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Brain-behavior correlations are commonly used to explore the associations between
the brain and human behavior in cognitive neuroscience studies. There are many
critics of the correlation approach, however. Most problems associated with correlation
approaches originate in the weak statistical power of traditional correlation procedures
(i.e., the mean-wise interindividual brain-behavior correlation). This paper proposes
a new correlation procedure, the item-wise interindividual brain-behavior correlation,
which enhances statistical power via testing the significance of small correlation
coefficients from trials against zero rather than simply pursuing the highest correlation
coefficient. The item-wise and mean-wise correlation were compared in simulations
and an fMRI experiment on mathematical problem-solving. Simulations show that the
item-wise correlation relative to the mean-wise correlation results in higher t-values
when signal-to-noise ratio is equal to or larger than 6%. Item-wise correlation displayed
more voxels with significant brain-behavior correlation than did mean-wise correlation.
Analyses with item-wise (rather than mean-wise) correlation showed significant brain-
behavior correlation at the threshold of p < 0.05 corrected. Cross validation showed
that odd- and even-ordered trials have greater stability in terms of the item-wise
correlation (r = 0.918) than the mean-wise correlation (r = 0.686). The simulations and
example analyses altogether demonstrate the effectiveness of the proposed correlation
procedure for task neuroimaging studies.

Keywords: brain-behavior correlation, item-wise interindividual brain-behavior correlation, functional magnetic
resonance imaging, cognitive neuroscience, mathematical problem-solving

INTRODUCTION

Neuroimaging researchers often use brain-behavior correlations to explore the association between
the brain and human behavior. There are many critics of this approach, however. Problems
seemingly inherent to correlation analysis include lack of correction for multiple comparisons
(Kriegeskorte and Mur, 2012; Rousselet and Pernet, 2012) and confounding factors in the
correlation (Lazic, 2010). Indeed, false correlations have been published in many journals
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(Vul et al., 2009a,b; Lazic, 2010; Rousselet and Pernet, 2012; Vul
and Pashler, 2012). There have been initial attempts to address
these problems (Wilcox, 2005; Pernet et al., 2012; Rousselet
and Pernet, 2012), but much work remains to be done. The
weak statistical power of the routine mean-based interindividual
brain-behavior correlation approach is particularly problematic.
Previous fMRI analyses of individual differences typically have
very little power to detect all but the most powerful correlational
effects (Yarkoni, 2009; Yarkoni and Braver, 2010).

This paper introduces a new correlation approach designed for
enhanced statistical power. Traditional correlation involves first
separately computing the mean values of all items (i.e., trials) on
behavioral and brain responses for a participant, then performing
correlation across the participants. The traditional correlation
typically performed on mean values is referred to in this paper as
“mean-wise correlation.” For example, consider 28 participants
each of whom finishes 60 trials in an fMRI scanner. Following the
procedure for traditional correlation, there are 28 mean values
(e.g., reaction time, RT) and 28 brain maps with each voxel of
each brain map involving the mean of brain activation from
the 60 trials for all participants. The behavioral data (e.g., RT)
correlate with the brain activation of each voxel across the 28
participants.

The new correlation approach is a two-step process.
A correlation across participants is first performed on the
behavioral measure and brain response for an item (i.e., a trial),
then the r-values are tested via t-test or analysis of variance
(ANOVA). The proposed correlation approach is performed on
an item, so it is referred to here as the “item-wise correlation.” If
the item-wise correlation is applied to the example above, there
are 60 r-values which can be tested with a one-sample t-test
against 0. The proposed analysis can be performed on a weak
correlation due to the abundance of noise for a given item. The
t-test or ANOVA can greatly enhance the statistical power in this
scenario, possibly due to the r-values having removed much of
the noise.

The traditional mean-wise and novel item-wise
interindividual brain-behavior correlations are introduced
below. Simulations based on the different signal-to-noise ratios
of these two correlation approaches are then described to
contrast their respective statistical power. Our fMRI study
on mathematical problem-solving is discussed, as well as the
application of item-wise and mean-wise correlations to reflect
brain-behavior correlations. Cross-validation analysis further
demonstrates the statistical stability of item-wise and mean-
wise correlations. To conclude the paper, the interindividual
correlation is also compared against the intraindividual
correlation. For the example mentioned above (28 participants
who finish 60 trials in an fMRI scanner), the interindividual
brain-behavior correlation is computed first as the correlation
between the behavioral score and brain activation for each item
across all 28 participants, then a random effect test is run on all
the 60 correlation coefficients against zero. The intraindividual
correlation involves first computing the correlation between the
behavioral score and brain activation for each participant across
all 60 trials, followed by a random effect test on the 28 correlation
coefficients against zero.

ITEM-BASED AND MEAN-BASED
INTERINDIVIDUAL BRAIN-BEHAVIOR
CORRELATIONS

Most previous research on this subject center around mean-
based interindividual brain-behavior correlation, in which the
behavioral response and brain response averaged from each
participant are correlated across participants. The Pearson
correlation is commonly applied to correlation analysis, though
outliers can easily expand or dilute the correlations (e.g., Vul
et al., 2009a,b; Pernet et al., 2012). The t-test formula for the
Pearson correlation in this context is as follows:

t =
√

n− 2
√

1− r2
r (1)

Cohen provided rules of thumb to characterize effect sizes as
small, medium, or large; in the social sciences, r = 0.10 generally
means small, 0.30 means medium, and 0.50 means a large effect
size (Cohen, 1988, 1992) while r-values larger than 0.5 are
extremely rare in most areas of psychology (Yarkoni and Braver,
2010). The typical effects across broad domains of psychology
and medicine range from 0.1 to 0.3 (Meyer et al., 2001). Previous
fMRI studies on emotion, personality, and social cognition have
shown high brain-behavior correlation values (Vul et al., 2009a).

Magnetic resonance images or functional MRI studies are
typically conducted with 30 participants. According to Formula
(1), the t-value for the large effect size (r = 0.50) in 30 cases is
still small – only t(28) = 3.06 with a corresponding p-value of
0.0048. The statistical power is not appropriate under a lenient
but acceptable primary threshold (p < 0.001) in neuroimaging
data analysis (Woo et al., 2014; Carter et al., 2016).

For any effect size (e.g., r = 0.50), the sample size can be
determined according to the p-value. We determined the sample
size for our threshold in three steps. First, the t-values were
calculated for different sample sizes according to Formula (1); r
was set to 0.50. Second, the Excel TDIST function was used to
generate a table for the Student’s T-Distribution based on the t-
values and different sample sizes (e.g., from 1 to 100). Finally, the
sample size was determined according to the p-value in the table.
For p < 0.001, the number of participants for r = 0.50 should be
at least 40: t(38) = 3.56, p = 0.0009. For the threshold of p < 0.05
corrected, 0.05 should be divided by the number of brain voxels
in the 3D whole-brain image by Bonferroni correction method.

The 3D whole-brain volume was set to 61 × 73 × 61 with
reference to previously published fMRI studies. The number
of brain voxels was 53,462. The p-value was determined to be
9.35 × 10−7 after correction and the sample size was 86 as
per the Student’s T-Distribution table. That is, t(84) = 5.29,
p = 9.32 × 10−7. It is difficult to obtain an ideal statistical
result without a large number of participants. The item-
wise interindividual brain-behavior correlation process involves
pursuing high statistical power and statistical stability though the
correlation coefficients may be very small. This type of correlation
is performed at the item level; an “item” is a trial or a problem.
When 28 participants finish 60 mathematical word problems in
an fMRI scanner, there are 60 items or trials. First, the brain
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response of each item is modeled similarly to the first-level
analysis in the item-wise brain activation analysis introduced by
Bedny et al. (2007). Next, the correlation (e.g., Pearson approach)
is computed for each item across participants. Finally, the r-
values from all items are tested against a fixed number (e.g., 0)
or compared to one another. The formula for the typical single-
sample t-test is as follows:

t =
√

n
(
X−µ0

)
SD

(2)

where the t-value depends on sample size (i.e., the number of
items), mean of r-values (X) and standard deviation of r-values
(SD). µ0is 0 when examining whether brain and behavior are
associated. The sample size has similar effect on Formulas (1)
and (2). The r-value may be small for each item in the item-wise
correlation; the t-value in Formula (2) could be very large when
SD is very small. Thus, the item-wise correlation relative to the
mean-wise correlation exacts greater statistical power by relying
on possibly weak but stable correlations at the item level.

The one-sample sign test can be applied if the r-values for
all items are not normally distributed. The r-values are first
transformed into 0 if they are below the fixed number (e.g.,
0), and into 1 if they are above the fixed number. A binomial
distribution test can then be applied to compute the z score:

z =
K − nP
√

nP(1− P)
(3)

where n is the sample size (i.e., number of items), K is the number
of the r-values below the fixed number, and P is the probability of
r-value above the fixed number (e.g., P = 0.5).

SIMULATIONS FOR ITEM-WISE AND
MEAN-WISE CORRELATIONS

We compared the two correlation approaches by simulation, as
discussed below. All simulations were performed in MATLAB

(R2014a, The MathWorks, Inc.). The simulations were first
performed on random data (i.e., without any signal) with
standard normal distribution. The mean is around 0 and SD is
around 1.

The simulations were first performed on random values for
two variables, then subjected to Pearson correlation. The sample
size ranged from 2 to 1,200 with a step of 1. There were 1,000
samples for each sample size. The mean r-values for the 1,000
samples of each sample size in item- and mean-wise correlation
are reported in Figure 1A. The data are random, so the mean r-
value is very close to 0 in the item- and mean-wise correlations.
The mean r-value for item-wise correlation is −0.00001; for
mean-wise correlation it is 0.00014. Item-wise correlation relative
to mean-wise correlation leads to smaller absolute r-values for
1,000 samples at each sample size (from 2 to 1,200), generally
p < 2.95 × 10−125 (Figure 1B). The item-wise correlation
also results in smaller absolute maximum or minimum r-values
(Figure 1C). The t-values for each of the three types of r-values
does not differ between the two correlation approaches.

We performed another simulation on data involving signals.
The signal-to-noise ratio in this simulation ranged from 0.01 to 1
with a step of 0.01. Again, there were 1,000 samples for each ratio.
The sample size was assumed as 100 participants who finished 100
items. The x(100,100), y(100,100), and s(100,100) is represented a
100-by-100 array of pseudorandom values. The s(100,100) value
was multiplied by the signal-to-noise ratio from 1% to 100%,
resulting in signal (S). The signal was added into x(100, 100) and
y(100, 100) as follows:

X = x(100, 100) + S

Y = y(100, 100) + S

Thus, X represents one type of score (e.g., RT) of 100
participants finishing 100 items and Y represents another type
of score (e.g., brain activation) of 100 participants finishing 100
items.

FIGURE 1 | Simulations of item-wise and mean-wise interindividual brain-behavior correlations on same random data (i.e., without any signal). (A) Mean r-values for
1,000 samples of each size in item- and mean-wise correlation. (B) Item-wise correlation relative to mean-wise correlation with smaller absolute r-values for 1,000
samples at each size. (C) Item-wise correlation also results in smaller absolute maximum or minimum r-value.
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FIGURE 2 | Simulations of item-wise and mean-wise interindividual behavior-brain correlations on same data with signal-to-noise ratios from 1 to 100% (1,000
samples for each ratio). (A,C,E) r-Values for item-wise and mean-wise correlation. (B,D,F) t-Values for item-wise and mean-wise correlation.

The r-values for item-wise correlation are smaller than
the r-values for mean-wise correlation when the ratio is less
than 40% (p < 0.05). No differences were observed beyond
this value between the two correlations (Figure 2A). For
ratios less than 5% (p > 0.05), the t-values we calculated
do not differ between item-wise and mean-wise correlation.
When the ratio is 6%, significance emerges at p < 0.05.
As the ratio increases, the significance becomes more

salient. When the ratio is 100%, the mean t-value for item-
wise correlation is 10 times that for mean-wise correlation
(Figure 2B).

The number of participants and the number of items always
differ in a study. The simulations for fewer participants and
more items (e.g., 20 participants and 100 items) and for more
participants and fewer items (e.g., 100 participants and 20 items)
are also presented in Figures 2C–F. The simulations resulted
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FIGURE 3 | Brain activation for mathematical problem-solving from block-wise subject analysis and item-wise subject analysis. Four thresholds: 0.05 uncorrected,
0.005 uncorrected, 0.001 uncorrected, and 0.05 corrected level each with voxel size > 10, voxel in 3 mm × 3 mm × 3 mm. First row shows positive activation;
second row shows negative activation in both block-wise subject analysis and item-wise subject analysis.

in similar patterns to those in the previous simulation (100
participants and 100 items).

The simulations effectively prove the validity of item-wise
interindividual behavior-and-brain correlation analysis. We next
directly compared the two approaches in a neuroimaging
experiment on mathematical problem-solving. We sought to
verify that the item-wise correlation reveals neural markers of
cognition with sufficient statistical power.

EXAMPLE DESCRIPTION AND DATA
PREPROCESSING

Participants
Twenty-eight healthy, right-handed university students (11 male,
17 female) were recruited from Beijing Normal University,

China. The average age of the subjects was 21.5 years-old
within a range from 18.7 to 26.6 years old at the time of
this study. They self-reported normal or corrected-to-normal
eyesight, normal hearing, and lack of neurological or psychiatric
illness. Subjects had no brain abnormality on their T1-weighted
high-resolution magnetic resonance images (MRI) as determined
by a neuroradiologist. Informed written consent was obtained
from each subject after the procedures were fully explained.
The experiment was approved by the State Key Laboratory
of Cognitive Neuroscience and Learning at Beijing Normal
University. Participants were compensated 100 RMB for their
time.

Materials
Sixty mathematical word problems were presented to the
participants; participants were required to compute the exact
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FIGURE 4 | Significant clusters of item-wise and mean-wise interindividual behavior and brain correlation with voxel size > 10 (voxel in 3 mm × 3 mm × 3 mm).

answer to each problem. The problems involved addition,
subtraction, multiplication, or division and required either one
or two steps to complete. For example: “A sister has 28
pencils, her brother has 10 pencils. How many pencils does
she need to give to her brother so that they each have an
equal amount?” One potential solution is to calculate how
many more pencils the sister has than her brother (18 pencils)
and then divide that difference in half (9 pencils). All the
problems were presented randomly and self-paced during 60-s
blocks.

Apparatus and Imaging Parameters
We conducted functional MRI (fMRI) analyses on a Siemens
(Munich, Germany) 3T Trio scanner using an 8-channel
phase array head coil. Participants laid supine in the scanner
with their heads immobilized. A single shot, T2∗-weighted
gradient-echo echo planar imaging (EPI) sequence was used

for the fMRI scans with slice thickness of 6 mm and no
gap between slices, in-plane resolution of 3.75 × 3.75 mm,
and TR/TE = 3000 ms/30 ms. The field of view was
240 × 240 mm and the acquisition matrix was 64 × 64. Thirty
contiguous axial slices parallel to AC-PC were acquired. Three-
hundred and sixty-two images were acquired with a total scan
time of 724 s in a single run. High-resolution T1-weighted
anatomical images were also acquired for each participant
(3D, gradient-echo pulse-sequence, TR/TE = 25 ms/6 ms,
FOV = 220 mm × 220 mm, 89–92 contiguous slices,
matrix = 220× 220, thickness = 2 mm).

fMRI Scanning Procedures
The participants were given a practice session outside of
the scanner prior to the fMRI analysis. In the scanner,
mathematical problems were projected onto the center of a
translucent screen and viewed by the participants through a
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TABLE 1 | Brain regions with positive and negative brain-and-behavior correlations based on item-wise correlation at p < 0.05 corrected (voxel size > 10).

Brain region Volume t-Value Coordinates

Item-wise positive correlation

Right middle occipital gyrus 23 10.01 45 −81 9

Left middle frontal gyrus 39 9.98 −33 6 63

5.31 −33 3 51

Right middle frontal gyrus 146 9.15 39 57 9

6.63 24 54 21

5.86 27 63 12

Left inferior frontal gyrus (Operculum) 39 8.52 −39 15 18

6.43 −36 12 −9

5.83 −39 12 0

Right inferior frontal gyrus (Triangle) 223 8.25 27 27 30

7.56 33 15 12

7.10 54 24 18

Right superior temporal gyrus 11 8.23 66 −18 9

Right medial superior frontal gyrus 214 8.02 3 33 51

7.75 9 21 30

7.33 0 27 39

Right precentral gyrus 33 7.91 63 −3 30

Left middle frontal gyrus 75 7.52 −30 57 9

6.08 −36 45 6

5.83 −45 51 3

Right superior temporal gyrus 18 6.94 69 −36 12

5.81 69 −27 3

Right superior frontal gyrus 56 6.77 18 9 66

6.36 27 3 66

6.03 36 9 63

Left superior frontal gyrus (Orbital) 12 6.76 −15 48 −9

Right supramarginal gyrus 12 6.63 63 −33 39

Left superior parietal lobule 14 6.52 −27 −81 45

Left precuneus 12 6.45 −9 −60 66

5.92 −15 −66 66

Left supplementary motor area 13 6.40 −12 6 60

5.81 −12 12 66

5.66 −12 21 63

Right superior frontal gyrus 10 6.08 21 21 60

Right precuneus 17 6.07 6 −45 69

Right postcentral gyrus 10 6.06 24 −42 69

Right middle frontal gyrus 10 5.78 39 39 21

Item-wise negative correlation

Left precentral gyrus 48 −9.10 −51 0 39

Left inferior temporal gyrus 62 −7.64 −42 −57 −6

−6.62 −30 −72 −9

Left superior occipital gyrus 41 −7.11 −21 −60 36

Left inferior parietal lobule 10 −6.19 −48 −36 51

mirror attached to the head coil. The stimuli were presented
in black against a white background. The visual angle of each
problem was less than 3◦ in both horizontal and vertical
directions.

There was one run for the mathematical problem-solving task
and a total of 16 blocks per run: eight blocks for mathematical
problem-solving and eight blocks of visual fixation each lasting
30 s. The participants were encouraged to respond as quickly

and accurately as possible by using their left or right index
finger to press a button. After the participant responded, a
new problem was presented after a blank of 1,000 ms. If the
participants failed to respond within 20 s, the problem would
disappear and a new one was presented. If there were 8 s
or less left in a block, instead of presenting a new question,
a fixation sign (“+”) was presented for the remainder of the
block.
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TABLE 2 | Brain regions with positive and negative brain-and-behavior correlations based on mean-wise correlation at p < 0.05 uncorrected (voxel size > 10).

Brain region Volume t-Value Coordinates

Mean-wise positive correlation

Right postcentral gyrus 3061 6.29 24 −45 66

5.14 60 −6 30

5.12 −12 −42 75

Right cerebellum (6) 58 4.71 18 −60 −33

Left cerebellum (9) 24 4.40 −15 −48 −39

Left inferior frontal gyrus (Orbital) 14 4.32 −30 33 −18

Left precentral gyrus 30 4.30 −36 −24 66

Left insula 15 4.01 −36 12 18

Left precuneus 60 3.75 −12 −48 60

Left superior temporal gyrus 136 3.60 −45 −30 12

2.83 −66 −39 15

2.74 −42 −15 −3

Left postcentral gyrus 151 3.57 −51 −15 33

2.35 −66 −9 21

Right middle temporal gyrus 192 3.56 45 −60 12

2.79 39 −75 39

2.62 57 −60 30

Left calcarine 51 3.39 −6 −60 9

2.50 3 −42 12

Right medial superior frontal gyrus 48 3.36 9 36 51

Left superior temporal pole gyrus 19 3.25 −45 24 −15

Right middle temporal gyrus 25 3.25 54 −36 −9

Left middle frontal gyrus 31 3.22 −33 60 12

Left inferior frontal gyrus (Triangle) 58 3.22 27 27 30

Left superior temporal pole gyrus 15 3.19 −36 18 −30

Left cerebellum (4–5) 48 3.18 −27 −39 −27

2.48 −27 −57 −36

Left superior occipital gyrus 18 3.08 −27 −84 42

Left anterior cingulum 65 3.07 0 24 −3

2.58 0 54 −12

Right precuneus 24 3.06 6 −54 24

Left cerebellum (6) 14 2.98 −33 −63 −27

Left middle temporal gyrus 13 2.93 −54 6 −21

Right hippocampus gyrus 13 2.87 15 −36 12

Right medial superior frontal gyrus 39 2.83 9 57 21

Left superior frontal gyrus 12 2.81 −24 −6 69

Left thalamus 22 2.80 0 −21 18

Left superior temporal gyrus 30 2.80 −45 6 −9

Left middle frontal gyrus 13 2.80 36 57 9

Left cerebellum (4–5) 13 2.77 −6 −54 −6

Vermis (10) 20 2.76 0 −36 −36

Left thalamus 13 2.70 −3 −18 −9

Right cerebellum (6) 12 2.65 27 −75 −18

Left anterior cingulum 15 2.64 −12 48 −3

Left amygdala 11 2.39 −30 0 −12

Mean-wise negative correlation

Left precentral gyrus 35 −3.53 −48 −3 39

Left inferior parietal lobule 22 −2.91 −45 −42 48

Left inferior temporal gyrus 28 −2.81 −39 −54 −3

Left superior occipital gyrus 13 −2.54 −21 −60 33
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FIGURE 5 | Relations of r-values for item-wise and mean-wise brain-behavior interindividual correlation and their correlation. (A) r-Value maps for item-wise and
mean-wise correlation. (B) Relation of r-values at voxel level for the two correlation. Top: voxels ordered by coordinates. Middle: voxels ordered by item-wise r-values.
Bottom: voxels ordered by mean-wise r-values. (C) Scatter map of r-values for two correlations.

Neuroimaging Data Preprocessing
Neuroimage preprocessing was performed using SPM12
(Statistical Parametric Mapping, Welcome Department of
Cognitive Neurology, London1). The functional data set acquired
from the experiment consisted of 362 image volumes. Functional
images were realigned to the first volume in the scanning
session using affine transformations. A mean functional
image volume was constructed for each participant from the
realigned image volumes. This mean image volume was then
used to determine the parameters for spatial normalization;
these parameters were then applied to the corresponding
functional image volumes for each participant. Spatial
smoothing was performed on the normalized functional images
using a Gaussian kernel 8 mm full-width at half-maximum
(FWHM).

For the block-wise whole-brain analysis, statistical analyses
were conducted on the smoothed data using a boxcar design with
a canonical hemodynamic response function (HRF). A high-pass
filter (186 s) was applied in order to remove low frequency effects
and a low-pass filter (4 s) to remove the high frequency noise. The
global temporal trend was removed. Contrasts of interests were
calculated for each individual (below) and subjected to random
effects analyses at the subject-based group level using one-sample
t-tests.

For all contrasts of brain activation, we used the thresholds
from the most lenient p < 0.05 uncorrected to p < 0.005,
p < 0.001, to the most stringent p < 0.05 corrected with a
minimum cluster size of 10 voxels.

1http://www.fil.ion.ucl.ac.uk/spm/

BEHAVIORAL AND NEUROIMAGING
RESULTS

Behavioral Results
The 28 participants responded to a total of 1,367 trials (math
word problems). About 13.7% of the trials, or 187 of them, were
responded to incorrectly. Of the incorrect responses, seven trials
involved no keystrokes within the maximum RT of 20,000 ms.
The average time for the trials with correct responses (2,726) was
8,064 ms, and the average time for incorrect responses (4,904)
was 7,915 ms. There was no significant difference between the two
types of trial responses: F(1,1365) = 0.372, p = 0.542, η2

p = 0.000.
Only the trials with correct responses were entered into the RT
correlation analysis.

Brain Activations
The whole-brain activation for mathematical problem-solving
is shown in Figure 3. We identified four types of thresholds,
0.05 uncorrected, 0.005 uncorrected, 0.001 uncorrected, and
0.05 corrected, each with more than 10 voxels. Whole-brain
activation was observed from two starting points: block-wise
analysis and item-wise analysis. The block-wise analysis is
the traditional analysis based on block design. The item-
wise analysis involves computing the brain activation for
each item (i.e., a trial or a math word problem), obtaining
a brain map for each participant, and finally, conducting
a random effect test. We found that both approaches have
similar activation patterns regardless of positive or negative
activation. Positive activation is typically located at the bilateral
occipital, parietal, and frontal cortex. Negative activation is
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FIGURE 6 | Cross validation analysis on odd- and even-ordered trials (p < 0.05 uncorrected for both item-wise and mean-wise correlations).

located at the default mode network including the angular
gyrus, anterior temporal cortex, precuneus, and medial prefrontal
cortex.

ITEM-WISE AND MEAN-WISE
CORRELATION FOR MATHEMATICAL
PROBLEM-SOLVING

We used a Lilliefors test to determine whether our data (β value)
satisfies normal distribution. The Lilliefors test is a normality test
based on the Kolmogorov–Smirnov test (Lilliefors, 1969). We
tested the activation (β value) of each voxel for all participants
to find that 82.2% voxels satisfy normal distribution. The RT of
each trial for all participants was also tested: 88.3% trials satisfy
normal distribution. Therefore, the Pearson correlation method
is applicable.

For the fMRI study wherein 28 participants finished 60 trials,
the mean-wise correlation was computed on the 28 mean values
of behavioral measure (i.e., RT) to obtain 28 brain activation
maps with each voxel of each map involving the mean of brain
activation based on the 60 trials. This process results in a t map
where each brain voxel has a t-value.

In the item-wise correlation, we first computed the correlation
between the RT of 28 participants and their brain maps
for an item (resulting in 60 r-values for each brain voxel)
and conducted a one-sample t-test on the 60 r-values. This
analysis also results in a t map. The t maps for item-wise
correlation and mean-wise correlation between brain activation
(i.e., β value) and RT are shown in Figure 4, again with
four thresholds: 0.05 uncorrected, 0.005 uncorrected, 0.001
uncorrected, and 0.05 corrected. Table 1 reports the brain
regions with positive and negative brain-behavior correlations
based on item-wise correlation analysis via Pearson method
(Figure 4).

Frontiers in Neuroscience | www.frontiersin.org 10 November 2018 | Volume 12 | Article 817

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00817 November 5, 2018 Time: 7:44 # 11

Zhou et al. Interindividual Brain-Behavior Correlation

TABLE 3 | Same brain regions with positive or negative brain-behavior correlations for odd- and even-ordered trials (p < 0.05 uncorrected, voxel size > 10).

Brain region Volume t-Value Coordinates

Item-wise positive correlation

Right middle occipital gyrus 1009 7.07 45 −81 9

5.81 66 −18 9

5.73 63 −3 30

Left middle frontal gyrus 108 7.03 −33 6 63

3.22 −24 12 45

Right middle frontal gyrus 3510 6.68 39 57 9

6.24 −39 15 18

5.82 30 21 27

Left middle occipital gyrus 139 4.81 −27 −81 45

3.27 −9 −87 36

3.00 6 −60 24

Left superior frontal gyrus (Orbital) 67 4.79 −15 48 −9

Vermis (3) 46 4.72 6 −36 −6

Right precuneus 539 4.55 9 −57 48

4.52 −9 −60 66

4.45 6 −42 69

Right supplementary motor area 37 4.36 9 −3 69

Left inferior temporal gyrus 61 4.00 −57 −63 −3

2.84 −42 −87 3

Left middle cingulum 98 3.98 0 −18 18

2.95 −3 −3 36

Left postcentral gyrus 73 3.92 −51 −15 36

Left cerebellum (6) 31 3.76 −27 −48 −21

Left middle temporal gyrus 38 3.72 −63 −36 12

Left cerebellum (6) 79 3.66 −33 −63 −27

3.04 −30 −78 −45

Left thalamus 18 3.63 −3 −18 −9

Right fusiform gyrus 28 3.50 24 −48 −12

Left caudate 22 3.50 −15 −12 24

Right precentral gyrus 32 3.46 18 −21 66

Left superior frontal gyrus 14 3.32 −15 45 42

Right precentral gyrus 42 3.25 39 −12 48

Left middle occipital gyrus 12 2.98 −42 −84 18

Item-wise negative correlation

Left precentral gyrus 133 −6.72 −51 0 39

−3.59 −36 −9 21

Left fusiform gyrus 160 −5.39 −42 −57 −6

Left middle occipital gyrus 117 −5.01 −21 −60 36

−3.33 −18 −75 54

Right fusiform gyrus 48 −4.43 33 −66 −6

Left postcentral gyrus 52 −4.35 −48 −36 51

Left middle frontal gyrus (Orbital) 11 −4.27 −30 42 −6

Mean-wise positive correlation

Right postcentral gyrus 181 6.47 24 −45 66

3.04 9 −54 51

Left precuneus 69 4.79 −12 −42 75

3.11 3 −27 60

Right hippocampus gyrus 152 3.78 18 −3 −9

3.43 48 18 −12

Right superior temporal gyrus 75 3.74 57 −3 6

Right inferior frontal gyrus (Triangle) 71 3.57 48 24 18

3.49 36 6 9

Mean-wise negative correlation

None

Consistent brain regions identified by overlaying and averaging odd- and even-ordered trials with correlation at p < 0.05 uncorrected.
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FIGURE 7 | Number of voxels for odd- and even-ordered trials in AAL template (116 brain regions) for item-wise and mean-wise correlations (p < 0.05 uncorrected
for both item-wise and mean-wise correlations).

We observed positive correlations mostly at the SMA, right
middle temporal gyrus, bilateral amygdala, medial superior
frontal gyrus, bilateral fusiform gyrus, and bilateral superior
temporal gyrus under the threshold p < 0.05 corrected. Negative
correlations are generally located at the bilateral thalamus,
bilateral cerebellum, bilateral inferior temporal gyrus extending
to the inferior occipital gyrus and fusiform, bilateral middle
frontal gyrus, left inferior frontal gyrus, and right postcentral
gyrus under the threshold p < 0.05 corrected.

Table 2 shows the brain regions with positive and
negative brain-behavior correlations based on traditional
mean-wise correlation analysis (Figure 4). We found
positive correlations mostly at the bilateral postcentral
gyrus, right precentral gyrus, bilateral superior temporal
gyrus, middle cingulum gyrus, supplementary motor area,
and right fusiform gyrus under the threshold p < 0.05

uncorrected. Negative correlations were observed at the left
precentral gyrus, left inferior parietal lobule, left superior
occipital gyrus, and left inferior occipital gyrus extending
to the inferior temporal gyrus under the threshold p < 0.05
uncorrected.

There were several brain regions that showed similar
significant correlations both item-wise and mean-wise. The brain
regions containing positive correlations include the bilateral
precuneus, bilateral superior frontal gyrus, right postcentral
gyrus, and left middle frontal gyrus; the same brain regions that
showed negative correlations include the left precentral gyrus, left
inferior parietal lobule, and left inferior temporal gyrus.

The relations of r-values in the two correlations are shown
in Figure 5; the brain maps for the same r-values are shown in
Figure 5A. We found that the r-value from item-wise correlation
is generally smaller than that from mean-wise correlation
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FIGURE 8 | Interindividual (top) and intraindividual (bottom) correlations in mathematical problem-solving (p < 0.001 uncorrected for both interindividual and
intraindividual correlations).

(Figure 5B). The correlation between the r-values from the
item-wise correlation and the r-values from the mean-wise
correlation across all voxels in the whole brain results in a
value of 0.81 (Figure 5C). We also found that 92.7% voxels
(β value) positively or negatively correlated with RT under the
threshold of p < 0.05 uncorrected by mean-wise correlation
were observable via item-wise correlation analysis. Only 19.8%
voxels (β value) positively or negatively correlated with RT
under the threshold of p < 0.05 uncorrected by item-wise
correlation analysis were observable via mean-wise correlation.
That is, 80.2% of the voxels with significant correlation by
item-wise correlation analysis were not observable by mean-
wise correlation analysis (Figure 4). This suggests that item-wise
correlation analysis reveals more significant correlations than
mean-wise.

CROSS VALIDATION

We ran a cross validation to assess the consistency of all
the items contributing to the association between brain and
behavior. The items were split into two halves according to
their parity: odd-ordered trials and even-ordered trials. The
item-wise correlation led to high consistency between the
two trial halves (Figure 6). The same brain regions activated
in the two correlations (odd- and even-ordered trials) is
marked in yellow in the figures below. Table 3 reports the
same brain regions with positive or negative brain-behavior
correlation for odd- and even-ordered trials. The clusters of
activation in the odd-ordered trials with p < 0.05 corrected
were repeated in the clusters of activation in even-ordered
trials.

The AAL atlas is used here to show the statistical stability at
brain region level. The correlation of activated voxel quantities
in 116 regions of the AAL template is 0.918 and the mean-wise
correlation is only 0.686 (Figure 7). The p-value is higher and r-
value is lower in the mean-wise correlation than the item-wise,
which suggests that mean-wise correlation analysis is less stable.

RELATION BETWEEN INTERINDIVIDUAL
AND INTRAINDIVIDUAL APPROACHES

Interindividual brain-behavior correlation tends to reflect the
variations associated with individuals, but intraindividual brain-
behavior correlation tends to reflect the variations associated
with items. Both inter- and intraindividual correlations reflect
variations in brain activation related to cognitive processing. An
example for each approach is provided in Introduction section.

In our mathematical problem-solving experiment, we
first performed intraindividual brain-behavior correlation
for each individual across items/trials, then combined the
correlation brain maps with single-sample t-tests against
0 (Figure 8). The intraindividual map and interindividual
map was correlated with 0.306 according to the t-value
at the voxel level for mathematical problem-solving.
According to Cohen’s rules of thumb (1988, 1992), r in
0.306 is “medium” level; only 10% of the variation can be
explained. The result suggests that the two correlations are
independent.

We found that interindividual correlation is altogether more
practical than intraindividual correlation. The ideal experimental
design involves keeping the trials homogeneous, which greatly
reduces the brain-behavior correlation. Conversely, recruiting
participants across the widest possible range creates better sample
distribution and more meaningful across-subject correlation.

RELATION BETWEEN BRAIN
ACTIVATION AND CORRELATION

To determine the proportion of voxels with significant
correlations in the positively or negatively activated brain
voxels (see section “Brain Activations”), we set the most lenient
threshold (p < .05 uncorrected) to cover the widest possible
range of activated and associated brain regions. The relation is
shown in Figures 9, 10.
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FIGURE 9 | Item-wise correlation in brain activation map (p < 0.05 uncorrected for both correlation and activation analysis, number of activated voxels exceeds 10).

For the relation between brain activation and item-wise
correlation, about 25.8% of brain voxels with the positive
correlation were found in the positively activated brain and
51.3% in the negatively activated brain. About 76.3% of brain
voxels with negative correlation were observed in the positively
activated brain, but only 7.4% in the negatively activated brain.
(Figure 9). For the relation between brain activation and
mean-wise correlation, about 8.0% voxels that showed positive
correlation were displayed in the positively activated brain and
74.5% in the negatively activated brain. About 96.9% voxels
that showed negative correlation were observed in the positively
activated brain, and no voxel was observed in the negatively
activated brain (Figure 10).

In addition, our item-wise correlation analysis showed that
the correlation of some voxels meets the threshold of p < .05
corrected. The relation between brain activation and the item-
wise correlation was computed with the threshold of p < .05
corrected. Up to 33.9% of the brain voxels with positive
correlation were observed in the positively activated brain and
27.0% in the negatively activated brain. Up to 98.8% of brain
voxels with negative correlation were found in the positively
activated brain, but no voxels were observed in the negatively
activated brain.

According to the results of item-wise and mean-wise
correlation analyses, negative correlation between brain
activation and RT is generally found in the brain regions with
positive activation (see section “Brain Activations,” “whole-brain
activation analysis”). Positive correlation can be found in both
positively and negatively activation brains.

DISCUSSION

The goal of this study was to secure a novel, simple
correlation procedure for brain-behavior association analysis
across individuals and ultimately to shed light on how the brain
processes information, as well as how individuals differ from one
another in regards to cognition.

Traditional mean-wise individual brain-behavior correlation
involves the pursuit of the highest possible correlation.
Behavioral measurement techniques are limited, so the
correlation cannot be especially high. Item-wise individual
brain-behavior correlation, conversely, centers around the
pursuit of weak but stable correlation coefficients. The
weak correlation for an item arises due to an abundance of
noise.
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FIGURE 10 | Mean-wise correlation in brain activation map (p < 0.05 uncorrected for both correlation and activation analysis, number of activated voxels
exceeds 10).

The statistical power in simulations on data-containing signals
is enormously enhanced by this technique. Comparison between
the two correlation approaches on any given example (e.g.,
mathematical problem-solving) also shows that only the item-
wise correlation can meet the gold standard for activation
detection. Cross validation also reveals stable correlation patterns
under the item-wise correlation approach. The removal of noise
during the correlation analysis of each item is why the item-wise
correlation is so successful.

The linear regression model can be borrowed to demonstrate
the working principle of item-wise correlation. The residual error
(εi) can be filtered out in the model. The regression coefficient in
a simple linear regression can directly be transformed into the
correlation coefficient r = β∗SDx/SDy. The mean-wise correction
on random data (without any signal) results in larger absolute r-
value, which indicates more false alarm error (type I error).

Enhanced statistical power lends strength to the application
of correction for multiple testing in correlation analysis, which
is otherwise a serious problem (Rousselet and Pernet, 2012). The
present study was conducted to test the effectiveness of item-wise
interindividual brain-behavior correlation for task fMRI studies.
An fMRI experiment on mathematical problem-solving was run

and analyzed with a typical item-wise correlation process. Task
fMRI studies actually are a subset of neuroimaging studies –
the question of whether item-wise correlation applies to other
types of neuroimaging studies (e.g., on data collected outside
the scanner) remains to be answered. We would assert that
item-wise correlation analysis is indeed valid for studies with
behavioral data collected outside the scanner. If there is a
one-to-one corresponding relation between trials outside the
scanner and inside (i.e., data can be paired), the item-wise
analysis applies across the board. Behavioral data was collected
outside an fMRI scanner (e.g., reaction time for 28 trials) and
brain activation was collected as the participants completed
60 trials inside the fMRI scanner. There were no one-to-one
corresponding relations between the sets of trials. The data
(e.g., RT) for each trial collected outside the scanner can also
correlate the brain activations of each trial inside the scanner.
Average data of all trials for each participant collected outside
the scanner can also correlate with the brain activations in each
trial.

In a resting fMRI study, behavioral data is collected outside the
scanner or collected in a secondary session inside the scanner.
The behavioral data for each trial can be correlated with brain
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signals in the resting state. The resting state can also be separated
into different time windows, e.g., with 15 to 30 TRs per window
(Handwerker et al., 2012; Hutchison et al., 2013; Leonardi et al.,
2013; Allen et al., 2014). The average data of all trials for each
participant can be correlated with the brain signal for each time
window in the resting state.

It should be noted that the proposed model (i.e., item-wise
individual brain-behavior correlation) is actually a random-
effects model on the items, and a fixed-effects model on subjects.
The effect from statistical test can be generalized to new items
from the same subjects. On the other hand, it is hard to make
a prediction for new subjects that would be appended to the
cohort.

CONCLUSION

The paper introduced a novel brain-behavior correlation
method with markedly enhanced statistical power. The
proposed method may effectively resolve problems inherent
to traditional brain-behavior correlation techniques. Cross
validation demonstrated the reliability of the item-wise
interindividual correlation, which was also applied to a block-
design neuroimaging study. The analysis technique discussed
here could be extended to event-related design in future
neuroimaging studies, as it can be used to conveniently
and accurately model brain activation across multiple
trials.
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