AUTHOR=Srinivasan Gopalakrishnan , Panda Priyadarshini , Roy Kaushik TITLE=SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition JOURNAL=Frontiers in Neuroscience VOLUME=12 YEAR=2018 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00524 DOI=10.3389/fnins.2018.00524 ISSN=1662-453X ABSTRACT=

In this work, we propose a Spiking Neural Network (SNN) consisting of input neurons sparsely connected by plastic synapses to a randomly interlinked liquid, referred to as Liquid-SNN, for unsupervised speech and image recognition. We adapt the strength of the synapses interconnecting the input and liquid using Spike Timing Dependent Plasticity (STDP), which enables the neurons to self-learn a general representation of unique classes of input patterns. The presented unsupervised learning methodology makes it possible to infer the class of a test input directly using the liquid neuronal spiking activity. This is in contrast to standard Liquid State Machines (LSMs) that have fixed synaptic connections between the input and liquid followed by a readout layer (trained in a supervised manner) to extract the liquid states and infer the class of the input patterns. Moreover, the utility of LSMs has primarily been demonstrated for speech recognition. We find that training such LSMs is challenging for complex pattern recognition tasks because of the information loss incurred by using fixed input to liquid synaptic connections. We show that our Liquid-SNN is capable of efficiently recognizing both speech and image patterns by learning the rich temporal information contained in the respective input patterns. However, the need to enlarge the liquid for improving the accuracy introduces scalability challenges and training inefficiencies. We propose SpiLinC that is composed of an ensemble of multiple liquids operating in parallel. We use a “divide and learn” strategy for SpiLinC, where each liquid is trained on a unique segment of the input patterns that causes the neurons to self-learn distinctive input features. SpiLinC effectively recognizes a test pattern by combining the spiking activity of the constituent liquids, each of which identifies characteristic input features. As a result, SpiLinC offers competitive classification accuracy compared to the Liquid-SNN with added sparsity in synaptic connectivity and faster training convergence, both of which lead to improved energy efficiency in neuromorphic hardware implementations. We validate the efficacy of the proposed Liquid-SNN and SpiLinC on the entire digit subset of the TI46 speech corpus and handwritten digits from the MNIST dataset.