
TECHNOLOGY REPORT
published: 26 March 2019

doi: 10.3389/fnins.2019.00231

Frontiers in Neuroscience | www.frontiersin.org 1 March 2019 | Volume 13 | Article 231

Edited by:

Michael Schmuker,

University of Hertfordshire,

United Kingdom

Reviewed by:

Alexander Peyser,

Forschungszentrum Jülich (HZ),

Germany

Michael Thies,

Bielefeld University, Germany

*Correspondence:

Andrew G. D. Rowley

andrew.rowley@manchester.ac.uk

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 27 November 2018

Accepted: 27 February 2019

Published: 26 March 2019

Citation:

Rowley AGD, Brenninkmeijer C,

Davidson S, Fellows D, Gait A,

Lester DR, Plana LA, Rhodes O,

Stokes AB and Furber SB (2019)

SpiNNTools: The Execution Engine for

the SpiNNaker Platform.

Front. Neurosci. 13:231.

doi: 10.3389/fnins.2019.00231

SpiNNTools: The Execution Engine
for the SpiNNaker Platform
Andrew G. D. Rowley*, Christian Brenninkmeijer, Simon Davidson, Donal Fellows,

Andrew Gait, David R. Lester, Luis A. Plana, Oliver Rhodes, Alan B. Stokes and

Steve B. Furber

Advanced Processor Technologies Group, School of Computer Science, University of Manchester, Manchester,

United Kingdom

SpiNNaker is a massively parallel distributed architecture primarily focused on real time

simulation of spiking neural networks. The largest realization of the architecture consists

of onemillion general purpose processors, making it the largest neuromorphic computing

platform in the world at the present time. Utilizing these processors efficiently requires

expert knowledge of the architecture to generate executable code and to harness

the potential of the unique inter-processor communications infra-structure that lies at

the heart of the SpiNNaker architecture. This work introduces a software suite called

SpiNNTools that can map a computational problem described as a graph into the

required set of executables, application data and routing information necessary for

simulation on this novel machine. The SpiNNaker architecture is highly scalable, giving

rise to unique challenges in mapping the problem to the machines resources, loading

the generated files to the machine and subsequently retrieving the results of simulation.

In this paper we describe these challenges in detail and the solutions implemented.

Keywords: neuromorphic, SpiNNaker machine, framework, software, multiprocessing, parallel, middleware

1. INTRODUCTION

With Moore’s Law (Moore, 1965) coming to an end, the use of parallelism is now the principle
means of continuing the relentless drive toward more and more computing power, leading to a
proliferation of distributed and parallel computing platforms. These range from computing clusters
such as Amazon Web Services (Murty, 2008) and the high throughput Condor platform (Thain
et al., 2005), through to crowd sourcing techniques, such as BOINC (Anderson, 2004). Utilizing
these types of resources often requires expert, platform-specific knowledge to create and debug
code that is designed to be executed in a distributed and parallel fashion. In some cases, software
stacks have been created that try to abstract this process away from the end user by the use of
explicit interfaces (Message Passing Interface Forum, 1994; Dagum andMenon, 1998), or to re-cast
the problem in a form that is easier to map into a distributed system (Dean and Ghemawat, 2008).

A SpiNNaker machine (Furber et al., 2013) is one such distributed parallel computing platform;
SpiNNaker is a highly scalable low-power architecture whose primary application is the simulation
of massively-parallel spiking neural networks in real time. Focusing on energy efficiency and the
minimization of power-hungry data transfer between chips, SpiNNaker uses low performance
off-the-shelf ARM processors as its basic computing elements coupled with a simple packet
routing fabric to communicate across large arrays of individual SpiNNaker chips in a fraction
of a millisecond. Each chip uses up to 1W when all the processors are fully utilized. To save
energy, chips and even entire boards can be turned off when not in use. A growing number of

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00231
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00231&domain=pdf&date_stamp=2019-03-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:andrew.rowley@manchester.ac.uk
https://doi.org/10.3389/fnins.2019.00231
https://www.frontiersin.org/articles/10.3389/fnins.2019.00231/full
http://loop.frontiersin.org/people/407227/overview
http://loop.frontiersin.org/people/699689/overview
http://loop.frontiersin.org/people/70824/overview
http://loop.frontiersin.org/people/648972/overview
http://loop.frontiersin.org/people/608479/overview
http://loop.frontiersin.org/people/185595/overview
http://loop.frontiersin.org/people/531415/overview
http://loop.frontiersin.org/people/185930/overview
http://loop.frontiersin.org/people/71641/overview

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

users are now using SpiNNaker for various tasks, including
Computational Neuroscience (Albada et al., 2018) and Neuro-
robotics (Denk et al., 2013; Adams et al., 2014; Richter et al.,
2016) for which the platform was originally designed, but
also machine learning (Stromatias et al., 2015), and general
parallel computation tasks, such as Markov chain Monte Carlo
simulations (Mendat et al., 2015). The provision of a software
stack for this platform aims to provide a base for the various
applications, making it easier for them to exploit the full
potential of the platform. Using standard, well-documented APIs
internally, also allows users a smooth upgrade path to access
ongoing improvements in the underlying tools without requiring
changes to their software (or at most only minor changes should
any interface changes be demanded).

The SpiNNTools software stack described in this work is
currently released as part of the sPyNNaker software stack
(Rowley et al., 2017b), but can be used fully without using
sPyNNaker itself1. A thin layer which simplifies some of the
interaction, known as the SpiNNakerGraphFrontEnd (Rowley
et al., 2017a), has also been released as a Python library and is
available at https://pypi.org/project/SpiNNakerGraphFrontEnd/
1!4.0.0/.

SpiNNTools allows the user to describe their computational
requirements in the form of a graph, where the vertices
represent the units of computation and the edges represent
allowed pathways of communication of data between the
computational units. The graph is described in a high level
language and the software then maps this directly onto an
available SpiNNaker machine.

This paper describes the functionality of the software stack
as of version 4.0.0 of sPyNNaker (Rowley et al., 2017b) and
version 4.0.0 of SpiNNakerGraphFrontEnd (Rowley et al., 2017a)
and is structured as follows. Section 2 describes the SpiNNaker
architecture in more detail, explaining the machine onto which
problems are mapped. We then discuss the software with which
the SpiNNaker application cores are programmed in section 4.
For context, in section 3 we review previous tool chains for
SpiNNaker that have tried to solve the same problem in the past.
This is followed by a discussion of the data structures required in
section 5. We then go in to the details of how these structures are
used to map the graph on to the machine in section 6, followed
by an evaluation of the tools on some example applications that
can be described as a graph in section 7. We outline further work
to be done in section 8 and conclude in section 9.

2. SPINNAKER ARCHITECTURE

In this section we will look at the SpiNNaker Architecture,
reviewing the resources available on each SpiNNaker node and
the mechanisms that are available to manage the flow of data
across a SpiNNaker machine. Each such machine is constructed
from one or more SpiNNaker boards that are themselves made
up of a number of SpiNNaker chips. There are two production
versions of the SpiNNaker board, known as SpiNN-3 and

1The software is open source and can be downloaded from https://github.com/

SpiNNakerManchester

SpiNN-5 which have 4 and 48 chips, respectively; the latter
additionally has 3 FPGAs to allow it to be connected to up
to 6 other boards to make up a larger SpiNNaker machine.
Common machine configurations are shown in Figure 1. From
a programming perspective the two board types and the machine
types are identical, in that they consist of an array of connected
SpiNNaker chips.

Figure 1B shows a graphical representation of a SpiNNaker
chip, containing:

• 18 ARM968E-S (ARM, 2004) processors (also referred to as
cores), operating at 200MHz, each of which has:

• 32 KiB of core-local, tightly-coupled instruction memory,
referred to as ITCM, into which the entire processor scoped
application code must fit

• 64 KiB of core-local, tightly-coupled data memory, referred
to as DTCM, into which all locally scoped data and the
application stack must fit

• a Direct Memory Access (DMA) controller for transferring
data between the core-local and node-local memory

• an SDRAM controller giving access to 128 MiB of node-local
SDRAM (not shown in the diagram as it is wire-bonded onto
the chip) which can store large data structures, at the penalty of
increased access latency relative to access time for data stored
in local memory

• the SpiNNaker packet router, support packet routing
communications (described in detail later)

• on-board sensors for hardware monitoring

The SpiNNaker router on each chip has six links with which it
sends and receives SpiNNaker packets (Furber et al., 2013) from
its neighboring chips. When arranged in a standard Cartesian
2D plane with the x-axis being labeled East/West and the y-
axis being labeled North/South, the connections are usually made
to chips in the directions of North, North East, East, South,
South West, and West. The router can also send and receive
SpiNNaker packets to and from any of the processors running
on its own chip. The wiring of an individual SpiNN-5 board is
shown in Figure 2A.

Data sent by an application makes use of the multicast
routing, meaning that a packet sent from a single source core
can be routed to multiple destinations simultaneously—useful
functionality when implementing a neural network in which
each neuron typically has a large fan-out. Each multicast packet
consists of a key and an optional payload. A packet is generated
by a core and is dropped into the communications fabric (and
can then be forgotten about by the sender). It is then the
responsibility of the hardware to ensure that the packet is routed
to its destination(s), passing from chip to chip via the inter-
chip links. Since it carries only a 32-bit key, there is not enough
information in each packet alone to decide how to route it.
This information is distributed across the network of SpiNNaker
nodes, in the routing table stored within the Router of each chip.
These tables must be set up with an ordered list of up to 1,024
entries, each of which has a key, a mask, and a route, as shown in
Figure 2B. When a packet is received whose key matches the key
of a (masked) entry, the associated route field is consulted. The
route is a vector of bits, one per core on the same chip (18 in total)

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 231

https://pypi.org/project/SpiNNakerGraphFrontEnd/1!4.0.0/
https://pypi.org/project/SpiNNakerGraphFrontEnd/1!4.0.0/
https://github.com/SpiNNakerManchester
https://github.com/SpiNNakerManchester
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 1 | SpiNNaker Chip, Boards, and Machines. The SpiNNTools software works with single boards and multi-board machines. Single boards can be used in

isolation; multi-board machines are wired into a torus, but can also be split into smaller multi- or single-board machines. (A) The SpiNNaker chip in packaging. (B) The

SpiNNaker chip in detail. (C) A 4-chip SpiNN-3 board. (D) A 48-chip SpiNN-5 board. (E) A card frame made up of 24 SpiNN-5 boards wired together as a single

machine. (F) A cabinet containing 5 card frames seen in (E) with a total of 120 SpiNN-5 boards wired together as a single machine. (G) 10 cabinets as seen in (F) with

a total of 1,200 SpiNN-5 boards wired together as a single machine. This machine has over 1-million cores when operated as a single machine.

FIGURE 2 | (A) The SpiNNaker Board wiring, showing the links between the chips on a single board, and the numbering of the links and chips. (B) The SpiNNaker

Routing tables. An incoming key is matched against the entries in the table using the mask to determine which bits can be ignored and a route is determined, made

up of 6 link bits and 18 processor bits, indicating where the packet should be sent. An entry might match with multiple keys once masked, in which case the match

that appears earliest in the table is used.

and one per external link (6 in total). If the bit is set, a copy of the
packet is sent to that destination. In this way, a single incoming
packet can spawn up to 24 copies of itself at each node in the

network. Note that the use of a mask in each entry allows groups
of incoming keys with overlapping (but non-identical) values to
be routed using a single entry in the routing table; if the result

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

of the bit-wise AND operation between the received key and the
mask in the table matches the key in the table on the same row,
this is considered a match on that entry. The list of entries in
the routing table is ordered so that the first match is taken over
any other. If no match is found, the packet is routed out of the
opposite link to the one on which it was received (called default
routing); thus packets will travel in a straight line through chips if
not redirected by a routing entry. If the packet was received from
a local processor, and no entry matches, the packet is dropped.

Due to the asynchronous nature of the SpiNNaker machine’s
communication fabric, it is possible to cause deadlocks within the
system by having loops of communication. To avoid the traffic
coming to a standstill, the SpiNNaker router can drop the next
packet to be sent after a given time period (see Furber et al.,
2013 for a more detailed explanation). If a packet is dropped, an
interrupt is raised so that it can be detected and potentially dealt
with (see later).

Each chip additionally has an Ethernet controller, although in
practice only one chip is connected to the Ethernet connector
on each board. The chip with the Ethernet connected to it is
then called the Ethernet chip, and is used to communicate with
the outside world, allowing, for example, the loading of data
and applications. Communications with other chips on a board
from outside of the machine must therefore go via the Ethernet
chip; system-level packets are used to effect the communication
between chips. In practice, the Ethernet connector of every board
in a SpiNNaker machine is connected and configured, though it
isn’t a requirement to operation since every Ethernet chip can
communicate with every other chip in the machine.

SpiNNaker machines are designed to be fault tolerant, so
it is possible to have a functional machine with some missing
parts. For example, it is normal that some of the SpiNNaker
chips have 17 instead of 18 working cores, and sometimes
even less as operational cores are tested more thoroughly than
the testing done at manufacture. Additionally, machines can
have whole chips that have been found to have faults, as
well as some links missing between the chips and boards.
The machine includes memory on to which faults can be
stored statically in a blacklist, so that during the boot process
these parts of the machine can be hidden to avoid using
them.

SpiNNaker machines can be connected to external devices
through either a SpiNNaker-Link connector, of which there
is one on every 48-node board, or a SpiNN-Link SATA
connector, of which there are 9 on each board; of those, 6
are used to connect to other boards. This, along with the
low power requirements, make the machine particularly useful
for robotics applications, since the board can be connected
directly to the robot without any need of other equipment.
The only requirement is that the external devices must be
configured to talk to the machine using SpiNNaker packets.
The links can be configured to directly connect with the
links connected to a subset of the SpiNNaker chips on the
board, and so entries in the routing tables of the chip
can be used to send packets to any connected device and
similarly to route packets received from the devices across the
SpiNNaker network.

Some of the key design decisions made in developing the
SpiNNaker architecture have important implications for the
software which can run on the system: it must be possible
to break up the computation of the application into units
small enough that the code for each part fits on a single
core, since cores cannot access code space outside of its own
local memory. In contrast, the SDRAM is shared between the
cores on a single chip, allowing cores to operate on the same
data within the same chip. Data can be passed between chips
only via the multicast routing mechanism. The implications
of these design choices will be described in the remainder
of the document.

3. PREVIOUS SOFTWARE VERSIONS

Software for SpiNNaker has been released in a software package
known as PACMAN48 (Galluppi et al., 2012). This software
requires end users to load compiled applications and routing
tables manually onto the SpiNNaker machine through the use of
a low level debug tool developed in-house called ybug2. Other
parts of the package are designed to ease the development of
application code for end users. These consist of:

• low level libraries SARK and Spin1API running on each core
of a SpiNNaker machine (described in more detail in the
next section)

• an executable called SCAMP to run on one core of each chip,
designating it as supervisor for that chip (described in the
next section)

• a collection of C code which represented models known in
the neuroscience community and defined by the PyNN 0.6
language (Davison et al., 2008)

• a collection of Python code which translates PyNN models
onto a SpiNNaker machine

The PACMAN48 software has the following limitations:

• It only supports SpiNNaker machines consisting of a single
SpiNN-3 or SpiNN-5 board

• It was designed only to support the computational
neuroscience community, and thus non-neural applications
are not supported

• End users are still expected to have expertise in using the
SpiNNaker hardware, as they are expected to manually run
separate scripts which together:

• Boot the SpiNNaker machine
• Load executables onto the SpiNNaker machine
• Load data objects onto SpiNNaker
• Check when the executing code finished
• Extract data from the SpiNNaker machine

The intention of the SpiNNTools software stack is to support
a range of suitable applications executing on the SpiNNaker
hardware by providing a flexible abstraction layer where the
end user represents their problem as a graph which is then

2Available from https://github.com/SpiNNakerManchester/spinnaker_tools/

releases

Frontiers in Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 231

https://github.com/SpiNNakerManchester/spinnaker_tools/releases
https://github.com/SpiNNakerManchester/spinnaker_tools/releases
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

executed on the SpiNNaker machine without requiring such a
low-level knowledge of how themachine works, thus overcoming
the issues mentioned above. This concept is briefly mentioned
as “The Uploader” in Brown et al. (2015), although, as will be
demonstrated, the framework described herein is more complete
in that it also:

• allows the user to express the generation of the data structures
to be loaded (and possibly reloaded when changes have
been made)

• controls the execution flow of the application where required
• aids in the storage and retrieval of data recorded

during the execution
• extracts and presents provenance data which can be used to

determine the correctness of the results.

4. SPINNAKER CORE SOFTWARE

This section discusses the software that runs on each core of
the machine, together with the programming model. The ARM-
968 cores can execute instructions from their code memory
(ITCM) using the ARM or THUMB instruction sets; generally
this code is generated from compiled C code using either the
GNU gcc compiler3 or the ARM armcc compiler4. Although
each SpiNNaker core is too simple and has too little local
memory to be able to run an operating system such as embedded
Linux, a library called SARK (Spinnaker Application Runtime
Kernel) was designed with functions to interrogate, configure
and control low level chip resources (Brown et al., 2015). It
remains the closest thing that SpiNNaker has to an operating
system. Additionally, an executable called SCAMP (Spinnaker
Control And Monitor Program) is loaded to one of the cores
on each SpiNNaker chip during the boot phase, allowing it
to operate as a monitor processor through which the chip
can be controlled. Supported functions include: the loading of
compiled applications onto the other cores of the chip; the
reading and writing of the SDRAM; and the loading of the
SpiNNaker routing tables. SCAMP will also read the blacklist
of its board and use this information to map out parts of the
machine that are known to be faulty. During the phase in
which the users application is compiled on a host workstation,
the host software stack will talk to each monitor processor via
SCAMP to obtain information on the state of its chip. The
blacklist itself can be updated dynamically if components (cores,
memory, router, or inter-chip links) are found to be faulty
in future.

After SCAMP has been loaded onto one core on every
chip of the machine, these cores then communicate with each
other to work out the shortest pathway to every other chip,
working around any known faults. They also establish where
their nearest Ethernet port is located, so that a link to the host
machine can be initiated. This communication makes use of
the SpiNNaker Datagram Protocol (SDP) (Furber et al., 2014)

3https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
4https://developer.arm.com/products/software-development-tools/compilers/

legacy-compiler-releases

which is encapsulated into UDP packets for communication with
external machines. Communication out of the machine from any
core is achieved by using IP Tags. The SCAMPmonitor processor
on each Ethernet chip maintains a list of up to 8 IP Tags which
map between values in the tag field of the SDP packets and an
external IP address and port. When a packet is received that
is destined to go out via the Ethernet (identified in the SDP
packet header), the tag table is consulted and a UDP packet is
formed containing the SDP packet, using the IP address and
port given in the table. The table can also contain Reverse IP
Tags, where a UDP packet received from an external source is
mapped from the UDP port in the packet to a specific chip and
core on the machine, where the data of the packet is extracted
and put in to an SDP packet before being forwarded to the
specified core.

In addition to SARK, another library called Spin1API has
been developed, providing support for event-driven applications
(including our spiking neural network framework). Notionally,
Spin1API sits on top of SARK in the software stack on
each chip, further abstracting the details of the low level
hardware from the application (Furber et al., 2014). Under
this programming model an application running on a core is
expected to remain dormant until awakened by an event that
is implemented as an interrupt. The application is required
to register callback functions during the start-up phase of the
program, each associated with a given event type or source.
When a registered event occurs the associated function is
called and then the processor returns to sleep (or processes
another event).

Examples of these events types include:

• Receiving packets of different types
• The expiration of an (optionally periodic) timer
• The completion of a memory transfer (DMA) between

SDRAM and DTCM

The problem of writing code to run on the cores of the
SpiNNaker machine is discussed in more detail in Brown
et al. (2015), along with the types of applications which
might be suitable to execute on the platform; in particular
section 6.6 of this work gives some examples of applications
which include neural simulation, electrical circuit simulation,
finite difference solving, molecular dynamics, and large matrix
mathematics. In the rest of this work, it is assumed that the
application has already been designed to run in parallel and that
SpiNNaker executables have been created for the application. The
SpiNNTools software then works to map that parallel application
on to the machine, execute it, and extract any results, along
with any relevant data about the machine. In addition, the
software also includes some additional C code libraries which
run on top of the Spin1API to provide interfaces for some of the
more advanced features supported. Note that it may be possible
to automatically generate some of the SpiNNaker application
code from higher level descriptions, as is described in Blundell
et al. (2018), however it is expected that even in that case
some of the base code will have been handwritten in advance,
with only a template being filled in by the automatic code
generation system.

Frontiers in Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 231

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/products/software-development-tools/compilers/legacy-compiler-releases
https://developer.arm.com/products/software-development-tools/compilers/legacy-compiler-releases
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 3 | The Python class hierarchy for SpiNNaker Machine representation. The machine contains a list of chips, and each Chip contains a Router, SDRAM, and a

list of Processor objects, each with their respective properties. A VirtualMachine can also be made that contains the same objects but can be identified as being virtual

by the rest of the tools.

5. DATA STRUCTURES

In earlier sections we have examined the software running on
the machine and summarized earlier versions of the main tool
chain. We now turn to the software stack running on the
host workstation which is written in Python. In this section,
we describe the principle data classes used to represent the
SpiNNaker machine and the user graph which are the principles
inputs to the mapping process.

5.1. SpiNNaker Machines
A SpiNNaker machine is represented as a set of Python classes
as shown in Figure 3. An instance of the main Machine class
contains instances of classes for each of the important details of
the machine for mapping purposes, including:

• the chips, cores, and links available in the machine
• the clock speed of each core in MHz
• the SDRAM available on each chip in Bytes
• the number of routing entries available on each chip (in case

some entries are used by the system software such as SCAMP)

As well as internally representing a physical, real-world machine
with all its faults mapped out, the machine representation also
allows the instantiation of a virtual machine for testing in the
absence of connected hardware. The virtual machine can be
further modified to simulate hardware faults and analyse the
behavior of the software.

The connection of external devices, such as robotic devices
like a silicon retina or a motor, to the machine is represented
using virtual chips. A virtual chip will be given coordinates of a
chip that doesn’t exist in the physical machine and is marked as
virtual. However, these coordinates are merely a means of giving
the device a unique label—they are not used to map paths to the
device directly since the device is only accessible through a single
real chip and all attempts to access a “chip” marked as virtual will
always go first to the real chip to which it is connected, then use
the appropriate inter-chip link to connect to the external device.

5.2. Graphs
The graph in SpiNNTools allows the user to define units of
computation and the communication between them. This is the

extent to which the tools help with describing the parallel nature
of the execution of the program; the tools do not help the user
to solve issues of said parallelization, such as working out the
dependencies in the computation beyond the communication.

A graph in SpiNNTools consists of vertices and directed
edges between the vertices. The vertex is considered to be a
place where computation takes place and as such each vertex
has a SpiNNaker executable binary associated with it. An edge
represents a communication pathway from a source, or pre-
vertex to a target, or post-vertex. An additional concept is that
of an outgoing edge partition, representing a group (in general a
subset) of edges that all start at the same pre-vertex, partitioned
according to some criteria such as message type. An example of
outgoing edge partitions is shown in Figure 4B. The concept is
useful to represent a multicast communication. Note that not
all edges that have the same pre-vertex have to be in the same
outgoing edge partition; there can be more than one outgoing
edge partition for each source vertex, representing different
message types which might be multicast to different sets of target
vertices. Thus each outgoing edge partition has an identifier
which can be used to identify the type of message to be multicast
using that partition.

There are two types of graph represented as Python classes in
the tools (a diagram can be seen in Figure 5). Figure 4A shows
an example of a Machine Graph, in which each vertex (known
as a Machine Vertex) is guaranteed to be able to execute on
a single SpiNNaker processor. A Machine Edge then represents
communication between cores. In contrast, Figure 4C shows an
example of an Application Graph, in which each vertex (known
as an Application Vertex) contains one or more atoms, each of
which represents the minimum unit of computation into which
the application can be split. Of course, it may be possible to run
multiple atoms of an Application Vertex on a single core. Each
edge (known as an Application Edge) represents communication
of data between the groups of computational atoms; if one or
more of the atoms in an Application Vertex communicates with
one or more atoms in another Application Vertex, there must
be an Application Edge between those Application Vertices. It
is not guaranteed that all the atoms on an Application Vertex fit
on a single core, so the instruction code for Application Vertices
should know how to process a subset of the atoms, and how

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 4 | Graphs in SpiNNTools. (A) A Machine Graph made up of two Machine Vertices connected by a Machine Edge, indicating a flow of data from the first to

the second. (B) A Machine Vertex sends two different types of data to two subsets of destination vertices using two different Outgoing Edge Partitions, identified by

solid and dashed lines, respectively. (C) An Applications Graph made up of two Application Vertices, each of which contain two and four atoms, respectively,

connected by an Application Edge, indicating a flow of data from the first to the second. (D) A Machine Graph created from the Application Graph in (C) by splitting

the first Application Vertex into two Machine Vertices, each of which contain two atoms. The second Application Vertex has not been split. Machine Edges have been

added so that the flow of data between the vertices in still correct.

FIGURE 5 | The relationship between the graph objects. An ApplicationGraph contains ApplicationVertex objects and OutgoingEdgePartition objects, which contain

ApplicationEdge objects in turn. A MachineGraph similarly contains MachineVertex objects and OutgoingEdgePartition objects, which contain MachineEdge objects in

turn. ApplicationEdge objects have pre- and post-vertex properties which are ApplicationVertex objects. Similarly MachineEdge objects and pre- and post-vertex

properties which are MachineVertex objects. An ApplicationVertex can create a number of MachineVertex objects for a subset of the atoms contained therein and an

ApplicationEdge can create a number of MachineEdge objects for a subset of atoms in the pre- and post-vertices.

to handle a received message and direct it to the appropriate
atom or atoms. The graph classes support adding and discovering
vertices, edges and outgoing edge partitions.

As the vertices represent the application code that will run
on a core they have methods to communicate their resource
requirements in terms of the amount of DTCM and SDRAM
required by the application, the number of CPU cycles used by
the instructions of the application code in order to maintain any
time constraints, and any IP Tags or Reverse IP Tags required

by the application. The Application Vertex provides a method
that returns the resources required by a continuous range or
slice of the atoms in the vertex; the value returned is specific to
the exact range of atoms requested, allowing different atoms of
the vertex to require different resources. The Application Vertex
additionally defines the maximum number of atoms that the
application code can execute on each core of the machine (which
might be unlimited), and the total number of atoms that the
vertex represents. These measurements allow the Application

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 6 | The execution work flow of the tools on the host machine in use within an application. Following the setup of the tools, the graph is created and then

executed. The execution results in machine discovery, mapping of the graph on to the machine, generation of data for the application on the machine, loading of the

data and application binaries and then running of the application. Once the run is complete, control is returned to the application. The flow can then be resumed at

different stages depending on what has changed since the last execution. An external application can also interact with the tools and be sent messages that allow it to

keep in synchronization with a simulation running on the machine.

Vertex to be broken down into one or more Machine Vertices
as seen in Figure 4D. The Application Vertex class has a method
for creating Machine Vertex objects for a continuous range of
atoms. A Machine Vertex can return the resources it requires in
their entirety.

The graphs additionally support the concept of a Virtual

Vertex, a vertex that represents a device connected to a
SpiNNaker machine. The Virtual Vertex indicates which chip the
device is physically connected to, allowing the tool chain to work
with this information to include the device in the network. As
with the other vertices, there is a version of the Virtual Vertex for
each of the machine and application graphs.

6. THE SPINNTOOLS TOOL CHAIN

The aim of the tool chain is to control the execution of a program
described as a graph on the SpiNNaker machine. The tool chain
software is executed on the host machine in several steps as
shown in Figure 6, and detailed below. The software has been
designed to run on any host machine that can run Python and
can install the appropriate libraries which includes machines that
runWindows, Linux, andMac OS X. The host machine must also
be able to communicate with the Ethernet connection(s) of the
SpiNNaker machine.

6.1. Setup
The first step in using the tools is to initialize them. As part
of this process, the user can specify appropriate configuration
parameters such as the time step of the simulation and the
location where binary files can be located on the host machine.
The tools then set up the initially empty graphs and read in

configuration files for further options such as the SpiNNaker
machine to be used. Options are separated out in this way tomake
a clear distinction between script-level parameters that might
apply no matter where the script is run (such as the time step
of the simulation) and user-level parameters that will be different
per-user but likely to be common across multiple scripts for that
user (for example the SpiNNaker machine to be used).

6.2. Graph Creation
The graph creation step is part of the user’s execution script, in
which vertices and edges to either an application or machine
graph may be added. It is an error to add vertices or edges to both
of these structures. The tool chain keeps track of the graph as it is
built up.

Users can extend the vertex and edge classes to add additional
information relevant to their own application. Typically, users
will need to extend the vertex classes (which are provided as
abstract classes) to ensure that the implementation provides the
resources required as well as the name and execution type of the
SpiNNaker-compiled binary file; the execution type indicates to
the tools whether the binary was compiled with additional library
support to work with additional features of the tool chain (see
later). Other additional features of the tool chain can also be used
by extending additional abstract classes. These will be detailed in
the later sections.

6.3. Graph Execution
Graph execution takes the created graph and performs the step
required to execute it on the machine. Methods are provided
to run for a specified period of time, to run until a completion
state is detected (such as all cores being in an exit state having

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

completed some unit of work), or to run forever meaning that
execution can be stopped through a separate call to the tools at
some indeterminate time in the future, or the execution can be
left on the machine to be stopped outside of the tools by resetting
the machine. The graph execution itself consists of several phases
shown in the lower half of Figure 6 and detailed below.

6.3.1. Machine Discovery
The machine discovery algorithm is shown in Algorithm 1.
Further details are discussed below.

Algorithm 1:Machine Discovery algorithm.

ifMachine connected directly to user’s machine then
Create connection to machine;
Boot machine;
Read machine to create machine data structure;

end

ifMachine is to be allocated then
if Application graph has been provided then

Request largest machine;
Convert application graph to machine graph;

end

Calculate number of chips required by machine graph;
Request machine;
Boot machine;
Read machine to create machine data structure;

end

ifMachine is virtual then
Create virtual machine data structure;

end

If the user has configured the tools to run on a single
physical machine then that machine is contacted and booted (if
necessary). Communications with the machine then take place
to discover the chips, cores and links available. This data is
used to build up a Python machine representation that can be
interrogated by the rest of the tools.

If a machine is to be allocated, the tools must first work
out how big a machine to request, by working out how many
chips the user-specified graph requires. If a machine graph has
been provided then the number of cores is exactly the number
of vertices in the graph. The resources must still be queried
as the SDRAM requirements of the vertices might mean that
not all of the cores on each chip can be used. For example, a
graph consisting of 10 machine vertices, each requiring 20 MB
of SDRAM, and thus 200 MB of SDRAM overall, will not fit on a
single chip in spite of their being enough cores.

If an application graph is provided, it must first be converted
into a machine graph to determine the size of the machine
required by executing some of the algorithms in the mapping
phase (see below).

6.3.2. Mapping
The mapping phase takes the graph and maps it on to the
discovered machine. In other words the vertices of the graph

are assigned to cores on the machine and edges of the graph
are converted into communication paths though the machine.
Additionally, other resources required by the vertices are mapped
on to machine resources to be used within the simulation.

If the graph is an application graph it must first be converted
to a machine graph. The conversion may have been done
during the machine discovery phase as described previously.
To allow the prior conversion, the algorithm(s) used in the
graph partitioning process are kept separate from the rest of the
mapping algorithms.

Once a machine graph is available it is mapped to the machine
through a series of phases that generate data structures to be used
later in the process, including:

• A set of placements detailing which vertex is to be run on
which core of the machine

• A set of routing tables detailing how communications over
edges are to pass between the chips of the machine

• A set of routing keys detailing the key or range of keys that
must be sent by each vertex in order to communicate over each
outgoing edge partition starting at that vertex

• A set of IP tags and reverse IP tags to identify which
external communications are to take place and through which
Ethernet-connected chip

Note that once a machine has been discovered, mapping can be
performed entirely separately from themachine using the Python
machine data structures created. It is interesting to note here that
an alternative strategy would be to have the mapping process
make use of the machine itself, turning the graph mapping
problem into a highly parallel relaxation algorithm running on
the cores of the SpiNNaker machine. This functionality is not
implemented at present and we leave the design of such an
algorithm to future work.

Mapping information can be stored in a database by the
system to allow external applications which interact with the
running simulation to decode any live data received. As shown
in Figure 6, the applications can register to be notified when the
database is ready for reading and to receive other notifications
later in the execution cycle.

6.3.3. Data Generation
The data generation phase creates a block of data to be loaded in
to the SDRAM for each vertex which contains any parameters
and other relevant data from the Python-described vertices to
be used by the application code to be executed on the machine.
The vertices can make use of the mapping information above as
appropriate when generating the data. For example, the routing
keys and IP tags allocated to the vertex can be passed to ensure
that the correct keys and tags are used in transmission. The graph
itself could also be used to determine which routing keys are to
be received by the vertex and so set up appropriate actions to take
upon receipt of these keys.

A user with a vertex that generates data should extend
the AbstractGeneratesDataSpecification abstract class, requiring
the user to implement the generate_data_specification method.
Some support for data generation is provided by the tools
at both the Python level (where data can be generated in

Frontiers in Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

regions) and at the C code level (where library functions are
provided to access these regions). A class that extends the
aforementioned abstract class will be provided with an object that
they can use to write their specification. Callable methods on this
object include:

• reserve_memory_region, allowing the user to create regions to
which data can be written

• switch_write_focus, allowing the user to switch attention
between different regions when writing new data

• write_data, allowing the user to append a single value to the
currently selected region and to specify the required data type
(data format conversion is then performed automatically); for
example, having supplied a 32-bit floating point number, the
user can choose to write a signed or unsigned 32-bit, 16-bit or
8-bit integer, or a signed or unsigned fixed point number

• write_array, allowing the user to append an array of values to
the currently selected region.

There is currently no support in the tools to maintain synchrony
between the data required by the vertices (in the C code running
on the SpiNNaker machine) and the data created by the data
generation phase (in the host-based Python code). Users must
therefore take care to generate the data in the correct order and
using the types appropriate for their data. It is also important
to note that the tools do not currently provide support for
padding in data structures—users should be aware of the padding
requirements in C data structures when writing sequences of
values of different bit-lengths. Support for ensuring a match
between the Python data generation and the C code is to be
developed in the future.

6.3.4. Loading
The loading phase prepares the physical machine for execution
by loading the routing tables generated on to each chip of the
machine, the application data into the SDRAM of the machine,
the IP tags and reverse IP tags into the Ethernet chips and the
application code (executable) into the ITCM of the cores. The
application loader can send executable code to multiple cores in
the machine in a single operation, significantly speeding up this
part of the loading process.

6.3.5. Running
The running phase starts off the actual execution of the
simulation on the SpiNNaker machine and, if necessary,
monitors the execution until complete as shown in Algorithm 2.
Before execution, the tools wait for the completion of the
setup of any external applications that have registered to
read the mapping database. The external applications are
then notified when the application is about to start and
to finish, allowing them to keep in synchronization with
the simulation.

Once a run is complete, application recorded data and
provenance data is extracted from the machine. The provenance
data includes:

• Router statistics, including dropped multicast packets.
• Core-level execution statistics, including information on

whether the core has kept up with timing requirements.

Algorithm 2: Algorithm for running for a fixed time.

for each sub-run of the execution do

Update the run duration of the application;
Clear log messages stored on the machine;
if external applications registered then

Tell applications that the database is ready to read;
end

Load any buffers for this run;
if external applications registered then

Wait until applications are ready to run;
end

Start simulation execution;
if external applications registered then

Tell applications that the run has started;
end

Wait for simulation time;
Check cores are finished execution;
if external applications registered then

Tell applications that the run is finished;
end

Extract provenance data;
Extract log messages;
Report provenance anomalies;
if cores in error state then

Extract error data;
Report errors;

else

Extract recorded data;
end

end

• Custom core-level statistics. The information contained
depends on the application, but might include such things
as the number of spikes sent in a neural simulation, or the
number of times a certain condition has occurred.

During provenance extraction, each vertex analyses the data and
reports any anomalies. The log files from each core can also
optionally be extracted and can then be analyzed, printing any
error or warning lines.

If a run is detected to have failed in any way, the tools will
attempt to extract information about that failure. One possible
failure mode that a core may have entered an error state at
some point during processing. It is also possible for a core to
fail to enter the completion state after the expected simulation
time (with some margin), perhaps indicating a problem during
execution. Log files will be automatically extracted in such cases
and analyzed as previously discussed. Any cores that are still alive
will also be asked to stop and extract any provenance data so that
this can also be analyzed in an attempt to diagnose the cause of
the error.

The run may be split into several sub-runs to allow for the
limited SDRAMon themachine, as shown in Figure 7. After each
run cycle, any recorded data is extracted from the SDRAM and
stored on the host machine, after which the recording space is

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 7 | Running vertices with recorded data. The SDRAM space

remaining on each chip after it has been allocated for other things is divided up

between the vertices on that chip. Each is then asked to provide an upper

bound on the number of time steps for which it can be run before filling up its

local SDRAM. The minimum of these upper bounds is taken as the maximum

length of each simulation interval. A single run is split into many such intervals,

with simulation pausing after each one to extracted and then delete the

recorded data.

flushed and the run cycle restarted. Additional support within the
binary of the vertex is required to allow a message to be sent to
the core to increase the run duration and to reset the recording
state. These operations are provided in the form of C code library
functions, with callbacks to allow the user to perform additional
tasks before resuming execution. Additionally, the tools can be
set up to extract and clear the core logs after each run cycle to
ensure that the logs do not overflow.

The length of each run cycle can be determined automatically
by the tools by working out the SDRAM available on each chip
after data generation has taken place, dividing the space equally
between the vertices on the chip and then asking howmany units
of time each vertex can run for given that space. The minimum
such time is taken and used as the unit for each cycle with any
left over time then used up in the last run cycle. To ensure that
there is some space for recording, vertices can also reserve a
minimum recording space. This functionality requires that the
vertex implement an additional interface to provide the required
information to allow the tools to make these decisions.

6.4. Return of Control / Extraction of
Results
Once the run cycles have completed the tools return control to
the executing script, after which the user can interact with the
graph again. At this time, interactions might include extracting
any recorded data (see later), or making changes to the graph
and/or the parameters before resuming the simulation. The effect
of any change is detailed below.

6.5. Resuming / Running Again
The user can choose to resume the execution of the simulation or
to reset the simulation and start it again. At this point, the tools

Algorithm 3: Algorithm for resuming simulation.

if Graph has changed then
if User has not reset the simulation then

Report an error;
end

Run the simulation as if from the start;

else
if Parameters have changed and parameters can be
reloaded then

Reload changed parameters;
end

Run normally in units of up to the previous maximum
run time;

end

must decide which of the aforementioned steps need to be run
again, using the algorithm described in Algorithm 3.

Any change to the graph, such as the addition of a vertex or
edge, is likely to require that the mapping phase take place again
which may even result in a new machine being required should
the size of the graph increase to this degree. Such a change will
mean that all the other phases will also have to be executed again.

If the parameters of any of the vertices or edges have been
changed, the vertex can be set up to allow the reloading of these
changes where the change won’t increase the size of the data,
such as a change in neuron state update parameters in a neural
network. Any increase in the size of the data, such as an increase
in the number of synapses in a neural network, would likely
require a remapping of the graph on to the machine since the
SDRAM is likely to be packed in such a way as to prohibit the
expansion of the data for a single core; it is left to the vertex to
make this decision however.

The case where no changes have been made to the graph
or the parameters can be considered an extension of the
aforementioned ability for the tools to run the code in phases.
The minimum time calculated previously is respected again here
and the tools will then run in cycles of that unit of time. Note
that if the first run-time is shorter than that required to fill
the remaining SDRAM space (and thus only one run cycle was
required previously) the buffers will have already been initialized
to record for only that amount of time. A future extension to
this functionality is to allow the buffers to be sized to use up all
of the remaining SDRAM regardless of the run time, and then
allow runs in units of less than or equal to the time that uses all
of the space.

6.6. Closing
Once the user has finished simulating and extracted any data,
they can tell the tools that they are finished with the machine
by closing the tools. At this point, the tools reset and release any
machines that have been reserved. Any recorded data that has not
be extracted by this point will no longer be available. If the tools
were told to run the network for an indeterminate length, the
extraction and evaluation of any provenance data would happen
during this call, before the machine is released.

Frontiers in Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 8 | Algorithms being run by the algorithm execution engine. The executor is provided with a list of algorithms to run, a set of input items and a set of output

items to produce. It then produces a workflow for the algorithms accounting for their inputs required and outputs produced.

6.7. Algorithms and Execution
In order to run each of the above phases, the tools execute a
series of algorithms. The algorithms consume various inputs
that are made available by the tools and by other algorithms
and produce various outputs. These inputs and outputs are not
constrained in any other way; thus algorithms are not constrained
to produce only one output. For example, this could be useful
in mapping where an algorithm could be made to produce
both placements and routing tables that have been optimized
together. This approach is more flexible and more powerful
than a more restrictive methodology, in which each algorithm
can only perform one of a pre-determined list of tasks and
produce only a single output type, such as having a specific
algorithm for generating placement and another for generating
routing tables.

To support this form of execution, the tools implement a
workflow execution system, shown in Figure 8 that examines
the algorithms to be run in terms of the inputs required and
outputs generated in order to compute an execution order for the
algorithms. Input and output tokens are also supported. These
indicate implicit inputs and outputs, for example one token
might be generated by an algorithm to represent that data has
been loaded on to the machine and another can require that the
data loading has been completed before it executes.

The algorithms themselves are not discussed here in detail
other than those mentioned above. A more detailed discussion
of the mapping algorithms is discussed in Heathcote (2016).
The tools also include algorithms for routing table compression,
which is discussed in Mundy et al. (2016). Many of the other
algorithms are currently simplistic in nature; these can be
replaced in the future should other algorithms be found to
perform more efficiently and / or effectively.

6.8. Data Recording and Extraction
As mentioned previously, the tools support the recording of data
in such a way as to cope with the limited nature of the SDRAM
on the machine. A buffer manager is provided that is used to
keep track of and store the buffers of data as they are extracted
from the machine and to support the live extraction of buffers
whilst the simulation is running, as shown in Figure 9 (Top).
Cores configured with the provided library can contact the host
machine when the recording space is getting full and the tools can
then attempt to extract the data. In general the bandwidth of the
Ethernet of the machine is not fast enough for this to be effective,
resulting in data loss and so in practice pausing the simulation
whilst the buffers are extracted works better.

The SCAMP software supports the reading of SDRAM
through SDP messages using a request and response system,
where each SDP message can request the reading of up to 256
bytes of data. Additionally, to transmit the SDP message to chips
which are not connected to the Ethernet, each message must
be broken down in to SpiNNaker network messages, and then
reconstructed on receipt; an overview of how this process works
is shown in Figure 9 (Bottom). The speed of reading data using
this method is around 8 Mb/s when reading from the Ethernet
chip and around 2 Mb/s when reading from other chips. The
speed can be improved upon by having the host send a number of
packets before waiting for responses, which has the effect of filling
the time waiting for the response by sending packets and results
in speeds of around 35Mb/s when reading from the Ethernet chip
and around 8 Mb/s when reading from other chips.

6.9. Live Interaction
We have previously mentioned that external applications can
interact with a live simulation, making use of the mapping

Frontiers in Neuroscience | www.frontiersin.org 12 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 9 | Data buffering and extraction. Top: The buffer manager is used to read back recorded data during execution; when the buffer contains some data, the

buffer manager is notified and attempts to read the data, notifying the data source once this has been done to allow the space to be reused. Bottom: Data reading

done using SCAMP; each read of up to 256 bytes is further broken down in to a number of request and read cycles on the machine itself, where the packets used

contain only 24-bits of data each.

FIGURE 10 | Live interaction with vertices. (Top) To indicate that live output is

required, an edge is added from the vertex which is the source of the data to

the Live Packet Gatherer vertex in the graph. To indicate the live input is

required an edge is added from the Reverse IP Tag Multicast Source vertex to

the target of the data in the graph. (Bottom) The effect of adding the edges to

the graph is that multicast messages will be sent from the core (or cores) of

the source vertex to the core running the Live Packet Gatherer, which will then

wrap the messages in EIEIO packets and forward them to a listening external

application. EIEIO packets received from an external application will be

decoded by the Reverse IP Tag Multicast Source core and sent onward as

multicast messages to the target core (or cores).

database. Additional support for this interaction is provided by
the tools, split into live data output and live data input.

Live data output support is performed by a vertex called the
Live Packet Gatherer which will package up any multicast packets
it receives and send them as UDP packets using the EIEIO
protocol (Rast et al., 2015). It is configured by adding edges to

the graph from vertices fromwhich output data is required which
has the advantage of being able to tap into the existing multicast
streams that are already being used to communicate within the
machine, as shown in Figure 10.

Live data input support is provided via a vertex called the
Reverse IP Tag Multicast Source, which will unpack and send
multicast packets using the same EIEIO protocol. Edges can be
added that direct traffic from this source to the vertices which are
to receive the messages.

External applications that would like to make use of the
live support can read the mapping database to determine the
multicast keys to be received and decoded in the case of live
output, or to be sent in the case of live input. Support for reading
the database and receiving and sending keys is provided in the
tools in both Python code and host-based C++ code.

6.10. Dropped Packet Re-injection
Asmentioned in section 2, when a packet is dropped an interrupt
is raised allowing a core to detect and capture the dropped packet.
The tools include software that runs on the SpiNNaker machine
to detect the interrupt and then capture the packets that have
been dropped and store them until a time at which the router is
no longer blocked, at which time they can be safely sent onwards.
Re-injection of dropped packets helps in those applications where
the reliable transmission of packets is critical to their operation.

There is only one register within the SpiNNaker hardware
to hold a dropped packet. If a second packet is dropped it will
be completely unrecoverable, but an additional flag is set so the
re-injection core can detect this and count such occurrences
to be reported the user at the end of the execution. Thus
there is a record that something may not be correct in the
simulation results.

7. USE CASES

In this section we will look at two example applications that can
be described as a graph and that work well with the SpiNNaker

Frontiers in Neuroscience | www.frontiersin.org 13 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 11 | Conway’s Game Of Life on a 5×5 grid as a Machine Graph.

Every Machine Vertex is connected to each of it’s 8 neighbors bi-directionally

requiring two Machine Edges for each bi-directional connection. The initial

state of each Vertex is either alive (black) or dead (white).

machine. These applications will be used to show how the tools
work to support the use of the machine.

7.1. Conway’s Game of Life
Conway’s Game of Life (Gardner, 1970) consists of a collection
of cells which are either alive or dead based on the state of their
neighboring cells. A diagram of an example Machine Graph of
this problem is shown in Figure 11. The vertices of the graph
of this application are each a cell in the game; given the state of
the surrounding cells this cell can compute whether it is dead or
alive in each step, and then send that to its neighbors. It similarly
receives the state of the neighbors as they are transmitted and
uses this to update its own state. The edges of the graph are thus
between adjacent cells in a grid, where each vertex is connected
bidirectionally to its eight surrounding neighbors. The game
proceeds in synchronous phases, where the state of cells in a given
phase are all considered at the same time.

Graphs of this form are highly scalable on the SpiNNaker
system since the computation to be performed at each node
is fixed and the communication forms a regular pattern that
does not increase as the size of the board grows. Therefore once
working, it is likely that any size of game can be built up to the size
of the available machine. Conway’s Game of Life works well as an
archetype of a class of problems, which includes finite element
analysis (Bi, 2018) problems. Problems in this class should be
implementable on the SpiNNaker machine provided that the data
to be transmitted can be broken down into SpiNNaker packets
and that the instructions required for the problem can fit within
the instruction memory.

The application code of Conway’s Game of Life updates the
cell based on the state of the surrounding cells once per time
step of the simulation based on the received state from the
surrounding cells and then send its own new state out using the
given key. It can also record its state at each time step in the
simulation. The set up of this application is as follows:

• A Conway vertex is created which extends the machine
vertex class

• A number of Conway vertices are added to the graph to make
up the board. These are stored in such a way that finding an
adjacent vertex in the grid is easy

• A machine edge is added between each pair of adjacent
vertices, in each direction

• Each machine vertex generates data for the vertex which
includes the key to be sent by that vertex and the number of
time steps to run for

• Each machine vertex can tell the tools how many time steps
it can run for given an amount of SDRAM available for
recording

• Each machine vertex contains code to read the state that is
recorded at each time step using the Buffer Manager

The code for an implementation of Conway’s Game of Life on
SpiNNaker is available as part of the SpiNNakerGraphFrontEnd
release5 and consists of:

• conways_cell.c, the SpiNNaker C code which executes
on the cores of the machine updating the state as the
simulation progresses

• Makefile, a file to be processed by GNU Make to build
the C code

• conways_basic_cell.py, the Python code describing
the Conway’s Machine Vertex. This includes the
following methods:

• get_binary_file_name which returns the name of the
SpiNNaker binary generated from the c code

• generate_machine_data_specification which generates the
data required by the C code, where information such as the
SpiNNaker routing key to transmit data with is extracted

• get_data which extracts the recorded state information from
the machine

• resources_required which returns mainly the SDRAM
required by the vertex for holding the parameters, including
that required for recording

• get_minimum_buffer_sdram_usage which returns the
minimum space to reserve for recording to ensure that
some recording can be done

• get_n_timesteps_in_buffer_space which indicates how
many time steps can be recorded in a given space of
SDRAM, to allow the tools to determine the length of a
run cycle

5The full set of files of the example described here can be found at

https://github.com/SpiNNakerManchester/SpiNNakerGraphFrontEnd/

tree/4.0.0/spinnaker_graph_front_end/examples/Conways/

partitioned_example_b_no_vis_buffer

Frontiers in Neuroscience | www.frontiersin.org 14 March 2019 | Volume 13 | Article 231

https://github.com/SpiNNakerManchester/SpiNNakerGraphFrontEnd/tree/4.0.0/spinnaker_graph_front_end/examples/Conways/partitioned_example_b_no_vis_buffer
https://github.com/SpiNNakerManchester/SpiNNakerGraphFrontEnd/tree/4.0.0/spinnaker_graph_front_end/examples/Conways/partitioned_example_b_no_vis_buffer
https://github.com/SpiNNakerManchester/SpiNNakerGraphFrontEnd/tree/4.0.0/spinnaker_graph_front_end/examples/Conways/partitioned_example_b_no_vis_buffer
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

TABLE 1 | Average run times over 10 runs of the SpiNNTools algorithms, in order of execution, when executing Conway’s Game of Life on various grid sizes, broken

down into phases of execution.

CONWAY’S GAME OF LIFE SIZE

Number vertices / cores 100 400 900 1,600 2,500

Number of edges 800 3,200 7,200 12,800 20,000

Number of chips used 7 28 57 103 160

Number of boards used 1 1 3 3 6

MACHINE DISCOVERY (µs)

Machine allocator 8,711,589 10,799,373 10,175,818 12,076,720 6,731,204

Machine generator 8,040,498 8,470,635 6,963,204 5,674,133 10,230,590

Virtual chip allocator 86 85 85 93 91

MAPPING (µs)

Network specification report 3,705 14,953 31,667 56,875 90,130

Placement 12,078 37,719 84,610 145,805 230,735

Routing 29,002 128,009 370,468 747,004 1,682,054

IP tag allocator 12,715 42,762 96,990 171,202 275,011

IP tag report 945 553 624 590 581

Edge N keys required 4,164 11,085 23,426 40,706 62,953

Routing key allocator 100,638 410,597 906,178 1,608,309 2,515,832

Routing key report 3,007 7,767 16,441 28,254 42,442

Routing table generator 5,533 30,833 81,163 285,620 517,796

Executable type locator 1,602 3,451 6,390 10,444 15,819

Buffer manager creator 4,280 7,453 11,580 18,214 26,184

DATA SPECIFICATION (µs)

Data specification writer 91,863 361,230 810,060 1,447,989 2,247,400

Graph provenance gatherer 3,073 8,069 16,864 30,550 45,736

LOADING (µs)

Router initialization 16,681 67,168 141,138 256,470 410,147

Executable name gatherer 5,787 17,242 36,305 65,802 100,398

Routing table compression 2,017,828 2,110,796 2,287,198 2,644,092 3,270,905

IP tag loader 3,617 3,352 8,953 9,757 18,219

Load data 335,054 1,411,766 3,221,989 5,937,052 9,586,231

Load executable images 962,930 969,326 965,471 979,613 1,014,863

RUNNING (µs)

Runtime updater 57,257 199,705 441,409 798,570 1,281,730

Database writer 243 563 1,007 1,672 2,442

Database notification 1,311 1,161 1,287 1,400 1,213

Application runner 303,362 303,475 303,622 303,897 304,273

Core provenance gatherer 1,964 3,012 5,045 8,908 11,060

Router provenance gatherer 76,984 75,238 243,184 240,695 530,201

Profile data gatherer 1,681 2,955 4,763 8,535 10,945

Note that the data recorded starts when the user calls the run function, and stops at the end of the Running phase; in particular, setup, graph creation and data extraction times are

not included here as they are not currently recorded by the tools. The number of chips and boards used by the simulations is also reported to show the scaling. These numbers were

obtained on a server with 128GB RAM, an Intel Xeon E5520 2.27GHz CPU and an SSD drive, running in the same machine room as the SpiNNaker machine, connected to it via a

1GB/s interface.

• conways_partitioned.py, a script that executes a specific
example of Conway’s Game of Life on a 7 by 7 grid which
calls the tools setup, builds a graph of several instances of the
Conways Machine Vertex connected together using Machine
Edge instances as described above. The run method is then
called to execute the graph, followed by the extraction and
display of the results (which are a series of ASCII grids of the
game board as it progresses)

An example output from the execution of the script is included
in the Supplementary Material. Table 1 shows the run time in

µs of the various stages of execution of the script once the run
is started until the run is complete. Some observations from this
data include the following:

• The Machine Allocator takes a non-linear amount of time
in relation to the problem size because of the way in which
the machine allocation server works when interacting with
multiple clients. An additional 5 s are added by the service
between the allocated machine being powered on and the
machine being returned to the tools to ensure that all boards
in any allocated machine are fully powered on

Frontiers in Neuroscience | www.frontiersin.org 15 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

FIGURE 12 | Graphs showing how the run time of the various parts of the tool chain scale with the number of vertices in the Conway’s Game of Life simulation.

(A–C) Show the algorithms which scale linearly, and have been separated to account for the different scales of the run times. (D) Shows how some of the algorithms

scale non-linearly.

• TheMachine Generator also takes a non-linear time in relation
to the problem size because the machine also has to be
booted and this can require a number of retries depending on
network conditions

• The Router Provenance Gatherer execution time is
proportional to the number of boards in the machine
because it reads the data from the routers of every chip in the
machine, not just the ones that were used in the simulation,
to ensure that nothing unexpected happened on the other
routers such as stray packets being received

• The Tag Loader scales with the number of boards in the
machine because tags are only loaded on to the Ethernet-
connected chip of each board

• The Virtual Chip Allocator and Database Notification
algorithms take around the same time in all cases because
they have no work to do in this run (there are no
external communications)

• The time for Load Executable Images does not vary with the
size of the problem as expected since executable code for each
binary only needs to be copied to themachine once after which
it can be rapidly replicated on to the required cores

• The Application Runner takes the same time across all runs
because simulation is run for the same duration

• The Routing, Routing Table Compression, and Routing Table
Generation algorithms appear to have a more complex
non-linear scaling, shown in Figure 12D. These algorithms
may therefore require refinement as problems of larger
scale are encountered to avoid them dominating the overall
execution time

• The remaining algorithms scale linerly with the number of
vertices in the simulation as shown in Figures 12A–C

Once the graph is built, the script starts the execution of the graph
during which the tools will obtain a machine description to be
used with the machine graph to work out a placement of each of
the vertices and a routing of the edges between these placements,
along with an allocated key for each of the vertices. The tools
will then ask each vertex how many time steps it can record for,
based on the available SDRAM after placement is complete and
the resources used on each chip can therefore be determined.
Each vertex will then be asked to generate its data, based on the
mapping and timing information. The tools will then load the
generated data on to the machine along with the routing tables
and application code and start the execution of the cores and
then wait an appropriate amount of time for the cores to stop,
before finally checking their status. Assuming the cores complete
the simulation successfully, control will return to the script which
can then request and display the recorded states from each of the
vertices in an appropriate way.

A future version could have a Conway vertex that can have
multiple cells within each machine vertex which would then be
an application vertex of cells. The whole problem can then be
expressed using a single large application vertex which would
represent the whole game board and an application edge for each
of the 8 directions of connectivity, each in its own Outgoing
Edge Partition to indicate that different keys are required for
each of the directions. The application code of the vertex would
now have to cope with the reception of multiple neighbor states

Frontiers in Neuroscience | www.frontiersin.org 16 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

which would make the application code itself more complex; for
example, it would have to cope with multiple incoming keys from
each direction, each of which would target a different cell within
the grid. A list of target cells stored for each key received would
be sufficient. The application vertex implementation would also
have to now be able to work out the resources required by a
range of atoms in each machine vertex which could include some
basic data that all machine vertices use as well as some resources
specific to each atom.

Another possible extension to this application is to extract
the state during execution to be displayed as the application
progresses. The Live Packet Gatherer vertex (described above)
would need to be added to the graph, along with an edge
from each of the Conway vertices to this vertex. The script
would then indicate before executing the graph that there is
an external application that would like to receive the data.
The receiving application would be notified when the mapping
database had been written, at which point it can set up a mapping
between multicast keys received and positions in the game board,
responding when it has completed its own setup. The tools would
then notify the application that the simulation is starting and
the application will then receive the same state messages as the
vertices receive. This information can be used to update the
display of the game board.

7.2. Spiking Neural Networks
The SpiNNaker machine is primarily designed to simulate
spiking neural networks (Furber et al., 2013) and indeed the
tools are included within the version 4.0.0 release of the
sPyNNaker software (Rowley et al., 2017b). A more detailed
description of the framework for simulating neural networks
is found in Rhodes et al. (2018), but we examine here the
application from the perspective of the tools. SpiNNTools
has been part of the sPyNNaker software since conception
and this release is successfully deployed as part of the EU
Flagship Human Brain Project Collaboratory6, and has been
used successfully in a number of simulations in previous works
(e.g., Senk et al., 2017; Albada et al., 2018; Rast et al., 2018;
Sen-bhattacharya et al., 2018).

As an example, we consider the simulation of a cortical micro-
column found within mammalian brains, details of which can
be found in Albada et al. (2018). The model consists of the
neurons within a structure underneath a 1mm2 area of the surface
of the generic early sensory cortex (Potjans and Diesmann,
2014). Figure 13 shows the groups of neurons (Populations)
in this network and connectivity between them (Projections).
In a spiking neural network, the vertices are groups of point
neurons (as a single core can simulate more than one neuron);
the computation required is the update of the neuron state in
response to spikes received from connected neurons. The edges
are then groups of synapses between the neurons over which
spikes are transmitted. These are potentially unidirectional and
are likely to be more heterogeneous in nature than the regular
grid pattern seen in Conway’s Game of Life.

6https://collab.humanbrainproject.eu

FIGURE 13 | A neural network topology of a 1mm2 area of cortical

micro-column found within the mammalian brain.

The computation required to simulate each neuron at each
time step in the simulation is generally fixed. The remaining time
is then dedicated to processing the spikes received, the number
of which depends on the how many neurons are sending spikes
to the core and the activity of those connected neurons. This isn’t
known in advance in general and so some flexibility in the system
with respect to the amount of computation available at each
node is necessary to allow the application to work in different
circumstances. Once the spike rate is known for a given network,
the system could potentially be reconfigured with additional
cores allowing that network to be simulated in less time overall.
The platform is designed to be able to simulate 1,000 neurons on
each core each with 1,000 incoming synapses spread across up to
10,000 source neurons spiking at up to 10Hz each; the framework
doesn’t enforce these requirements, and the software is not yet
optimized to handle this case in general, so users should keep
this in mind when designing neural networks to execute with
sPyNNaker. To demonstrate this, the results found in Albada
et al. (2018) show that the current sPyNNaker implementation
is not able to simulate the cortical column example in real-
time due to the specifics of this network being outside of the
design specifications detailed above. The tools helped to make
it possible to simulate the network at a slower speed however,
giving a starting point to improving on the implementation in
the future.

We now look at how sPyNNaker makes use of SpiNNTools.
The sPyNNaker software includes SpiNNaker application code
that can process a number of neurons on each core. The
application will be set up with a series of synaptic matrices, one
for each core that it can receive from, which the application
can use to demultiplex the messages received from other cores,
and direct them to the appropriate receiving neuron. A more
detailed description of the application code, including the
mechanism for demultiplexing the incoming data, is found in
Rhodes et al. (2018).

In addition to the neuron application code, a Poisson spike
generator code has also been created, which can generate
spikes randomly with a given rate using a Poisson process

Frontiers in Neuroscience | www.frontiersin.org 17 March 2019 | Volume 13 | Article 231

https://collab.humanbrainproject.eu
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

(Gerstein and Mandelbrot, 1964). This is only intended to
generate spikes rather than to receive them, though it might
generate spikes for a number of source neurons. All vertices can
record the spikes generated by each of the neurons, irrespective
of whether they were generated by a Poisson process or through
or normal neuron dynamics.

The setup for this application is as follows:

• An application vertex is created for each group of simulated
neurons (known as a Population), and another for each of the
Poisson generators

• A matching machine vertex is created for each of the above
application vertices. These machine vertices will be generated
during the graph conversion and each will be expected to take
as a parameter the range of atoms assigned to it

• An application edge is created to describe the connectivity
between groups of neurons; the source vertex will be either
a Poisson vertex or a neuron vertex but the target can only
be another neuron vertex as described above. The edge will
contain details of the neuron-to-neuron connectivity to allow
the generation of the synaptic matrices

• The neural network is described as a set of neuron application
vertices and Poisson source application vertices with neural
application edges between them

• Each machine vertex can generate data for the vertex it
represents, including the parameters of the group of neurons,
and, in the case of the neuron vertex, the source keys for each
of the neurons it is to receive data from

• Each machine vertex can tell the tools how many time steps
it can run for given a space in SDRAM. Note that the spike
recording regions are sized assuming that every neuron spikes
on every time step to ensure that the buffers don’t overfill
should this actually happen

• Each machine vertex contains code to read spikes from the
recorded data using the Buffer Manager

Once the graph describing the neural network has been built the
script will start execution of the graph, which will in turn result
in the execution of the simulation of the network. Firstly the
application graph is converted into amachine graph by asking the
application vertices how much resource they require for different
ranges of neurons. As with the Conway example, the tools will
then go through the various stages until the execution of the
simulation is complete. Control will then return to the script
and the user will be able to extract any recorded spikes and
process these.

The live output example described in the Conway’s use case
also works similarly well in the neural networks use case. Another

FIGURE 14 | Results of running a scalable cortical-like network at various scales on the machine. The overall run time is shown, broken down to show the longest

phases of the run which are the Data Generation phase and the Data Loading phase. Also included is the time taken to create the network; that is the time taken

between setting up the tools until the graph begins to execute.

Frontiers in Neuroscience | www.frontiersin.org 18 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

extension more relevant here is the connection of an external
device to the machine which will then be controlled by the
network (e.g., a robotic device), as was the subject of Rast et al.
(2018). In this case an extension of the virtual application vertex is
made to represent the device and added to the application graph.
Now, when the graph is executed the tools will add a virtual
chip to the discovered machine and a placement constraint to the
vertex, placing the device on the virtual chip. The tools will then
operate as normal with edges to and from the device being routed
as appropriate. The algorithms will now recognize that the chip
is virtual and will make use of the adjacent chip when necessary.
Loading will recognize that the chip is virtual also, and so it will
not attempt to load any data onto it; this is further enforced with
the virtual vertex not implementing the interface for the writing
of data.

To test the performance of the neural network use case in
more detail, we constructed a scalable cortex-like neural network
that fits within the original design specifications of the machine7.
The network consists of a number of regions connected together,
where each region consists of a 2-dimensional grid of columns
and each column consists of a number of layers of pairs of
inhibitory and excitatory populations of neurons, similar to
the cortical micro-column. The script allows the variation of a
number of parameters, but for simplicity we scaled the number
of columns within each region using a square arrangement,
with the number of layers and the number of regions fixed
at 6. Figure 14 shows the results of three of these tests which
run on 50, 72, and 98 boards, respectively. The results show
that the tools are capable of running on large SpiNNaker
machines and that the overall execution time (including the
building of the graph) scales linearly with the network size
in this case.

8. FUTURE WORK

Although the SpiNNTools software provides many useful
features there are still many improvements that can be done.
Some of those include:

• An application graph can only include application vertices.
Some utility vertices, such as the Live Packet Gatherer and the
Reverse IP Tag Multicast Source may be more suited to being
described as machine vertices. To avoid having to provide both
an application and machine vertex for those utilities, it might
be better to allow an application graph to contain machine
vertices which are then simply copied to the machine graph
during the conversion.

• It would be useful to provide some support at the C code level
for demultiplexing messages from multiple atoms. This would
make writing code that supports application vertices easier.

• Data structures are currently manually written from the
Python data generation and then read back from the C code.
This process could be streamlined by having a structure object
in Python that can be used both to generate a C header file

7The script for this network can be found at https://github.

com/SpiNNakerManchester/SpiNNakerPerformance/blob/pynn8/

performance_testing/performance_tests/big_cortical_network_8.py

including the structure and to write the data and to manage
the SDRAM usage of the data in the Python code.

• The speed at which data is transferred to and from themachine
using SDP packets is quite slow, particularly when speaking
to chips that are not directly connected to the Ethernet.
Mechanisms whereby data is sent to the Ethernet chip using
multicast may be able to improve this. Data transfer could
be further improved by having cores on the Ethernet chip
use the Ethernet adaptor directly rather than having to go
through SCAMP.

9. CONCLUSIONS

We have described a software system—SpiNNTools—that can
be used to help to execute a problem described as a graph on
SpiNNaker Neuromorphic machines.We have described how the
tools operate at the high level by proceeding through a series of
steps that result in the mapping of the graph onto the machine,
the execution of that graph and the obtaining of results from the
execution. We have then shown how this applies to two example
problems and the work that is required to make each work on
the machine.We have shown that although SpiNNTools does not
solve all the problems it abstracts awaymany of the steps required
in the operation of the SpiNNaker machine, therefore making
that operation easier. Applications that make use of the tools will
also see the benefits of any improvements without requiring large
updates to their code-base.

AUTHOR CONTRIBUTIONS

This work presents the latest version of the SpiNNTools software
package produced by the SpiNNaker group at the University
of Manchester, UK. The current SpiNNaker software team is
comprised of CB, DF, AG, OR, and AS, and led by AR, all
of whom have made significant contributions to SpiNNTools.
SD, DL, and LP are researchers within the SpiNNaker group,
and worked on earlier versions of SpiNNaker software, and
provided assistance with low-level programming and hardware
interactions during performance analysis. AR led the research
and wrote the manuscript, while SF leads the SpiNNaker project
and supervised this work. All authors reviewed and refined the
final manuscript.

FUNDING

The design and construction of the SpiNNaker machine
was supported by the EPSRC (UK Engineering and Physical
Sciences Research Council) under grants EP/D07908X/1
and EP/G015740/1, in collaboration with the universities of
Southampton, Cambridge and Sheffield and with industry
partners ARM Ltd., Silistix Ltd., and Thales. Ongoing
development of the software is supported by the EU ICT
Flagship Human Brain Project which has received funding from
the European Union’s FP7 programme under Grant Agreement
no. 604102, and from the European Union’s Horizon 2020
research and innovation programme under FPA No 650003

Frontiers in Neuroscience | www.frontiersin.org 19 March 2019 | Volume 13 | Article 231

https://github.com/SpiNNakerManchester/SpiNNakerPerformance/blob/pynn8/performance_testing/performance_tests/big_cortical_network_8.py
https://github.com/SpiNNakerManchester/SpiNNakerPerformance/blob/pynn8/performance_testing/performance_tests/big_cortical_network_8.py
https://github.com/SpiNNakerManchester/SpiNNakerPerformance/blob/pynn8/performance_testing/performance_tests/big_cortical_network_8.py
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

(HBP-785907). Our own exploration of the capabilities of
the machine is supported by the European Research Council
under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement 320689.

ACKNOWLEDGMENTS

SpiNNaker has been 15 years in conception and 10 years in
construction, and many folk in Manchester and in our various

collaborating groups around the world have contributed to get
the project to its current state. We gratefully acknowledge all of
these contributions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00231/full#supplementary-material

REFERENCES

Adams, S. V., Rast, A. D., Patterson, C., Galluppi, F., Brohan, K., Pérez-Carrasco, J.-

A., et al. (2014). “Towards real-world neurorobotics: integrated neuromorphic

visual attention,” in Neural Information Processing, eds. C. K. Loo, K. S. Yap,

K. W. Wong, A. T. Beng Jin, and K. Huang (Cham: Springer International

Publishing), 563–570.

Albada, S. J. V., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes, A. B.,

et al. (2018). Performance comparison of the digital neuromorphic hardware

SpiNNaker and the neural network simulation software NEST for a full-scale

cortical microcircuit model. Front. Neurosci. 12:291. doi: 10.3389/fnins.2018.

00291

Anderson, D. P. (2004). “BOINC: a system for public-resource computing and

storage,” in Proceedings of the 5th IEEE/ACM International Workshop on

Grid Computing, GRID ’04 (Washington, DC: IEEE Computer Society), 4–10.

doi: 10.1109/GRID.2004.14

ARM (2004). ARM968E-S Technical Reference Manual.

Bi, Z. (2018). Finite Element Analysis Applications. London: Elsevier.

doi: 10.1016/c2016-0-00054-2

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A.

P., et al. (2018). Code generation in computational neuroscience: a review

of tools and techniques. Front. Neuroinform. 12:68. doi: 10.3389/fninf.2018.

00068

Brown, A. D., Furber, S. B., Reeve, J. S., Garside, J. D., Dugan, K. J., Plana, L. A., et al.

(2015). SpiNNaker - programmingmodel. IEEE Trans. Comput. 64, 1769–1782.

doi: 10.1109/TC.2014.2329686

Dagum, L., and Menon, R. (1998). OpenMP: an industry-standard API

for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55.

doi: 10.1109/99.660313

Davison, A. P., Andrew, P., Brüderle, D., Eppler, J., Kremkow, J.,

Muller, E., et al. (2008). PyNN: a common interface for neuronal

network simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.

011.2008

Dean, J., and Ghemawat, S. (2008). MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 107–113. doi: 10.1145/1327452.13

27492

Denk, C., Llobet-Blandino, F., Galluppi, F., Plana, L. A., Furber, S., and Conradt,

J. (2013). “Real-time interface board for closed-loop robotic tasks on the

SpiNNaker neural computing system,” in Artificial Neural Networks and

Machine Learning – ICANN 2013, eds V.Mladenov, P. Koprinkova-Hristova, G.

Palm, A. E. P. Villa, B. Appollini, andN. Kasabov (Berlin; Heidelberg: Springer),

467–474.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The

SpiNNaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.23

04638

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L. A., and Furber, S. (2012).

“A hierachical configuration system for a massively parallel neural hardware

platform,” in Proceedings of the 9th Conference on Computing Frontiers, CF ’12

(New York, NY: ACM), 183–192. doi: 10.1145/2212908.2212934

Gardner, M. (1970). Mathematical Games: The fantastic combinations

of John Conway’s new solitaire game “life.” Sci. Am. 223,

120–123.

Gerstein, G. L., and Mandelbrot, B. (1964). Random walk models for the spike

activity of a single neuron. Biophys. J. 4, 41–68. doi: 10.1016/s0006-3495(64)

86768-0

Heathcote, J. (2016). Building and Operating Large-Scale SpiNNaker Machines.

Ph.D. thesis, University of Manchester.

Mendat, D. R., Chin, S., Furber, S., and Andreou, A. G. (2015). “Markov

Chain Monte Carlo inference on graphical models using event-

based processing on the SpiNNaker neuromorphic architecture,”

in 2015 49th Annual Conference on Information Sciences and

Systems (Baltimore, MD: CISS), 1-6. doi: 10.1109/CISS.2015.70

86903

Message Passing Interface Forum (1994). MPI: A Message-Passing Interface

Standard. Technical report. Knoxville, TN.

Moore, G. E. (1965). Craming more components onto integrated circuits.

Electronics 38, 114–117.

Mundy, A., Heathcote, J., and Garside, J. D. (2016). “On-chip order-

exploiting routing table minimization for a multicast supercomputer network,”

in IEEE International Conference on High Performance Switching and Routing,

HPSR (Yokohama), 148–154.

Murty, J. (2008). Programming Amazon Web Services (O’Reilly), 1st Edn.

Sebastopol, CA.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking

network model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/

bhs358

Rast, A. D., Adams, S. V., Davidson, S., Davies, S., Hopkins, M.,

Rowley, A., et al. (2018). Behavioral learning in a cognitive

neuromorphic robot: an integrative approach. IEEE Trans. Neural

Netw. Learn. Syst. 29, 6132–6144. doi: 10.1109/TNNLS.2018.28

16518

Rast, A. D., Stokes, A. B., Davies, S., Adams, S. V., Akolkar, H., Lester,

D. R., et al. (2015). “Transport-independent protocols for universal AER

communications,” in Neural Information Processing, eds. S. Arik, T.

Huang, W. K. Lai, and Q. Liu (Cham: Springer International Publishing),

675–684.

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D.,

Gait, A., et al. (2018). sPyNNaker: a software package for running PyNN

simulations on SpiNNaker. Front. Neurosci. 12:816. doi: 10.3389/fnins.2018.

00816

Richter, C., Jentzsch, S., Hostettler, R., Richter, C., Jentzsch, S., Hostettler,

R., et al. (2016). Musculoskeletal robots: scalability in neural control.

IEEE Robot. Autom. Mag. 23, 128–137. doi: 10.1109/MRA.2016.

2535081

Rowley, A. G. D., Stokes, A. B., Knight, J., Lester, D. R., Hopkins, M.,

Davies, S., et al. (2017a). PyNN on SpiNNaker Software 4.0.0. Zenodo.

doi: 10.5281/zenodo.1255864

Rowley, A. G. D., Stokes, A. B., Knight, J., Lester, D. R., Hopkins, M., Davies,

S., et al. (2017b). General Application Access Software for SpiNNaker. Zenodo.

doi: 10.5281/zenodo.2554088

Frontiers in Neuroscience | www.frontiersin.org 20 March 2019 | Volume 13 | Article 231

https://www.frontiersin.org/articles/10.3389/fnins.2019.00231/full#supplementary-material
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1109/GRID.2004.14
https://doi.org/10.1016/c2016-0-00054-2
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1109/TC.2014.2329686
https://doi.org/10.1109/99.660313
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1145/2212908.2212934
https://doi.org/10.1016/s0006-3495(64)86768-0
https://doi.org/10.1109/CISS.2015.7086903
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1109/TNNLS.2018.2816518
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1109/MRA.2016.2535081
https://doi.org/10.5281/zenodo.1255864
https://doi.org/10.5281/zenodo.2554088
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rowley et al. SpiNNTools: The Execution Engine for the SpiNNaker Platform

Sen-bhattacharya, B., Member, S., James, S., Rhodes, O., Sugiarto, I., Stokes, A. B.,

et al. (2018). Building a spiking neural network model of the Basal Ganglia

on SpiNNaker. IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2797426.

[Epub ahead of print].

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Quaglio, P., Davison, A.,

et al. (2017). “A collaborative simulation-analysis workflow for computational

neuroscience using HPC,” in JHPCS (Springer International Publishing), Vol.

10164, 243–256.

Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S., and Furber, S. (2015).

“Scalable energy-efficient, low-latency implementations of trained spiking

Deep Belief Networks on SpiNNaker,” in 2015 International Joint Conference

on Neural Networks (Kilarney: IJCNN), 1–8. doi: 10.1109/IJCNN.2015.7280625

Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing

in practice: the Condor experience. Concurr. Pract. Exp. 17, 323–356.

doi: 10.1002/cpe.938

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer AP declared a past co-authorship with several of the authors

AR, DL, AS to the handling editor.

Copyright © 2019 Rowley, Brenninkmeijer, Davidson, Fellows, Gait, Lester, Plana,

Rhodes, Stokes and Furber. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 21 March 2019 | Volume 13 | Article 231

https://doi.org/10.1109/TCDS.2018.2797426
https://doi.org/10.1109/IJCNN.2015.7280625
https://doi.org/10.1002/cpe.938
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	SpiNNTools: The Execution Engine for the SpiNNaker Platform
	1. Introduction
	2. SpiNNaker Architecture
	3. Previous Software Versions
	4. SpiNNaker Core Software
	5. Data Structures
	5.1. SpiNNaker Machines
	5.2. Graphs

	6. The SpiNNTools Tool Chain
	6.1. Setup
	6.2. Graph Creation
	6.3. Graph Execution
	6.3.1. Machine Discovery
	6.3.2. Mapping
	6.3.3. Data Generation
	6.3.4. Loading
	6.3.5. Running

	6.4. Return of Control / Extraction of Results
	6.5. Resuming / Running Again
	6.6. Closing
	6.7. Algorithms and Execution
	6.8. Data Recording and Extraction
	6.9. Live Interaction
	6.10. Dropped Packet Re-injection

	7. Use Cases
	7.1. Conway's Game of Life
	7.2. Spiking Neural Networks

	8. Future Work
	9. Conclusions
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

