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Neural activity in the primary motor cortex (M1) is known to correlate with movement

related variables including kinematics and dynamics. Our recent work, which we believe

is part of a paradigm shift in sensorimotor research, has shown that in addition to these

movement related variables, activity in M1 and the primary somatosensory cortex (S1) are

also modulated by context, such as value, during both active movement and movement

observation. Here we expand on the investigation of reward modulation in M1, showing

that reward level changes the neural tuning function of M1 units to both kinematic as well

as dynamic related variables. In addition, we show that this reward-modulated activity

is present during brain machine interface (BMI) control. We suggest that by taking into

account these context dependencies of M1 modulation, we can produce more robust

BMIs. Toward this goal, we demonstrate that we can classify reward expectation fromM1

on amovement-by-movement basis under BMI control and use this to gatemultiple linear

BMI decoders toward improved offline performance. These findings demonstrate that it

is possible and meaningful to design a more accurate BMI decoder that takes reward

and context into consideration. Our next step in this development will be to incorporate

this gating system, or a continuous variant of it, into online BMI performance.

Keywords: reinforcement learning, brainmachine interface (BMI), motor cortex, somatosensory cortex, dopamine,

sensorimotor control

INTRODUCTION

Primary motor cortical (M1) activity encodes movement related kinematics and dynamics
(Georgopoulos et al., 1982, 1992), and is often modeled as a linear relationship between neuronal
firing and desired movement toward the development of brain-machine interfaces (BMIs)
(Chhatbar and Francis, 2013). BMIs allow subjects to control physical or virtual systems including
robotic arms and computer cursors using neural signals (Serruya et al., 2002; Taylor et al., 2002;
Velliste et al., 2008; Li et al., 2011). BMIs have been used to restore reaching and grasping for
paralyzed patients with some success (Hochberg et al., 2012; Collinger et al., 2013; Bouton et al.,
2016; Ajiboye et al., 2017), and making such systems more robust and easier to control is of great
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importance. A critical component of BMIs are the motor cortex
tuning models, which describe the relationship between neural
firing rates and kinematics, such as hand/endpoint velocity
(Taylor et al., 2002), or dynamics, such as force and torques
(Carmena et al., 2003; Chhatbar and Francis, 2010, 2013;
Suminski et al., 2011).

Recently, our lab and others have shown that context can
modulate neural activity in M1 (Chhatbar and Francis, 2013;
Marsh et al., 2015; Ramkumar et al., 2016; Downey et al., 2017;
Ramakrishnan et al., 2017). It has become clear that a reward
signal exists in the primary motor cortex as well as the primary
somatosensory cortex (McNiel et al., 2016a,b). Additionally,
context such as reward level can affect direction tuning curves
for M1 units (Ramakrishnan et al., 2017). We hypothesized
(Marsh et al., 2015) that this reward signal originates in midbrain
dopaminergic areas such as the ventral tegmentum (VTA) and
substantia nigra pars compacta (SNc), as there are dopaminergic
receptors as well as terminals from these dopaminergic centers
in M1 (Richfield et al., 1989). Dopamine is necessary for LTP
in M1 (Molina-Luna et al., 2009), and has been shown to
have a “charging” effect on neural activity, possibly acting as a
motivational signal (Hollerman and Schultz, 1998; Schultz, 2000;
Hamid et al., 2016). Although the aforementioned studies showed
that M1 neurons multiplex the representation of reward and
motor activity, it has yet to be concretely characterized whether
such reward modulation could be used to design a more robust
and accurate BMI decoder. In the current study, we demonstrate
for the first time to our knowledge that reward modulates neural
activity related to dynamic variables, such as grip force, and to
BMI controlled kinematic variables, such as velocity.

The current work has two main goals. First, to show that
significant differences exist in both directional and force tuning
models of M1 units between rewarding and non-rewarding trials,
and second, the reward level (Tarigoppula et al., 2018), that is the
value of a givenmovement, can be used as additional information
to improve BMI decoding accuracy in an offline, open-loop
system where rewarding and non-rewarding trials are classified
and decoded separately.

METHODS

Surgery
Two non-human primates (NHPs), one male rhesus macaque
(monkey S) and one female bonnet macaque (monkey P), were
implanted with chronic 96-channel platinum microelectrode
arrays (Utah array, 10 × 10 array separated by 400µm, 1.5mm
electrode length, ICS-96 connectors, Blackrock Microsystems).
The hand and arm region of M1 contralateral to their
dominant hand was implanted with the same technique as
our previous work (Chhatbar et al., 2010; Marsh et al.,
2015). All surgical procedures were conducted in compliance
with guidelines set forth by the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were
approved by the State University of New York Downstate
Institutional Animal Care and Use Committee. Briefly, animal
preparation and the induction and maintenance of anesthesia
were conducted by members of the State University of New York

Downstate Division of Comparative Medicine veterinary staff.
Aseptic conditions were maintained throughout the surgery.
Ketamine was used to induce anesthesia, and isofluorane
and fentanyl were used for maintenance. Dexamethasone was
administered to prevent inflammation during the procedure,
and diuretics including mannitol and furosemide were available
to further reduce cerebral swelling if needed. Both subjects
were observed hourly for the first 12 h after implantation, and
provided with a 7-day course of antibiotics (baytril and bicilin)
and analgesics (buprenorphine and rimadyl).

Extracellular Unit Recordings
After a 2–3 week recovery period, spiking activity was recorded
with a multichannel acquisition processor system (MAP, Plexon
Inc.) while the subjects performed the experimental task. Neural
signals were amplified and bandpass filtered between 170Hz
and 8 kHz to isolate single and multi-unit activity and sampled
at 40 kHz, and each channel manually thresholded to detect
single units. Single and multi-units were sorted based on their
waveforms using principal component (PC)-based methods in
Sort-Client software (Plexon Inc.).

Behavioral Task
Monkeys S and P were trained to perform a reach-grasp-
transport-release task, depicted in Figure 1. In this task,
the subjects controlled certain aspects of a simulated
anthropomorphic robotic arm (Barrett WAM) in order to
manipulate a virtual target cylinder. Each trial consisted of 6
stages: cue display, reaching, grasping, transporting, releasing,
and reward delivery. At the start of a trial, cues were displayed
(green squares) to indicate the level of juice reward the animal
would receive upon successful completion of the task. The
number of green squares (0–3) corresponded to the number of
0.5 s juice delivery periods delivered at the end of that trial. If
no green square was displayed, then no reward was delivered
upon successful completion of the trial. In an unsuccessful trial,
no reward was delivered and the trial was repeated at the same
reward level until completed successfully, motivating subjects
to complete the zero reward level trials successfully. Two NHPs
conducted two sessions each of a manual grip force control
version of the task as well as two sessions each of a BMI version
of the task.

For the manual task, the virtual arm reached the target
cylinder automatically. The animal then controlled the grasping
motion of the hand by manually squeezing a force transducer
with its dominant hand. The amount of force applied was
represented in the virtual environment by a red rectangle
that increased in width proportional to the force output. The
subject had to maintain a level of force indicated by a pair of
blue force target rectangles (Figure 1). The robotic arm then
automatically moved the cylinder to a target location while the
animal maintained the target grip force. The animal then released
the gripper, which resulted in a successful trial if completed at the
proper time, and the cylinder was placed at the target location.

For the BMI task, after reward cue presentation the subject
controlled the virtual robotic arm’s movement from the starting
position to the target cylinder using M1 activity. During the
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FIGURE 1 | Behavioral Task: The behavioral task was composed of 6 scenes. First, during the cue display scene the animal was cued via the number of green

squares to the amount of reward it would receive if it completed a trial successfully. Each green square indicated 0.5 s worth of liquid reward. Zero green squares

indicated a non-rewarding trial. Trials could either be under manual control or BMI control. In manual control the NHP squeezed a physical manipulandum, with the

amount of force, represented by a red rectangle, having to be held within the blue target rectangles in order for the trial to be successful. In BMI control mode, the

NHP controlled the reaching trajectory of the arm toward the object (see Methods section).

reaching stage of the task, the cylinder was always located
horizontally to the right from the starting position of the virtual
hand.Whenwithin a threshold distance, the cylinder was grasped
automatically. The animal then needed to move the cylinder
to the target position using BMI control. The target location
was determined pseudorandomly within the confines of the task
plane. If the animal brought the cylinder to the target position,
the trial was considered successful. The hand then automatically
released the grasp on the cylinder, and the arm reset to the
starting position.

This study was designed to investigate the effect of varying the
level of reward on neural encoding, so there were two versions
for both BMI and manual tasks, differing in the reward levels
offered during the recording session. The amount of juice reward
delivered was determined by the amount of time the juice reward
straw (electronically controlled by a solenoid) was kept open.
The solenoid was opened for 0.5 s for every successive level of
reward (approximately 1ml juice). For the first recording session,
the reward levels were 0 (non-rewarding) or 1 (0.5 s of reward
delivery). For the second session, the reward levels were 0 and 3
(1.5 s of reward delivery). Only successful trials were considered
for further analysis for both BMI and the manual tasks.

During BMI trials, subjects controlled the virtual arm
movement during the reaching and transporting stages using
a ReFIT Kalman filter (Gilja et al., 2012) BMI decoder, which
used binned firing rates (100ms bins) to predict the animal’s
command for the virtual arm’s velocities. The Kalman filter is a
linear dynamical system, which has a statemodel and observation
model.

At time t, the state model is:

xt = Dxt−1 + qt , qt∼N(0,Q),

and the observation model is:

rt = Ext + wt , wt∼N (0,W) ,

where bold type represents vectors. xt is the state vector
representing positions and velocities at time bin t, rt is the
observation variable representing binned firing rates at time bin
t, and qt and wt are Gaussian noise. Given D, Q, E, and W, the
Kalman filter can provide the best estimation for the current state

xt based on the previous state xt−1 and the current observation
rt . The ReFIT Kalman filter allows one to retrain and improve
parameters D, Q, E, and W using intended velocity data from
previous BMI control sessions (Gilja et al., 2012). The bin size
used here was 100ms. The Re-fit Kalman decoder was retrained
every block (8000 time bins, 800 seconds).

An assistive controller (Figure 2) was used to modulate the
difficulty of the BMI task. In assistive control, the velocity
commands vcx and vcy that controlled the virtual arm’smovement
in the x and y dimensions were a linear combination (H in
Figure 2) of BMI decoded velocities vx1 and vy1 and “intended”
velocities vx and vy given by

vcx = s



p





vx1
√

v2x1 + v2y1



+
(

1− p
)





vx
√

v2x + v2y







 , and

vcy = s



p





vy1
√

v2x1 + v2y1



+
(

1− p
)





vy
√

v2x + v2y







 ,

where s was a constant speed, manually set at 40 cm/s. Animals
reached the cylinder in approximately 0.5 s at that speed.

We define intended velocities as velocity in the direction of the
target location, but with the speed of the decoded velocities. Thus,
the difficulty of the task could be changed by adding more or less
of the intended velocity by adjusting the independence ratio P. A
higher value of P indicates that the velocity command reliedmore
on the BMI decoder output than the intended velocities. All BMI
data used here were recorded in sessions with an independence
ratio greater than 0.8.

Off-Line Data Analysis
Tuning Curve Analysis
Linear regression was performed to fit neural encoding models
for both the manual task and the BMI task. For the BMI task,
during the reaching and transporting scenes, the linear intended
velocity-encoding model was given by:

rit = A1ivxt + B1ivyt + Ci (1)

where rit was unit i’s binned firing rate at time bin t (100ms
bins). vxt and vyt were the BMI controlled virtual hand’s intended
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FIGURE 2 | Assisted BMI control. Velocity command is the linear combination of predicted velocities (output from the ReFIT Kalman decoder) and intended velocities.

The velocity of the virtual hand is a linear combination (H) of the ReFIT Kalman decoder output and the intended velocity. The higher the value of p, the closer the

velocity command is to the decoder output.

velocities at time bin t in the x and y directions, respectively. The
intended velocity at time bin t had the same speed as the BMI
controlled velocity at time bin t, but the direction was toward
the target (Gilja et al., 2012). If considering movement direction
rather than velocity, we have:

rit = A2i cos
(

θt − θpi
)

+ Ci (2)

where θt indicates the intended movement direction, which was
the direction toward the target at time bin t. θpi was the preferred
direction of the ith unit, defined as the direction of movement
that evoked the maximum firing rate in that unit. Equation (2) is
referred to as the intended directional tuning curve equation and
can be used for BMI decoding (Moran and Schwartz, 1999). In
this study, the virtual hand was always moving at the same speed.
Let:

A2i =

√

(A2
1i + B21i)(v

2
xt + v2yt)

tan
(

θpi
)

=
B1i

A1i
, and

tan (θt) =
vyt

vxt
,

therefore Equation (1) is equivalent to Equation (2).
Intended velocities and directions were used instead of real

velocities and directions for fitting Equations (1) and (2) because
it has been previously shown that a ReFIT Kalman decoder that

makes use of intended kinematics information can correct model
parameters and have better BMI performance (Gilja et al., 2012).

Considering rewarding and non-rewarding trials separately,
the following equations were written:

rit = Ar
1iv

r
xt + Br1iv

r
yt + Cr

1i (2.1.1)

rit = Ar
2i cos

(

θt − θ rpi

)

+ Cr
2i (2.1.2)

rit = Anr
1i v

nr
xt + Bnr1i v

nr
yt + Cnr

1i (2.2.1)

rit = Anr
2i cos

(

θt − θnrpi

)

+ Cnr
2i (2.2.2)

Ar
i , θ

r
pi andC

r
i are parameters for rewarding trials (r), andAnr

i , θnrpi ,

and Cnr
i are parameters for non-rewarding trials (nr). Equations

(2.1.1) and (2.2.1) were fit for all units using Matlab function
“regstats.” Units were considered significant if (2.1.1) and (2.2.1)
differed (p < 0.05) from a constant model, that is if Ar

1i or
Br1i from Equation (2.1.1) and Anr

1i or Bnr1i from (2.2.1) were
significantly different from zero (p < 0.05). Equation (2.1.2) was
fit for all units using data from all rewarding trials during the
transport stage (free 2D movement as the grasped object was
moved to the target location). Similarly, Equation (2.2.2) was fit
for all units using data from all non-rewarding trials during the
transport stage. Both equations were fit using a nonlinear least
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squares fit. To minimize overfitting, data from the reaching stage
were not included for analysis as all the reaching movements
were the same, being made horizontally toward the right from
the starting position. All estimated values and variances for
parametersAr

2i, θ
r
pi,C

r
1i, A

nr
2i , θnrpi and Cnr

2i from (2.1.2) and (2.2.2)

were calculated using non-linear least squares fit inMatlab. If any
A2i (A

r
2i or A

nr
2i ) was less than zero, then the value was multiplied

by −1 to yield a positive value of A2i , and the corresponding
θpiwas adjusted by:

θpi,new = θpi,old + π

After this adjustment θpi would always represent the preferred
direction of the unit, meaning that the unit had amaximumfiring
rate when the direction of movement was θpi.

For each unit, the shapes of the two tuning curves defined
by Equations (2.1.2) and (2.2.2) could then be compared. T-
tests were conducted to compare Ar

2i with Anr
2i and θ rpi with θnrpi

for every unit to see if the amplitude or preferred direction
were significantly different. For every unit that had a significant
difference between either amplitudes or preferred directions
between rewarding and non-rewarding trials, the difference
between two preferred directions (1θpi) and the normalized
difference between two amplitudes (1Ai) were calculated:

1Ai =
Ar
2i − Anr

2i

Ar
2i + Anr

2i

1θpi was the angle between two unit vectors [cos
(

θ rpi

)

, sin(θ rpi)]

and [cos
(

θnrpi

)

, sin(θnrpi )]:

1θpi = arccos(cos
(

θ rpi

)

· cos
(

θnrpi

)

+ sin(θ rpi) · sin(θ
nr
pi )) (3)

By this definition, 1θpi was in the range of [0, π].
For the manual task, during the grasping, transporting, and

releasing scenes the linear force encoding model was given by:

rit = αift + b1i (4)

where rit is the ith unit’s binned firing rate at time bin t, and
ft is the grip force at time bin t. Only ft > 0 data were used
for further analysis. Similar to the previous analysis, Equation (4)
for all units was fit with the Matlab function “regstats” to find all
significant units (p < 0.05). For every significant unit, the linear
force encoding models for rewarding and non-rewarding trials
were:

rit = αr
i ft + br1i (4.1)

rit = αnr
i f t + bnr1i . (4.2)

αir (rewarding) and αinr (non-rewarding) for each unit were
then compared using one-way analysis of covariance (ANCOVA,
Matlab function “aoctool”) to see if the two slopes had a

significant difference (p < 0.05). For each unit where the two
slopes were significantly different, the normalized difference
between the slopes 1αi was calculated:

1αi =
αr
i − αnr

i
∣

∣αr
i

∣

∣+
∣

∣αnr
i

∣

∣

. (4.3)

Linear Decoding Model Considering Reward Level
From these neural encoding models of rewarding and non-
rewarding trials, a combined linear decoding/prediction
kinematics model was designed taking multiple reward levels
into consideration (decoder 2). For the velocity decoder, the
decoding accuracies between decoder 1, where all trials were
considered together, and decoder 2, treating rewarding and
non-rewarding trials separately, were compared using 5-fold
cross validation. For velocity decoder 1, the linear decoding
model was:

ν
pre
t = Mrt + b2 (5)

For velocity decoder 2, the linear decoding models were:

ν
pre
t = Mrrt + br2, for rewarding trials and (5.1)

ν
pre
t = Mnrrt + bnr2 , for non−rewarding trials. (5.2)

ν
pre
t = [v

pre
xt , v

pre
yt ]

′ was the predicted velocity at time bin t and
rt was the n-dimensional firing rate vector at time bin t, where n
is the total number of units. For each testing data set, the velocity
error at time bin t was:

errvt = 1v2xt + v2yt ,

1v2xt = (v
pre
xt − vxt)

2
,

1v2yt = (v
pre
yt − vyt)

2
,

where v
pre
xt and v

pre
yt were predicted velocities at time bin t and vxt

and vyt were intended velocities at time bin t. For the single linear
decoder (decoder 1), the total error was given by:

errvT1 =
∑

T1

errvt1,

where T1 was the total number of time bins for velocity decoder
1, which was the total number of time bins for all trials, and errvt1
was the velocity error at time bin t using decoder 1. For velocity
decoders 2.1 and 2.2, we had:

errvT2.1 =
∑

T2.1

errvt2.1,

errvT2.2 =
∑

T2.2

errvt2.2,

where T2.1 was the total number of time bins for velocity decoder
2.1 (all rewarding trials), T2.2 was the total number of time bins
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for velocity decoder 2.2 (all non-rewarding trials), errvt2.1 was
the velocity error at time bin t using decoder 2.1, and errvt2.2
was the velocity error at time bin t using decoder 2.2. Since
T1 = T2.1 + T2.2, pve was defined to quantify the percent error
reduction:

pve =

(

1−
errvT2.1 + errvT2.2

errvT1

)

∗100.

pve was used to compare the velocity decoding accuracy of
decoder 1 and decoder 2.

The decoding accuracies between force decoders 1 and 2 were
also compared using 5-fold cross validation.

For force decoder 1, the linear decoding model was:

f
pre
t = Hf rt + b3,

For force decoder 2, the linear decoding models were:

f
pre
t = Hrrt + br3, for rewarding trials and (6.1)

f
pre
t = Hnrrt + bnr3 , for non−rewarding trials (6.2)

f
pre
t was the decoded force at time bin t and rt was the n-
dimensional firing rate vector at time bin t, where n is the total
number of units. For each testing data set, the force error at time
bin t was:

errft = (f
pre
t − f realt )

2
,

where f
pre
t was the decoded/predicted force at time bin t and f realt

was the real force at time bin t. The total errors for force decoders
1, 2.1 and 2.2 were given by:

errfT1 =
∑

T1

errft1,

errfT2.1 =
∑

T2.2

errft2.1,

errfT2.2 =
∑

T2.2

errft2.2,

where T1 represented all time bins for force decoder 1 over all
trials, T2.1 represented all time bins for force decoder 2.1 over all
rewarding trials, T2.2 represented all time bins for force decoder
2.2 over all non-rewarding trials, errft1 was the force error at time
bin t using decoder 1, errft2.1 was the force error at time bin t
using decoder 2.1, and errft2.2 was the force error at time bin t
using decoder 2.2. Since T1 = T2.1 + T2.2, pfe was defined as:

pfe =

(

1−
errfT2.1 + errfT2.2

errfT1

)

∗100.

Control groups were created to ensure that error reduction
did not suffer because decoder 2 had more parameters than
decoder 1. We shuffled the reward label for each trial randomly

and then ran decoder 2 again. This way there were still two
separate linear decoders, but the separation was random. pve
and pfe for the random shuffled decoder 2 were calculated
using the same method as above and denoted by pves or
pfes. This shuffling process was performed 1,000 times for
each data block. Also, we compared the pve (for BMI task)
and pfe (for manual task) and the corresponding pves or pfes
distribution for each block using bootstrap hypothesis test. A
p-value was computed from the percent of pves that are greater
than pve:

pvalue =
nl + 1

nt + 1
,

where the total sample number nt = 1000, and nl is the number
of samples whose pves were greater than pve. Similarly, a p-value
was computed from the percent of pfes that were greater than pfe.
This process was used to generate control groups for both the
BMI and manual tasks.

Classification Algorithm
Previous results showed that post-cue firing rates in M1 are
separable between rewarding and non-rewarding trials (Marsh
et al., 2015). A k-nearest neighbors (kNN) algorithm was used as
a classifier, with firing rates from 0.3 to 0.9 s (6 time bins) after
the cue as the input. The kNN algorithm was chosen because
it is a nonparametric algorithm that allows for a nonlinear
decision boundary, and also has an acceptable computational
complexity for a small sample size such as the one used in
this study, which has less than 200 samples (Altman, 1992).
The time period from 0.3 to 0.9 s was chosen because for the
manual task this was the time period when the virtual arm was
horizontally moving to the right to reach the cylinder. For the
BMI task, this was the time period when the virtual arm was
moving horizontally to the right from the start position to the
cylinder position. Since the virtual arm movement direction was
always the same for that time period in the manual task and the
cylinder position was always the same from the start position for
the BMI task, the neural movement encoding was similar among
trials.

For trial t, the input was the firing rate vector Rt . Rt was the
6n-dimensional firing rate vector for trial t. Each element in Rt

represented one unit’s firing rate for each of the six bins in the
above mentioned time period. The output was the class label lt ,
where lt = 0 for non-rewarding and lt = 1 for rewarding trials.
For any testing data Rtest , the 5 nearest neighbors (Euclidean
distance) of Rtest were found in training data and named as
Rn1 ∼ Rn5. We then obtained:

ltest =
1

5

5
∑

i=1

lni,

where lni were the labels for Rni , i = 1, 2, 3, 4, 5 respectively. The
test trial was classified as rewarding if ltest > 0.5, and classified as
non-rewarding if ltest < 0.5.

Not all M1 units had reward modulation, so we hypothesized
that a better classifier could be built by using the subset of units
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which showed rewardmodulation. To choose this optimal subset,
the best individual unit ensemble construction procedure (Leavitt
et al., 2017) was used. This consisted of: (1) building classifiers
using each individual unit, (2) ranking all units based on the
classification accuracy of that unit’s classifier, and (3) iteratively

adding ordered units to make a more complex classifier at each
iteration. If the new unit added reduced the overall classification
accuracy, it was dropped from consideration. The final classifier
therefore used only the units that were beneficial to it, and did
not use the remainder of the units.

TABLE 1 | Three proposed decoders.

Decoder 1 is a single linear decoder, decoding either velocity or force from M1 firing rates using a single linear decoder for all trials. Decoder 2 consists of two separate linear decoders,

one for rewarding and one for non-rewarding trials. Decoder 3 is a two-stage decoder, which first classifies reward information from firing rate data then uses different decoders for

different reward levels.

FIGURE 3 | Example tuning curves for rewarding and non-rewarding trials for the BMI task. The x-axis is intended direction (degrees), and the y-axis is firing rate (Hz).

The left subplots shows an example unit’s tuning curves and all data points used to fit them. The right subplots are six example units’ tuning curves. All example units

were recorded from monkey S where the reward levels were 0 and 3.
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Two-Stage Decoder
Combining the post-cue classifier (method 1.4.3) and the
separate linear model (method 1.4.2), a two-stage decoder
was designed to incorporate multiple reward levels. The first
stage was the kNN classifier (method 1.4.3), using post-cue
firing rates at the beginning of each trial to determine the
reward level for the trial. The second stage then consisted
of the two different linear decoders obtained from stage
one. The second-stage decoder’s output was velocity (using
Equations 5.1 and 5.2) for the BMI task or force (using
Equations 6.1 and 6.2) for the manual task. Using this
two-stage decoder, the reward level could be calculated
directly from the population firing rates, and no additional
information was needed for the linear decoders in the second
stage.

An offline test was run for the two-stage decoder, and its
decoding accuracy was compared to a single stage linear decoder.
errvt and errft were calculated using the same equations as
described previously. pve and pfe for the two-stage decoder were

defined as:

pve =

(

1−

∑

T errvt3
∑

T errvt1

)

∗100, and

pfe =

(

1−

∑

T errft3
∑

T errft1

)

∗100,

where T represented the total number of time bins, errvt3 was
the velocity prediction error at time bin t using the two-stage
decoder, errvt1 was the velocity error at time bin t using the single
linear decoder (velocity decoder 1), errft3 was the force prediction
error at time bin t using the two-stage decoder, and errft1 was the
force error at time bin t using the single linear decoder (force
decoder 1). pve and pfe were then used to test if this two-stage
decoder had an improved accuracy over the single linear decoder.
Table 1 depicts a flow charts of the three decoders.

FIGURE 4 | Statistical results for amplitude and preferred direction differences between rewarding (R) and non-rewarding (NR) trials in the BMI task. Monkey S

(A,B,E,F) had a total of 52 significantly reward modulated units, and monkey P (C,D,G,H) had 42 units. (A,C) Show the number of units with significant changes in

amplitude among all units and (E,G) show the preferred directions. (B,D) show the distribution of 1A for all units with significant differences between R and NR. (F,H)

show the distribution of 1θp. All units were recorded in blocks where reward levels were either zero or three.
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RESULTS

The two NHP subjects in this work conducted two manual grip
force sessions and two BMI sessions each. Only successfully
completed trials were considered for analysis. For the manual
grip force task, 64 M1 units were recorded in monkey P. There
were 83 successful trials in session one with reward (R) [0,1] and
103 trials in session 2 with R [0,3]. In monkey S 77 M1 units were
recorded. There were 152 successful trials for session one with R
[0,1] and 130 trials in session two with R [0,3]. In addition, each
NHP completed two BMI sessions. For monkey P, 102 M1 units

were recorded over 64 successful trials in session one with R [0,1]
and 72 trials in session 2 with R [0,3]. For monkey S, 87 M1 units
were recorded over 66 successful trials for session one in BMI
with R [0,1] and 145 trials in session two with R [0,3].

Directional Tuning Curves Change Based
on Reward Level Under BMI Control
M1 units were used to decode movement information based on
their tuning curves. Our hypothesis was that for a given unit,
tuning curve parameters would change based on the presence

FIGURE 5 | Linear force tuning curves between rewarding and non-rewarding trials for significant sample units. Both tuning curve characteristics, slope and intercept,

change between rewarding and non-rewarding trials. The x-axis is the force sensor output, and the y-axis is firing rate (Hz). The left subplots shows an example unit’s

tuning curves and all data points used to fit them. The right subplots show six example units’ tuning curves. All example units were recorded in monkey S M1 from an

experimental block with reward levels of 0 and 3.

FIGURE 6 | Statistical results for slope differences between rewarding and non-rewarding trials in the manual grip force task. The number of units with significant

changes in force tuning curve slopes and 1α distribution are shown in (A,B) for monkey S, and in (C,D) for monkey P.
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or absence of cued reward. For the BMI task (Figure 2) a total
of 87 units from monkey S and 102 units from monkey P were
recorded. Of these, 54 units (62%) from monkey S and 45 units
(44%) from monkey P had significant directional tuning (see
Figures 3, 4). Of these significantly directionally tuned units, we
then investigated if they showed significantly different tuning
function parameters between the rewarding and non-rewarding
trials. During the BMI task, a single BMI decoder was used.
The following analysis refers to offline analysis of those BMI

TABLE 2 | Decoding accuracy was greater when multiple linear decoders

corresponding to different reward levels were used (decoder 2) compared to a

single linear decoder (decoder 1), for both velocity and force decoding.

Monkey S

(% error reduction)

Monkey P

(% error reduction)

R = 0 or 1, pve 22 23

R = 0 or 1, pves, 1.3 2.3

R = 0 or 3, pve 29 27

R = 0 or 3, pves −1.1 0.29

R = 0 or 1, pfe 12 10

R = 0 or 1, pfes, −0.35 1.3

R = 0 or 3, pfe 25 15

R = 0 or 3, pfes −1.9 −2.2

The control groups (pves or pfes) did not show any improvement.

experiments. We found that monkey S had 29 units (33%)
and monkey P had 22 units (22%) with significantly reward-
modulated preferred directions under BMI control. A larger
percentage of units had significant reward modulation of tuning
curve model amplitude, with 48 units (55%) for monkey S and
38 units (37%) for monkey P. These results are summarized in
Figure 4.

In Figure 3 we have plotted tuning curves for example units
showing significant tuning functions that were also significantly
reward modulated during the BMI task seen in Figure 2. For
units with a significant difference between rewarding and non-
rewarding trials in either amplitude or preferred direction, the
distribution of the changes in amplitude (1A) and preferred
direction (1θp) are shown in Figures 4B,F for monkey S and
Figures 4D,H for monkey P. The distribution of 1A indicates
that, on average, tuning curve amplitudes are larger for rewarding
trials than for non-rewarding trials.

Reward Level Modifies Force Tuning
Curves
In the manual grip force task, M1 units encode force and value.
Figure 5 shows linear force tuning curves for example units, fit
using Equations (4.1) and (4.2).

Significant force tuning was noted in 77 units (100%)
in monkey S and 33 units (52%) in monkey P. Of these
units with significant force turning, 30 units (39%) from

FIGURE 7 | Distributions of velocity error reductions between decoder 1 and 2 (errvt1 − errvt2). The x-axis represents velocity error reductions and the y-axis

represents probability. The first row represents the task where the reward levels were 0 or 1. The second row represents the task where the reward levels were 0 or 3.

The first column represents data from monkey S, and the second column represents data from monkey P.
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monkey S and 12 units (19%) from monkey P were also
significantly modulated by reward, having significantly
different force turning curve slopes between rewarding
and non-rewarding trials (see Methods section). Figure 6

summarizes these results and the distribution of changes
in force tuning slopes 1α, which are the normalized
differences between rewarding and non-rewarding slopes
(see Equation 4.3).

Incorporating Reward Level Improves
Force and Movement Decoding Accuracy
The difference in directional tuning curves (Figures 3, 4) for
individual units and the population suggest that units have
different movement encoding for rewarding and non-rewarding
trials, and that it may be helpful from a BMI decoding perspective
to use models that allow for the influence of reward and
motivation. Similarly, Figures 5, 6 show that units change their
force tuning curves based on reward level. This suggests that
if two separate linear decoders are used for velocity or force
decoding, one for rewarding and one for non-rewarding trials,
decoding accuracy will be improved compared to using a single
linear encoder. This dichotomy was used to build a decoder
that treated rewarding and non-rewarding trials separately (see
Equations 5 and 6 in Methods section). Table 2 shows that

decoding predictions were more accurate when we used the
reward modulated decoders as compared to a single decoder
(see Methods section). The percentage improvement in velocity
decoding, pve, and force decoding, pfe, was clear whether we

TABLE 3 | Reward level classification mean accuracy and standard deviation

across 10 Monte-Carlo repetitions using post-cue firing rates and classifying

between rewarding (R > 0) and non-rewarding (R = 0) trials.

Using all units

Mean accuracy ± s.d.

Using a subset of units

Mean accuracy ± s.d.

R = 0 or 1 70 ± 3.7% 73 ± 1.9%

R = 0 or 3 72 ± 2.8% 80 ± 2.4%

TABLE 4 | Two-stage decoder improvement over decoder 1.

Monkey S

(% error reduction)

Monkey P

(% error reduction)

R = 0 or 1, pve 15 15

R = 0 or 3, pve 7.9 7.2

R = 0 or 1, pfe 6.9 7.1

R = 0 or 3, pfe 10 7.3

For both velocity and force decoding, the two-stage decoder reduced decoding error.

FIGURE 8 | Distributions of force error reductions between decoder 1 and 2 (errft1 − errft2). The x-axis represents force error reductions and the y-axis represents

probability. The first row represents the task where the reward levels were 0 or 1. The second row represents the task where the reward levels were 0 or 3. The first

column represents data from monkey S, and the second column represents data from monkey P.
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used reward levels of zero and one, or zero and three (see
Methods section). However, the percentage improvement was
greater when the difference in trial value was greater, that
is there was a greater percentage improvement between zero
and three levels of reward than for zero and one level of
reward. The reward modulated velocity decoder produced a
22–29% error reduction compared to the single linear decoder
(Table 2, pve). The reward modulated force decoder resulted in
an error reduction of between 10 and 25% compared to the
single force decoder (Table 2, pfe). These results demonstrate
an improved decoding accuracy when rewarding and non-
rewarding trials were treated separately, particularly when the
value differences were greater. The distributions of decoding
error differences between decoder 1 and 2 are plotted in
Figure 7 (direction decoding, errvt1 − errvt2) and Figure 8 (force
decoding, errft1 − errft2). These figures demonstrate that most
of the data have positive error reduction using decoder 2 for
both force and velocity decoding (errvt1 − errvt2 > 0 or
errft1 − errft2 > 0). Additionally, we compared the error
reduction between decoder 2 and shuffled surrogate data (see
Methods section) where decoder 2 results are greater than
that of the shuffled groups (pve or pfe are larger than their
corresponding pves or pfes), and this difference is significant
(p<0.05, bootstrap hypothesis test). These results obviate the
need to accept the alternate explanation of improved decoding
performance due to decoder 2 having more parameters than
decoder 1.

Reward Level Is Classifiable Using Post
Cue Firing Rates for Cued BMI Task
Results from Table 2 suggest that reward levels are useful
information for BMI decoding. The classification accuracy
and standard deviation across 10 Monte-Carlo repetitions for
validation using post-cue firing rates to classify reward levels is
shown in Table 3. For each Monte-Carlo repetition, 70% of the
data were used for training and the remaining 30% for testing. All
classification accuracies were greater than chance (50%). These
results demonstrate that reward level can be classified using firing
rates. A subset of units using the best individual unit procedure
(Leavitt et al., 2017) provides more accurate results than when all
units were used.

Two-Stage Decoder Can Improve
Decoding Accuracy in Offline Tests
Since the reward level could be classified using firing rates
(Table 3), we developed a two-stage decoder. Table 4 shows
velocity decoding improvement pve and force decoding
improvement pfe for the offline test of the two-stage decoder
using 5-fold cross-validation for both monkeys. Here, the reward
level is decoded during the first stage from the neural data and
is used to determine the equations for the second stage. The
percent improvements pve and pfe are greater than 0 for all
cases, therefore the two-stage decoder is more accurate than
the single linear decoder (see Table 4). Plotted in Figures 9,
10 are histograms of the moment-to-moment decoding error

FIGURE 9 | Distributions of velocity error reductions between decoder 1 and 3 (errvt1 − errvt3). The x-axis represents velocity error reductions and the y-axis

represents probability. The first row represents the task where the reward levels were 0 or 1. The second row represents the task where the reward levels were 0 or 3.

The first column represents data from monkey S, and the second column represents data from monkey P.
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difference between decoder 1 and 3 for direction decoding
and force decoding respectively. Comparing with decoder 2
(Figures 7, 8) and decoder 3 (Figures 9, 10), we can see that
more data has negative error reduction when using the two-stage
decoder. This is because decoder 3 has a imperfect classifier,
and misclassification can cause error increases (negative error
reduction).

DISCUSSION

In the current work, NHP subjects controlled either grip force
manually or reaching kinematics with a BMI. In both cases the
subjects controlled a simulation of an anthropomorphic robotic
arm or hand to reach, grasp, and transport target objects. Each
trial was cued as to the reward value the subject would receive
for making the correct movement. In this work, we found that
M1 unit activity was modulated by cued reward level in both
the manual grip force task and the BMI kinematics control
task. In both of these tasks the neural tuning functions, force
tuning and kinematic tuning, were significantly modulated by
the level of expected reward in blocks of trials where cued
reward was (0 vs. 1), or (0 vs. 3). Our results indicate that
reward influences motor related encoding in both manual and

BMI tasks. When we explicitly took the influence of reward
into consideration, our linear decoding models predicted with
significantly higher accuracy. Having a more predicative linear
decoding model is important because the most successful BMI
systems use such linear models at their core, such as within
a Kalman framework, or simply use the output of a linear
model that decodes neural rate into movement parameters. A
more accurate linear decoding model should lead to a more
controllable BMI. In addition to the BMI control aspects of
this work, the basic neuroscience is important, namely that
expected reward modulates M1 motor related tuning functions,
which was previously shown for kinematics in a manual task
(Ramakrishnan et al., 2017). We show in the current work
and in our previous work (Marsh et al., 2015; McNiel et al.,
2016a,b; An et al., 2018) that the cued reward level in a task
is classifiable using post-cue firing rates, therefore, it should
be possible to build a classifier to determine the reward level
before sending the neural activity through the appropriate BMI
decoder. In one of these previous reports, we obtained 97%
accuracy between rewarding and non-rewarding trial types by
combining hybrid features made from local field potentials
(LFPs) as well as single unit data (An et al., 2018). We have
recently found that M1 activity in NHPs is also predictive of

FIGURE 10 | Distributions of force error reductions between decoder 1 and 3 (errft1 − errft3). The x-axis represents force error reductions and the y-axis represents

probability. The first row represents the task where the reward levels were 0 or 1. The second row represents the task where the reward levels were 0 or 3. The first

column represents data from monkey S, and the second column represents data from monkey P.
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un-cued reward levels if these levels are predictable (Tarigoppula
et al., 2018). This indicates that the system we are proposing,
which uses a neural classifier to switch between BMI decoders,
could have relevance past the laboratory setting with learned
cues.

It can be seen from Table 3 that classification accuracy is
higher when the difference between the reward levels is larger,
that is between trials with cued reward of (0 vs. 3) as compared
to trials with cued reward of (0 vs. 1). This indicates that
neural firing rates have a greater degree of separability when
there is a higher cued value. The same conclusion can also be
inferred from Table 2, where both percent improvements for
velocity decoding (pve) and for grip force decoding (pfe) from
trials with reward levels (0 vs. 3) are larger than (0 vs. 1). We
have recently found that at least some M1 units code reward
level in a linear manner in agreement with the above results
(Tarigoppula et al., 2018). Table 2 shows decoding results for
separate linear decoders where the reward level was specified by
the experimenter as an additional input to the decoder. Table 4,
on the other hand, shows decoding results for the two-stage
decoder, where the reward level is automatically classified in the
first stage using a kNN algorithm. The only difference between
these two versions is whether the experimenter has provided
additional information, or if the system did so autonomously.
Since the reward level classifier for the two-stage decoder was
not 100% accurate, the pve and pfe from Table 4 are lower than
the values in Table 2. As expected, the automatic classification of
reward level comes at the cost of decreased decoding accuracy,
indicating the value of a highly accurate classifier if this strategy
is to be meaningful. We have previously shown that one can
also obtain cued reward level information from local field
potentials (Marsh et al., 2015; Tarigoppula et al., 2018) that are
concurrently obtained when recording single units as discussed
above (An et al., 2018), and we will incorporate such hybrid
LFP/spike information in our online neural critic in future
work.

From the current and previously cited work, it is clear that
neural firing rates in M1 are modulated by more than just
movement related information, and we have made use of reward
information in a controlled environment to develop a more
robust and accurate decoder. In this study, the virtual hand
moved at a constant speed and animals could only control the
movement direction in the BMI task. It is not possible that the
firing rate differences are because of different movement speeds,
but it could be related to intended movement speed. Previous
work has already shown that there are reward induced changes
in directional tuning under manual control (Ramakrishnan et al.,
2017), and thus it is unlikely that intended speed alone would
lead to the directional tuning differences observed under BMI

control in the current work. Our results have shown that example
units had different tuning curves between different reward levels.
In other words, the units had different firing rates when the

virtual hand was moving in the same direction and speed but
when the reward levels were different. If we allowed monkeys

to control the speed, their neural encoding models may have

had a larger difference between different reward levels, and
future work will test this. Intuitively, the intended speed will
be larger for higher reward levels, just as movements and
reaction times tend to be faster with higher reward (Watanabe
et al., 2001). It is hard to say that the differences between
neural encoding models shown in our study are only because
of reward. It is possible that reward differences cause internal
motor cortical changes, which then change neural representation.
Regardless, we can capture these changes and build a better
decoder by using reward levels as additional information. During
BMI control, there were no extra visual stimuli as the reward
based visual cues were displayed before BMI control started.
Therefore, the unit-encoded differences due to reward level
observed during BMI control are not likely due to visual
stimuli.

In a more realistic BMI scenario the number of reward levels
may not be known, and there may be other unknown factors
encoded in M1. If reward levels are discrete, or can be treated as
such, then it is possible to use a strategy similar to the two-stage
decoder, but with multiple levels for reward using clustering as
the first stage. If rewards are continuous, one possible solution
is to use a latent variable model to represent reward value (Wu
et al., 2009). It would be more meaningful to have a dynamic
decoder that is able to filter out the reward based information
for any level of reward and reject the effect of other such
“non-movement” variables to obtain more purely movement
relevant information for BMI control. We are currently working
toward the goal of building a stable BMI decoder with these
features that is able to function in a more complex, naturalistic
environment.
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