn to
form the column of A = [vec(A1), vec(A2), ..., vec(An)] ∈ R

m×n,
wherem = w× h.

The conventional LSD method decomposes A into a low-
rank matrix L and a sparse matrix S, where L indicates the
linearly correlated normal images, and S represents sparse tumor
regions. The decomposition can be solved by the following
convex optimization:

min
L,S

‖L‖∗ + λ ‖S‖1 s.t. A = L+ S, (1)

where ‖L‖∗ is the nuclear norm of L (i.e., the sum
of its singular values), ‖S‖1 is the ℓ1 norm of S, and
regularizing parameter λ weights the relationship between low-
rank and sparse components. The optimization in Equation (1)
can be solved by augmented Lagrangian multiplier (ALM)
method (Lin et al., 2010).

To realize practical and reliable recovery and segmentation
of pathological MR images, the LSD remains three issues to be
addressed: (1) all images shall be aligned in the same spatial
domain; (2) S shall be structured sparse to better represent
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FIGURE 2 | The illustration of the whole recovery and segmentation framework using the proposed transformed low-rank and structured sparse decomposition

(TLS2D) method.

the structured sparsity of the contiguous tumor region in the
whole image; (3) as illustrated in Figure 3, as the parameter λ

becomes smaller, the low-rank images can recover tumor regions
more reliably, but also generate more blurred appearances in
originally normal regions. Therefore, regularizing parameter
λ shall be different regarding to normal and tumor regions,
thus to adaptively balance the low-rank and sparse components
to reliably recover tumor regions meanwhile retaining normal
brain regions.

2.2. Transformed Low-Rank and Structured
Sparse Decomposition (TLS2D)
To tackle the issues in LSD, we propose a transformed low-
rank and structured sparse decomposition. Firstly, considering
the tumor region usually occupies a contiguous portion of the
brain image, thus it is reasonable to model the tumor region
using the structured sparsity norm. Inspired by the structured
sparsity in Jia et al. (2012), we introduce a structured sparsity
norm �(S) to model tumor region, and define low-rank and
structured sparse decomposition (LS2D) as:

min
L,S

‖L‖∗ + λ�(S) s.t. A = L+ S, (2)

where

�(S) =
n

∑

i=1

∑

g∈G

∥

∥mat(Si)g
∥

∥

∞ . (3)

In Equation (3), Si ∈ R
m is the ith column in S;mat(Si) ∈ R

w×h is
the matrix form of Si. We define 3× 3 overlapping-patch groups
G inmat(Si), and g ∈ G represents each 3× 3 group. Each group
overlaps 6 pixels with its neighbor group. ‖·‖∞ is the ℓ∞ norm
(i.e., the maximum value in a group g). The structured sparsity
norm �(S) in Equation (2) can constrain S to be structured
distribution thus better representing tumor region.

During the decomposition, the spatial mismatch between
different images may cause undesired sparse noise. To alleviate
the spatial mismatch, we perform image alignment in our
decomposition procedure (Zheng et al., 2017). The proposed
TLS2D is defined as follows:

min
L,S,τ

‖L‖∗ + λ� (S) s.t. A ◦ τ = L+ S, (4)

where τ denotes a set of n affine transformations τ1, τ2, ..., τn that
warps A to align all images; A ◦ τ = [vec(A1 ◦ τ1), vec(A2 ◦
τ2), ..., vec(An ◦ τn)] ∈ R

m×n.
The optimization of our TLS2D in Equation (4) is non-convex

and difficult to solve directly due to the nonlinearity of the τ. To
tackle this issue, we can iteratively linearize about the estimate
of τ according to Boyd et al. (2011) and Wang et al. (2018).
Specifically, we linearize the constraint by using the local first
order Taylor approximation for each image as A ◦ (τ + ∆τ ) ≈
A ◦ τ +

∑n
i=1 Ji∆τiǫiǫ

T
i , where ∆τ = [∆τ1,∆τ2, ...,∆τn] ∈

R
p×n, and each ∆τi ∈ R

p is defined by p parameters of the
transformation; Ji = ∂

∂ζ
vec(Ai ◦ ζ )|ζ=τi ∈ R

m×p is the Jacobian

of the image Ai with respect to the transformation τi, and {ǫi}
denotes the standard basis for R

n. Thus, Equation (4) can be
relaxed into the following optimization:

min
L,S,1τ

‖L‖∗ + λ�(S) s.t. A ◦ τ +
n

∑

i=1

Ji∆τiǫiǫ
T
i = L+ S. (5)

Then the resulting convex programming in Equation (5) can
be solved by ALM method (Lin et al., 2010). We formulate the
following augmented Lagrangian function:

L(L, S,∆τ,Y;µ) = ‖L‖∗ + λ�(S) +
〈

Y , h(L, S,∆τ)
〉

+
µ

2

∥

∥h(L, S,∆τ)
∥

∥

2

F
, (6)

where h(L, S,∆τ) = A ◦ τ+
∑n

i=1 Ji∆τiǫiǫ
T
i − L− S; Y ∈ R

m×n

is the Lagrangian multiplier and µ is a positive hyperparameter;
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FIGURE 3 | The original MR images (bottom row), and corresponding recovered low-rank components (middle row) and sparse components (top row) given by

conventional LSD method, with different values of regularizing parameter λ.

〈·, ·〉 denotes the matrix inner product, and ‖·‖F is the Frobenius
norm. The ALM algorithm then estimates both the optimal
solution and the Lagrange multiplier by iteratively solving the
following four subproblems:

Lt+1 = argmin
L

L(L, St ,∆τ
t ,Y t;µt),

St+1 = argmin
S

L(Lt+1, S,∆τ
t ,Y t;µt),

∆τ
t+1 = argmin

1τ

L(Lt+1, St+1,∆τ
t ,Y t;µt),

Y t+1 = Y t + µth(Lt+1, St+1,∆τ
t+1),

(7)

where superscript t denotes the iteration. In each iteration, the
first problem in Equation (7) can be expressed as

Lt+1 = argmin
L

{

‖L‖∗ +
µt

2
‖HL − L‖2F

}

, (8)

where HL = A ◦ τ +
∑n

i=1 Ji∆τ
t
iǫiǫ

T
i − St + Y t/µt . The

problem in Equation (8) has a simple closed-form solution by soft
thresholding operator (Parikh et al., 2014). Suppose the singular
value decomposition of HL is (U,6,V) = svd(HL), then Lt+1 =
US 1

µt
[6]VT , where S 1

µ
(x) = {[x− 1

µ
]+− [−x− 1

µ
]+} is the soft

thresholding operator and [·]+ = max(·, 0).
The second problem in Equation (7) can be rewritten as

St+1 = argmin
S

{

µt

2
‖HS − S‖2F + λ�(S)

}

, (9)

where HS = A ◦ τ +
∑n

i=1 Ji∆τ ti ǫiǫ
T
i − Lt+1 + Y t/µt . The

problem in Equation (9) is the proximal operator associated with
the structured sparsity norm, which can be calculated by solving
a quadratic min-cost flow problem (Mairal et al., 2010).

Then given the current estimated Lt+1 and St+1, the solution
of the third problem in Equation (7) can be calculated as

∆τ
t+1 =

n
∑

i=1

J†
i (L

t+1 + St+1 − A ◦ τ − Y t/µt)ǫiǫ
T
i , (10)

where J†
i denotes the Moore-Penrose pseudoinverse of Ji. We

summarize the solver for Equation (4) in Algorithm 1.

2.3. Recovery and Segmentation
Framework
In our recovery and segmentation framework, at the first step
we employ the proposed TLS2D to align all MR images and
meanwhile obtaining low-rank and structured sparse images (see
Figure 2). The low-rank images at this step blur the tumor region
and yet cannot reliably recover the normal image appearances.
To address this problem, we propose to leverage the obtained
structured sparse component to adjust the regularizing parameter
λ in Equation (4) for the adaptive sparsity constraint.

Specifically, we compute the saliency maps of the MR images
using (Perazzi et al., 2012). The saliency map indicates the
saliency of each pixel to catch the human attention, with value
1 denoting the highest attention and 0 denoting no attention.
According to (Perazzi et al., 2012), in order to calculate the
saliency of an image, we first abstract this image into perceptually
homogeneous elements using (Achanta et al., 2012). We then
employ a set of high-dimensional Gaussian filters (Adams et al.,
2010) to calculate two contrast measures (i.e., the uniqueness
and spatial distribution of elements), and use these two measures
to predict the final saliency of each pixel. In pathological MR
images, the most salient part shall be the tumor regions. We then
obtain the tumor probability map of an image by computing
the dot product between its binary structured sparse image
and its corresponding saliency map, as shown in Figure 2.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 333

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Lin et al. Pathological MRI Segmentation and Recovery

FIGURE 4 | Recovery and segmentation of (A) synthetic MR brain tumor images: (B) the segmented tumors, (C) the recovered images with normal brain

appearances, (D) the corresponding original MR images from LPBA40 (Shattuck et al., 2008). Yellow boxes illustrate the reliably recovered regions.

FIGURE 5 | The structural similarity index (SSIM) between each of the original MR images and the corresponding recovered images by different methods. The “Initial”

indicates the SSIM between the synthetic tumor images and the corresponding original images.
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Algorithm1:Transformed Low-Rank and Structured Sparse
Decomposition (TLS2D)

Input : A = [vec(A1), vec(A2), ..., vec(An)] ∈ R
m×n, the

regularizing parameter λ, the penalty constant ρ,
the tolerance ǫ, and maximal iterationmaxIter.

Output: Solution (L, S,∆τ) to the problem in Equation (5)
1 Initialize: L0 = S0 = 0 ∈ R

m×n, Y0 = A, ∆τ
0 = 0 ∈ R

p×n,

λ = 1√
max(m,n))

, µ0 = 1, ρ = 1.25, ǫ = 10e−7,

maxIter = 1000
while t ≤ maxIter do

2 Update L: HL = A ◦ τ +
∑n

i=1 Ji∆τ
t
iǫiǫ

T
i − St + Y t/µt ;

3 (U,6,V) = svd(HL);

4 Lt+1 = US 1
µt
[6]VT .

5 Update S:HS = A ◦ τ+
∑n

i=1 Ji∆τ
t
iǫiǫ

T
i − Lt+1 + Y t/µt ;

6 St+1 = prox λ

µt
(HS).

7 Update ∆τ:

∆τ
t+1 =

∑n
i=1 J

†
i (L

t+1 + St+1 − A ◦ τ − Y t/µt)ǫiǫ
T
i .

8 Update Y : Y t+1 = Y t + µth(Lt+1, St+1,∆τ
t+1).

9 Update µ: µt+1 = ρµt .

10 if ||h(Lt+1, St+1,∆τ
t+1)||2 ≤ ǫ then

11 Converge and break
12 end

13 end

14 return L = Lt+1, S = St+1, ∆τ = ∆τ
t+1 and Y = Y t+1

The tumor probability map indicates the probability of each
pixel being tumor region. We denote tumor probability map
P = [vec(P1), vec(P2), ..., vec(Pn)] ∈ R

m×n.
Finally, we use the tumor probability map to adaptively adjust

the regularizing parameter λ in Equation (4). We define the
adaptive TLS2D to obtain the final tumor segmentation and well
recovered quasi-normal images:

min
L,S,τ

‖L‖∗ + λ(1− P)⊙ �(S) s.t. A ◦ τ = L+ S, (11)

where 1 ∈ R
m×n, with each element equals to 1. λ(1 − P) is the

adaptive regularizing matrix. ⊙ denotes dot product. In such a
way, the sparse constraints for tumor and normal regions are set
differently, thus our TLS2D can reliably recover tumor regions
meanwhile retaining normal regions.

3. EXPERIMENTS AND RESULTS

The proposed TLS2D method was evaluated on both synthetic
and real MR brain tumor images. We also extensively
compared our method with state of the art, including Robust
Principal Component Analysis (RPCA) (Candès et al., 2011),
Robust Alignment by Sparse and Low-rank decomposition
(RASL) (Peng et al., 2012), and Spatially COnstraint LOw-
Rank (SCOLOR) (Tang et al., 2018). Specifically, the RPCA
method is one of the most classical and successful low-rank
and sparse decomposition schemes; the RASL method considers

TABLE 1 | Dice values of different methods on synthetic and real MR brain tumor

images.

Data type RPCA RASL SCOLOR TLS2D (Ours)

Synthetic tumor images 0.54± 0.25 0.62± 0.26 0.70± 0.26 0.80 ± 0.28

Real tumor images 0.46± 0.20 0.51± 0.20 0.63± 0.30 0.75 ± 0.26

Best results are highlighted in bold.

spatial mismatch between different images and hence adds image
alignment into the low-rank based decomposition procedure;
the SCOLOR method imposes spatial constraint on sparse
component to restrict its structured sparsity.

The metrics employed to quantitatively evaluate recovery
and segmentation performance was structural similarity index
(SSIM) (Wang et al., 2004) and Dice index (Chang et al.,
2009), respectively. The SSIM index is the most popular metric
to evaluate the similarity of two images by using structural
information. The SSIM of two images x and y is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
, (12)

where µx and µy is the average of x and y; σx and σy is the
variance of x and y, respectively; σxy is the covariance of x and
y; c1 and c2 are two constants to stabilize the division. The Dice
index is used for comparing the similarity of two regions, and can
be calculated as:

Dice =
2|G ∩ T|
|G| + |T|

, (13)

where T and G denotes the segmented tumor region and ground
truth, respectively.

3.1. Validation on Synthetic MR Brain
Tumor Images
We first quantitatively evaluated the recovery performance of
our method on synthetic tumor images. The synthetic MR
brain tumor images are based on images from a public dataset
LPBA40 (Shattuck et al., 2008). The LPBA40 dataset includes 40
T1-weighted MR normal brain images. Some example normal
images from LPBA40 are shown in Figure 4D. We generated the
synthetic tumor images by fusing tumor regions derived from a
real MR tumor image dataset BRATS2018 (Menze et al., 2015)
(see Figure 4A).

Figure 4 visualizes some recovery and segmentation results
obtained by our method. It can be observed that our method
can reliably extract the tumor regions, and recover these regions
with normal brain appearances. Figure 5 further illustrates the
quantitative SSIM values between the original MR images and
the recovered images by different methods. Our TLS2D method
consistently achieves the most similar image appearance to the
original images from LPBA40. In addition, Table 1 lists the Dice
indices of the segmented tumor regions by different methods.
Our TLS2D achieves the best segmentation performance.
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FIGURE 6 | Recovery and segmentation of (A) real MR brain tumor images from BRATS2018 (Menze et al., 2015); (B) the recovered images with normal brain

appearances, (C) the tumor segmentation results. Red arrows indicate well recovered brain structures.

3.2. Evaluation on Real MR Brain Tumor
Images
We further evaluated the efficacy of our method on 124 real
T2-weighted FLAIR MR brain tumor images from the dataset
BRATS2018 (Menze et al., 2015). Table 1 demonstrates that our
TLS2D method achieves the best tumor segmentation results.
Figure 6 illustrates some example recovery and segmentation
results obtained by our method. It can be seen from Figure 6 that
our method can achieve satisfactory recovery and segmentation
performance. The recovered images by our method could infer
the plausible brain structures, see red arrows in Figure 6B.

3.3. Application to Multi-Atlas
Segmentation
The recovery of pathological regions with normal brain
appearances is beneficial for other image computing tasks, such

asmulti-atlas segmentation (MAS). TheMAS attempts to register
multiple normal brain atlases to a new brain image, thus to
map their corresponding anatomical labels to the new brain
image for the brain segmentation. Conventional MAS methods
may not perform well when images are with tumor regions,
because the appearance change induced by these regions cause
difficulties in registering multiple atlases to the brain tumor
image. We conducted multi-atlas segmentation based on the
recovered images to demonstrate the benefit of our method on
image recovery.

We used 40 T1-weighted MR images and their corresponding
segmentation labels from LPBA40 (Shattuck et al., 2008) to
conduct MAS. For each time of MAS, we chose one image to
generate synthetic tumor image, and employed the remaining
39 images as multiple atlases. As shown in Figure 7, we then
used the proposed TLS2D method to obtain the recovered
image, and utilized an intensity-based non-rigid registration
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FIGURE 7 | The illustration of the multi-atlas segmentation framework.

FIGURE 8 | Multi-atlas segmentation results: (A) brain tumor images, (B) the recovered images by SCOLOR method, (C) our recovered images with quasi-normal

brain appearances, (D) the MAS results by using original tumor images, (E) the MAS results by using the recovered images from SCOLOR, (F) the MAS results by

using our recovered images, and (G) the segmentation ground truth.

method (Myronenko and Song, 2010) to map multiple atlases to
the recovered image for the brain segmentation via majority vote
based label fusion. Figure 8 shows some MAS results obtained
by using the recovered images and original images, respectively.
It can be observed that the brain segmentations using our
recovered images outperform those using original tumor images,
especially in the regions tumor occupied. It also can be observed
from Figure 8 that compared to SCOLOR method, our method
can produce much clearer recovered images. Figure 9 further
illustrates the average Dice indices of different brain regions of
40 segmented brain tumor images using MAS+original images,

MAS+SCOLOR recovered images and MAS+our recovered
images, respectively. The MAS using our recovered images
consistently achieve better Dice indices compared to the MAS
using original images and recovered images from SCOLOR,
which demonstrates our method is potentially useful to improve
the MAS when images are with pathological regions.

4. DISCUSSION AND CONCLUSION

In this study, we have proposed a novel low-rank based
method, called transformed low-rank and structured sparse
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FIGURE 9 | The average Dice indices of different brain regions of 40 segmented brain tumor images using MAS+original images, MAS+SCOLOR recovered images,

and MAS+our recovered images, respectively.

decomposition (TLS2D), for the reliable recovery and
segmentation of pathological MR brain images. By integrating
the structured sparsity, image alignment, and adaptive spatial
constraint into a unified matrix decomposition framework, our
method is robust for extracting pathological regions, and also
is reliable for recovering quasi-normal MR appearances. The
recovered image is beneficial for subsequent image computing
procedures, such as atlas-based segmentation. We have
compared the proposed TLS2Dmethod with several state-of-the-
art low-rank based approaches on synthetic and real MR brain
images. Regarding these compared methods, the RPCA method
is a conventional low-rank and sparse decomposition method;
the RASL method embeds image alignment into LSD framework;
the SCOLOR method imposes spatial constraint on sparse
component. Experimental results show our method consistently
outperforms all compared methods, which demonstrates
the contribution of the proposed transformed low-rank and
structured sparse decomposition with adaptive sparse constraint
on simultaneous recovery and segmentation.

Computer aided methods that can assist clinicians to analyze
the MR brain tumor scans are of essential significance for
improved diagnosis, treatment planning and patients’ follow-
up. Automated tumor segmentation is the primary research
task for analyzing the pathological images, and has been
extensively investigated in the literature (Gordillo et al., 2013;
Menze et al., 2015; Zhou et al., 2017). However, in addition
to tumor segmentation task, the presence of pathologies in
MR images poses challenges in other image computing tasks,
such as intensity-/feature-based image registration (Sotiras et al.,
2013) and atlas-based segmentation of brain structures (Cabezas
et al., 2011), due to the structure and appearance changes of

pathological brain images. Thus the recovery of pathological
regions with normal brain appearances is beneficial for most
image computing procedures. To this end, we consider to
integrate the registration, segmentation and recovery procedures
into a unified decomposition framework. The proposed TLS2D
is a generic method for analyzing the MR brain tumor scans.
It is worth noting that although our method is able to provide
recovered images with quasi-normal brain appearances, the
recovered regions may have some artifacts, located in the region
around original tumor boundary, as shown in Figure 8. This
is mainly due to the distinction of sparse constraints between
inner boundary (tumor region) and outer boundary (normal
region). Even so, compared to the original pathological images,
our recovered images are more similar to the normal brain
images, thus are more convenient to be used for other image
computing tasks, such as multi-atlas segmentation shown in
section 3.3.

The tumor region usually occupies a contiguous portion in
the MR brain image, thus the distributions of tumor pixels are
not pixel-wised sparse but structurally sparse. This motivates
us to model the tumor region using the structured sparsity
norm. Considering that the structured sparsity norm described
in Jia et al. (2012) can effectively encourage sparse component
to distribute in structured patterns and also its facility to
be implemented in the low-rank and sparse decomposition
scheme, we employ this structured sparsity norm (Jia et al.,
2012) to model tumor region in this study. Note that the
structured sparsity (Jia et al., 2012) could be replaced by
sparsity in a different basis (e.g., a wavelet basis), but such
sparsity needs to take into account the spatial connection of the
sparse pixels.
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The tumor segmentation performance of our method still
could be improved, especially compared with the state-of-
the-art deep learning based segmentation models (Pereira
et al., 2016; Havaei et al., 2017). However, these deep learning
based methods typically require enormous amount of high-
quality labeled images to train a model for medical image
segmentation. Although some recent approaches (Mlynarski
et al., 2018; Shah et al., 2018) proposed a mixed-supervision
scheme, which employed a minority of images with high-quality
per-pixel labels and a majority of images with coarse-level
annotations (bounding boxes, landmarks or image-level
annotations) to train the deep neural networks; preparing
annotations such as bounding boxes and landmarks is still
laborious. Compared with deep learning based methods,
our advantage is that the proposed TLS2D does not require
labeled images to train a segmentation model; it extracts tumor
regions by analyzing normal MR image appearances from
unlabeled population data. What’s more, the segmentation
results of our method can alleviate the image labeling
procedure by the clinicians. Our segmentation results

could further be used as label information for the semi-
supervised training of deep learning based segmentation
models (Papandreou et al., 2015; Bai et al., 2017).
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