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This paper introduces an event-based methodology to perform arbitrary linear basis

transformations that encompass a broad range of practically important signal transforms,

such as the discrete Fourier transform (DFT) and the discrete wavelet transform (DWT).

We present a complexity analysis of the proposed method, and show that the amount of

required multiply-and-accumulate operations is reduced in comparison to frame-based

method in natural video sequences, when the required temporal resolution is high

enough. Experimental results on natural video sequences acquired by the asynchronous

time-based neuromorphic image sensor (ATIS) are provided to support the feasibility of

the method, and to illustrate the gain in computation resources.
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1. INTRODUCTION

Linear basis transformations are some of the most widely applied mathematical operations
in image and signal processing. The main reason in using them is to find adequate bases
in which specific properties of a signal are made easier to extract. Variations of the Fourier
transform (e.g., the Discrete Fourier Transform (DFT) and the Discrete Cosine Transform) and
wavelet transformations are important examples of the omnipresent techniques—popularized
by digital standards such as JPEG or JPEG2000—to achieve signal filtering and compression.
The basis transformations are well established through decades of research in signal processing
and are applied successfully to modern digital image and video processing using the frame-
based representation. The most successful basis transform developed for image and general
signal processing is without a doubt the Fast Fourier Transform (FFT) where the Cooley-Tuckey
algorithm (Cooley and Tukey, 1965) is the common form used for computing the FFT. The
complexity of this optimized algorithm is O(n log(n)), which is significantly lower than that of the
direct computation using the Fourier transform’s mathematical definition. In order to capitalize
the complexity gain obtained by using the Cooley-Tuckey algorithm, many dedicated hardware
realizations have been designed for real time computing applications, for example (Baas, 1999;
Lin et al., 2005; Uzun et al., 2005). The Fourier transform is known to be an inappropriate
technique for capturing transient frequencies in temporal signal analysis. The short term Fourier
transform was introduced to study signals with frequencies that change over time, and the
wavelet transforms were introduced to capture local changes in time and/or in space at various
scales in a seamless way (Sejdic et al., 2009). This property makes the wavelet transforms highly
useful for example in natural signal processing, prediction and compression. Dedicated hardware
implementations of Discrete Wavelet Transforms (DWT) are numerous; for example (Edwards
and Cauwenberghs, 1995; JPEG2000, 2017). From the perspective of the presented work, we note
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that these conventional implementations of the basis transforms
are computationally efficient in the frame-based context.
However, they are not directly applicable to event-based signals
and in a naive implementation require the synthesis of “virtual”
frames, which in turn results in the loss of many advantageous
properties of the event-based signals such as the high temporal
resolution and the temporal redundancy suppression. The
transformation theories and algorithms on which this work is
referring to are mainly (Cooley and Tukey, 1965; Daubechies,
1992; Sweldens, 1996) since they established the foundation of
the modern signal transformations algorithms.

The first embodiment of neuromorphic sensing appeared
in the 1990’s in the form of a silicon retina (Mahowald and
Mead, 1991). In contrast to standard imaging technology, the
neuromorphic imaging mechanism is based on the concept
of "events” which are asynchronous and sparse. Since then,
the neuromorphic vision sensors have advanced with several
generations of the dynamic vision sensor (DVS) (Lichtsteiner
et al., 2008) and the asynchronous time-based image sensor
(ATIS) (Posch et al., 2011), which captures the relative changes
and also the absolute light intensities for further processing.
The captured visual information is encoded as events using
the address event representation (AER). This representation is
fundamentally different from the frame-based one, and thus
the basis transformation operations need to be reformulated for
event-based signals.

In this work we present a general methodology for computing
efficiently arbitrary linear transformations on event-based
signals. The paper is organized as follows. Section 1.1 provides
an overview of the event-based imaging sensor technology,
while section 1.2 discusses event-based information processing.
The formalization of the event-based basis transformation is
then derived in section 2.1 from the conventional mathematical
definitions. Widely used basis transformations and their
implementational details are described in section 2.2.
Experimental results are presented in section 3 are carried
out using natural image data acquired with the ATIS sensor,
and the computational performance expressed by the number of
multiply-and-accumulate (MAC) operations is measured under
different imaging conditions. Finally section 4 discusses the
relationship of the presented work and the conventional frame
residuals-based video transformation methods.

1.1. Event-Based imaging
Biomimetic, event-based cameras are a novel type of vision
sensors that—like their biological counterparts—are driven by
events taking place in the observed scene. This is in contrast
to conventional vision sensors, which are driven by artificially
created timing and control signals (e.g., frame clock) that have
no relation whatsoever to the source of the visual information
(Lichtsteiner et al., 2008). Over the past few years, a variety of
these event-based cameras has been designed, including temporal
contrast vision sensors that are sensitive to relative luminance
change, gradient-based sensors sensitive to static edges, edge-
orientation sensitive devices, and optical-flow sensors. Most of
these vision sensors output visual information about the scene
in the form of events using the Address Event Representation

(AER) (Mahowald, 1992; Lazzaro andWawrzynek, 1995; Boahen,
2000) and encode the visual information in the dimension of
time instead of voltage, charge or current. The ATIS used in this
work is a time-domain encoding vision sensor with 240 × 304
pixels resolution (Posch et al., 2011). The sensor contains an
array of fully autonomous pixels that combine an illuminance
change detector circuit and a conditional exposure measurement
block.

As shown in the functional diagram of the ATIS pixel in
Figure 1, the change detector individually and asynchronously
initiates the measurement of an exposure/gray scale value
only if—and immediately after—a brightness change of a
certain magnitude has been detected in the field-of-view of
the respective pixel. The exposure measurement circuit in
each pixel individually encodes the absolute instantaneous pixel
illuminance into the timing of asynchronous event pulses, or
more precisely into the inter-event time intervals.

Since the ATIS is not clocked like conventional cameras,
the timing of events can be conveyed with a very accurate
temporal resolution at the order of microseconds. The time-
domain encoding of the intensity information automatically
optimizes the exposure time separately for each pixel instead of
imposing a fixed integration time for the entire array, resulting
in an exceptionally high dynamic range and improved signal to
noise ratio. The pixel-individual change detector allows to reduce
largely temporal redundancies, resulting in a sparse encoding of
the image data.

Figure 2 shows the general principle of asynchronous imaging
spaces. Frames are absent from this acquisition process. They
can however be reconstructed, when needed, at frequencies
limited only by the temporal resolution of the pixel circuits
(up to hundreds of kiloframes per second). Static objects and
background information, if required, can be recorded as a
snapshot at the start of an acquisition; henceforth, the moving
objects in the visual scene describe a spatio-temporal surface at a
very high temporal resolution. In the following we will present
a general way to apply linear transformations on the change
detector events.

1.2. Event-Based Signal Processing
The AER used in the silicon retina encodes visual information
as spatio-temporal events instead of a sequence of frames.
This introduces a new paradigm in computer vision. Research
on processing techniques suitable for AER has been prolific
since these past few years, and several results have been
achieved in the use of the silicon retinas. An interesting
fact on most of previously published works is the exclusive
use of change events to extract useful information from the
scene. One reason for this is that former silicon retinas
were able to output only change events. Direct translations
of state of the art computer vision algorithms are usually
achieved by using the illuminance information estimated by
local integration of the change events. This approach is
adopted by several previous works, for example in using
event correlation for stereomatching (Kogler et al., 2011), in
photoconsistency based optical flow (Benosman et al., 2012),
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FIGURE 1 | Functional diagram of an ATIS pixel. Two types of asynchronous events, encoding change and brightness information, are generated and transmitted

individually by each pixel in the imaging array.

FIGURE 2 | The spatio-temporal space of imaging events: Static objects and scene background are acquired first. Then, dynamic objects trigger pixel-individual,

asynchronous gray-level events after each change. Frames are absent from this acquisition process. Samples of generated images from the presented

spatio-temporal space are shown in the upper part of the figure.

and in machine learning using convolution networks (Perez-
Carrasco et al., 2013). The second reason to use only change
events is that, for most of machine vision problems, time
is proven to be an information medium that substitutes
surprisingly well for illuminance. Stereovision reformulated
for the asynchronous silicon retinas is an interesting example
showing that classic projective geometry combined with a high
temporal accuracy provide an accurate criterion for matching
events and triangulating 3D structures (Rogister et al., 2011;
Carneiro et al., 2013). Tracking algorithms that take advantage of
the accurate timing have been developed for event-based visual

signals: the event-based reformulation of Hough-transform
based circle tracker in Ni et al. (2011), the iterative algorithm
for tracking predefined shapes (Ni et al., 2015), and the part-
based tracking technique in Reverter-Valeiras et al. (2015)
are a few examples of event-based tracking algorithms that
require little computations upon the arrival of each new event.
Time as the main information medium is emphasized with
HFirst (Orchard et al., 2015), the hierarchical model of the visual
cortex derived from the HMAX (Riesenhuber and Poggio, 1999).
It demonstrates that visual learning can be achieved through
temporal information.
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This list of event-based signal processing algorithms, while not
comprehensive, gives an overview of the state-of-the-art event-
based visual signal processing methods. As mentioned above,
these algorithms process only change events. Only a handful
of studies dealing directly with the event-based illuminance
(encoded as gray-levels) can be listed so far from the literature. A
compressive sensing reconstruction of the illuminance has been
implemented on hardware in Orchard et al. (2012). The idea
behind it is to exploit the stochastic false change detection due
to noise in the ATIS. The high temporal accuracy of the sensor
is then traded off to reconstructing the missing illuminance
information, and as a result, 28 Hz videos achieving state-
of-the-art visual quality are obtained. In Ieng et al. (2014)
asynchronous linear and non-linear filters have been developed
for generalizing image filtering techniques to event-based gray-
levels. The illuminance information is a supplementary visual
information for the above listed algorithms, but it is a mandatory
information for displaying event-based signal in a realistic and
human-friendly way. The use of illuminance information is a
step toward a unified formulation of visual signal processing that
encompasses both frame-based and event-based representation.
Using such an approach one can tackle spatial frequency analysis,
image compression and even high dynamic range imaging that
are heavily relying on the illuminance information, and explore
the impact of the integration of illuminance information to the
event-based signal processing.

One important observation should be emphasized about the
present paper is the context of this work that focuses exclusively
proposing an iterative, event-by-event adaption of the classical
basis transformations. A complexity analysis is provided to show
the inherent possibility to save computation power thanks to
the low redundancy of the event-based signal to process. The
problem of sparse representation has been widely tackled by the
communities of adaptative and compressive sensing, the main
concern of these domains is the initial signal reconstruction from
one sparse basis to another one (Candes et al., 2006; Vaswani,
2008). This is however a totally different problem that we are not
aiming to step in as signal reconstruction is an extremly costly
offline processing. Rather, in this work we are aiming to provide
an easy to implement and computationaly cheap event-based
algorithm that can process events provided by an event-based
sensor on the fly.

2. MATERIALS AND METHODS

2.1. Event-Based Basis Transformation
2.1.1. General Formulation

The event-based representation assumes that only a few pixels
change at a given time, implying only local updates of the
signal content. To simplify the notations, and without loss of the
problem’s generality, we assume that at a given time only the ith
pixel changes its value from xi to x̂i; multiple-pixel updates are
then performed by applying single pixel updates on these pixels
sequentially.

Let us first consider a one-dimensional sensor whose output x
is a column vector of length m. In the following we investigate
linear transformations of the form f : K

m → K
n, where K

is either R or C, and where m and n are the dimensions of
the considered vector spaces. Each linear transform f can be
represented by a matrixM for which

y = Mx, (1)

where x corresponds to the current values of the pixels, and y is
the value of the transform. Let us writeM in a column vector form
M = (M1, . . . ,Mm). We denote by x̂ the updated vector, where
the pixel that has been updated is denoted by x̂i, and similarly
by x and xi the pixels before the single update. The output of the
linear transform before and after the transform, respectively, is
denoted by y and ŷ. Then

ŷ = Mx̂ = M(x+ (x̂− x))

= Mx+M







x1
.
x̂i
.
xn




−




x1
.
xi
.
xn







= y+ (M1, . . . ,Mi, . . . ,Mm)(0, . . . , x̂i − xi, . . . , 0)
T

= y+ (x̂i − xi)Mi

= y+ 1xiMi, (2)

where 1xi = x̂i − xi is the amount by which the ith pixel has
changed (Figure 3). On the whole then

1y = ŷ− y = 1xiMi, (3)

where Mi is the ith column of the transform matrix M. Since
there are n elements in Mi, this event update rule for y takes
nmultiply-and-accumulate (MAC) operations. For convenience,
as is the typical case in image transformations, we consider in
the following the case m = n. Then applying this update rule
for every sensor element once takes n2 MACs, which is the
same number of MACs that is required in applying the matrix
multiplicationMx̂ directly, whenM is a n×nmatrix. This shows
that the event update rule (3) does not introduce overhead in the
computations for a general linear transform.

This mechanism can be generalized to more complex and
non-linear transforms if the assumption of infinitesimal changes
of xi holds (i.e., 1xi ≈ 0). In such a case, we can use a first order
approximation to update y:

ŷ ≈ y+ Jf (x)(x− x̂), (4)

where Jf (x) is the Jacobianmatrix of f at x and the first order term
in (4) is the vector

(J1(x), . . . , Jm(x))(x− x̂) = 1xiJi(x), (5)

according to (3), where we setM = Jf .

2.1.2. Event-Based Linear 2D Transform

Let us generalize the discussion above to 2D signals, that is,
instead of vectors of length m we assume that the sensor outputs
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FIGURE 3 | Event update step. A change in xi changes the output y by 1xiMi .

a matrix X of sizem× n. Similarly to the above, X̂ is the updated
matrix, and x̂i,j the value of the updated pixel at location (i, j). Let
us consider transformations of the form

Y = UXV , (6)

where U is a k×mmatrix and V is an n× lmatrix, and therefore
Y is a k× lmatrix, where n,m, k, and l are natural numbers. Many
practically important 2D transformations — such as the Fourier
transform, the discrete cosine transform (DCT), and (DWT) —
can be written in this form.

Let us denote W = UX. Then the first update step
corresponding to W 7→ Ŵ is achieved similarly to (3). If W is
written in the column formW = (W1, . . . ,Wn), then

{
Ŵt = Wt ∀t 6= j, and

Ŵj = 1xi,jUi
(7)

where (i, j) is the coordinate of the updated pixel and Ui is the ith
column of U. In other words, the event update changes only the
jth column ofW, and thus this step requires kMACs.

The second step of the transform performs the update of Y
according to Ŷ = ŴV . As noted above, Ŵ and W coincide
except at the jth column, and therefore

Ŷ = (W + (Ŵ −W))V

= WV + (0, . . . , Ŵj, . . . , 0)V

= Y + ŴjV
j

= Y + 1xi,jUiV
j, (8)

where V j is the jth row of V . Thus in general this 2D transform
requires k+ klMACs, as the outer product takes klMACs.

In the following we concentrate on image transforms for
which k = l = m = n, and thus a 2D event update requires
in general n + n2 MACs. Moreover, the transforms we consider
satisfy V = UT , and thus the update rule becomes

Ŷ = Y + 1xi,jUiU
T
j . (9)

Now, if U is a sparse matrix that has at most s non-zero elements
per column, the 2D event update takes at most s + s2 = O(s2)
MACs. This observation will be useful as we consider wavelet
transforms in section 2.2.2, and show that these transforms are
particularly efficient for performing the event update rule.

2.1.3. Clusters of Events

The event-based formulation assumes the processing of the data
on arrival of each individual event in a sequential manner,
however Equation (9) is extendable to events that occur at the
same time in an almost straightforward manner. Let us assume
the set of N events σ = {(i, j, t)}, that occur at the same time t. The
update equation is the finite sum of the N events contributions:

Ŷ = Y +
∑

(i,j)∈σ

1i,jUiU
T
j . (10)

As such, the number of MACs is still increasing linearly with
the number of events in the set, hence the global complexity
is unchanged. However, by extending to a set of simultaneous
events, we are actually getting away from the event-based
hypothesis and get closer to frame representation. A strategy
to switch to fast and optimized classic transformations (FFT,...)
when they perform better is necessary.

2.2. Important 2D Transforms
In the following we apply the results presented in section 2.1 to
discrete Fourier-related transforms and wavelet transforms, and
compare the computational efficiency of these transforms when
the event update rule (9) is used. For convenience of notation, we
assume that the input matrix is of size n × n, where n = 2k for
some k ∈ N.

2.2.1. Fourier-Related 2D Transforms: Discrete

Fourier and Cosine Transforms

2.2.1.1. Discrete Fourier Transform (DFT)
Equation (9) can be naturally applied to reformulate the 2D DFT,
whose matrix U equals

U(i, j) = (1/
√
n)ω(i−1)(j−1), (11)

for i, j = 1, . . . , n, and ω = e(−2π
√
−1)/n.

ThusU is a dense matrix, which implies that n+n2 (complex)
MACs are required to update the transform upon arrival of one
single event.

2.2.1.2. Discrete Cosine Transform (DCT)
For the discrete cosine transform the transform matrix U equals

U(i, j) = cos

(
π(j− 1/2)(i− 1)

n

)
, (12)

for i, j = 1, . . . , n. Again, U is a dense matrix, and thus the 2D
event update step (9) takes n+ n2 (real) MACs.

2.2.2. 2D Discrete Wavelet Transforms

A 2D DWT of the signal X is a linear transform that can be
written in the matrix form Y = HXHT , where H and HT are
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FIGURE 4 | Computation of the discrete wavelet transform using consecutive filtering and down-sampling by two. Here h(n) denotes the high-pass filter and g(n)

denotes the low-pass filter of the wavelet transform. Using this approach, the Haar transformation of a n× n image takes approximately (16/3)n2 MACs, as a single

level of the transform takes 4n2 MACs and as the Wavelet transform is applied recursively to the upper left corner of the transformed image.

the column and the row transform matrices, respectively. In
conventional signal processing this form is not computationally
the most efficient, and the wavelet transform is preferably
implemented with the filter bank approach as introduced
in Mallat (1989). The filter bank structure is depicted in Figure 4

and is a succession of k blocks, where each block applies high-
pass filtering (here denoted by h), low-pass filtering (denoted by
g), and downsampling by two (denoted by ↓ 2) on the signal
obtained from the previous level of the filter bank structure.
While the matrix multiplication scheme requires more MACs
in the frame-based approach than the filter-bank approach does,
we will show that it is an efficient way to perform the wavelet
transform using the event-based update Equations (3) and (8).

2.2.2.1. Haar Wavelet Transform
Let us first consider the Haar wavelet transform, which is one
of the most important wavelet transforms due to its simplicity.
Its low-pass and high-pass filters g and h are defined by the
coefficients (1, 1) and (1,−1). As explained in Appendix 0.1, up
to a normalization of the rows, the transform matrix U = H can
be built through the recursive rule :

∀i ∈ N
∗,H2m×2m =

(
Hm×m ⊗ (1, 1)
Im ⊗ (1,−1)

)
, (13)

where H2×2 =
(
1 1
1 −1

)
. The number of non-zero elements per

column of Hn×n is s = log2(n) + 1 (see Appendix 0.1 for the
proof), and thus by (3), the number of MACs required by a single
update in a vector of size n is log2(n) + 1, not n as in the general
case. The number of MACs required by the 2D transform update
step (9) is

s2 + s = (log2(n)+ 1)2 + (log2(n)+ 1)

= (log2(n))
2 + 3 log2(n)+ 2. (14)

The number of bits needed to store H is O(n log(n)), since
H is sparse, and the number of MACs required by the event
update step isO(log(n)2), which compares favorably to theO(n2)
MACs required by the update step of a general dense 2D linear
transformation. This complexity reduction is not only due to
the event-by-event processing of the data but also because of
the sparse structure of H. This is also benefiting frame-based
calculation of the wavelet transform.

2.2.2.2. General Wavelet Transform
For a general DWT, there is no obvious iterative way based
on the Kronecker product to build the matrix H. However, H
has a general structure that can be used to determine an upper
bound to the number of non-zero elements per column. In this
subsection, we analyze the structure of the matrix H and derive
an a upper bound to the number of non-zero element in each of
its columns.

Let us denote by h and g the finite impulse response filters
of the considered DWT. Let us assume that h and g contain
only non-zero coefficients, and let p the length of the longer of
these two filters. Furthermore, let l be the smallest integer that
satisfies p/2 ≤ 2l. The transformmatrixH has then the following
structure:

• each of the rows of the submatrixA1 (Figure 5)—defined from
row n

2+1 to row n ofH— is a circularly shifted copy of the row
n
2+1, where the circular shift is taken two elements to the right
per row. Each of the rows has at most p non-zero elements
corresponding to the high-pass filter coefficients. Due to the
circular shift, the number of non-zero elements per column in
this submatrix is at most p/2

• the submatrix A2 (Figure 6) defined from row n
4 + 1 to row n

2
corresponds to the second level of coefficients of the wavelet
transform. These coefficients are obtained by applying the
high-pass filter h onto a low-pass filtered and downsampled
vector. Due to the convolution of the high-pass and low-pass
filters, each row contains at most 2p non-zero coefficients, and
due to the two separate downsamplings by two, each row is
circularly shifted by four steps. Thus again each column of this
submatrix contains at most p/2 non-zero elements.

• the same observation can be done for each submatrix Ai

(Figure 7) defined from row n
2i
+ 1 to row n

2i−1 of H. Again,
each of their columns has at most p/2 non-zero elements.
Notice that the topmost submatrix is defined from row 1 to
row 2l.

Finally, as H consists of submatrices A1,A2, ...,Ak−l+1, the total
number of non-zero elements in each of its columns is at most

C(p, n) = (p/2)(log2(n)− l+ 1), (15)

with k = log2(n).
For example, the result for the Haar transform is obtained with
p = 2, which implies l = 0 and C(2, n) = log2(n) + 1. For the
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FIGURE 5 | Wavelet transform matrix at the first level. The left structure is a schematic of the transform matrix split into submatrix Ai . The first step is represented by

the bottom half of the matrix, A1 and corresponds to a high-pass filter followed by the downsampling by two elements.

FIGURE 6 | Wavelet transform matrix at the second level. The submatrix defined from row n/4+ 1 to row n/2, A2, corresponds to consecutive low-pass filtering,

downsampling by 2, high-pass filtering, and again downsampling by two elements.

Daubechies 5/3 transform matrix, p = 5, and thus l = 2 and
C(5, n) = (5/2)(log2(n)− 1).

From this observation, we can conclude that for any DWT,
the event update step (7) requires O(log2(n)) MACs, and
hence the 2D event update step (9) requires O(log2(n)

2)
MACs. The generalization to a m × n transform matrix M is
straightforward: (7) and (9) are requiring respectivelyO(log2(m))
and O(log2(m) log2(n)) MACs to update the transform. An
estimate of the computational complexity can be sketched by
counting the number of MACs required by a single update of
the Daubechies 5/3 DWT (Daubechies, 1992). In Figure 8, the
top inset shows the number of MACs per an event update with
respect to the increasing size, n × n, of the input image for
n ∈ [8, 16, 32, . . . , 2048]. In the bottom inset the number of
MACs per an event update, normalized by the total number of
pixels n2, is compared to a dense basis transform. As can be

seen, the normalized number of MACs decreases with n for the
wavelet transform, while this ratio remains constant for the dense
transform.

The MACs estimation for the standard transforms are
established assuming dense and non-symmetric transform
matrices in general. For specific transforms such as Fourier,
symmetry can be exploited to produce fast and efficient
algorithms such as the FFT. For transformations like the wavelets’
ones, the sparsity is an additional property that should be taken
into account. While we only compare the event-based approach
with the classic filterbank architecture, it would have been fairer
to compare with the improvement introduced in Daubechies
and Sweldens (1996) by the lifting scheme. However this is not
changing fundamentally the results shown in the next section
since as reported in Daubechies and Sweldens (1996), the
complexity of the lifting scheme is still linear and the number
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FIGURE 7 | Wavelet transform matrix at the level i = 3.

of operations can be reduced up to half of what is needed for the
classic filterbank technique.

More complex optimization techniques can help in reducing
frame-based wavelet computation: in Andreopoulos and van der
Schaar (2008), an incremental wavelet computation is introduced
to exploit the idea that a non-exact transform is acceptable
if the induced distortion is limited. This strategy is based on
finding a compromise between the transformation accuracy and
the resource allocated to compute the transformation. In the
extension of the analysis we are doing here, we can imagine
to integrate that mechanism also into the event-based update
and stop the calculation when signal distortion is below some
threshold.

Finally, in a more general context of basis transformation, for
frame-based transform, a mechanism of detecting sparsity in the
input can be used to either decide to run an actual recalculation
on the input when the input is actually not sparse.

3. RESULTS

In this section we consider the application of the presented event-
based transform method to the real signal output of the silicon
ATIS retina. The output signal of this sensor is an illuminance
value I at (x, y), at time t, where the temporal resolution
is in the order of a few µs in contrast to the considerably
slower refresh rate of conventional digital cameras. The theory
presented in this paper allows to computationally efficiently
apply linear transformations on this illuminance signal, as
demonstrated in the following. Three sequences are tested with
the DWT: the first sequence, “city traffic” is recorded with a
static ATIS observing street traffic while the sequences “city
day” and “city night” are captured during different times of the
day by the same sensor mounted in a moving car. A set of
snapshots generated from the recordings is shown in Figure 9

to demonstrate the input signal used to test the event-based
transform method.

To evaluate the computational complexity of the presented
event-based transformation method against more conventional
frame- based methods, we use the following notations:

• An asynchronous signal acquired by the ATIS has a total
number of events N and a duration of T seconds. The same
signal is sampled into a sequence of frame at F frame per
second (fps). The sequence has thus in total FT frames.

• The number of MACs for the iterative form: one event
triggers the iterative transform (9), and thus it requires n+ n2

MACs. For a signal of N events, then the number of MACs is
N(n+ n2)

• The number of MACs for a sequence of FT frames:

a standard 2D transform as defined in (6) requires two
successive matrix-multiplications, each of which requires n ·
n2 = n3 MACs per frame. For a FT frames sequence, the
number of MACs is then 2FTn3.

Let us denote by R the ratio of the number of MACs required by
the event-based transformation and the frame-based one. Then

R = N(n+ n2)

2FTn3
. (16)

Figure 10 shows the ratio function as defined in (16) for the
considered three input sequences.We cropped the signal spatially
into a 128 × 128 pixel patch to have spatial dimensions of
powers of two in the considered image area. Frames are then
generated at an equivalent 1, 000 fps on which we are applying
the frame-based transform. A millisecond temporal accuracy
is representative of most of natural scenes captured by the
asynchronous sensor, which justifies the selection of this frame
rate. The ratio R is valid for whatever the linear basis change
transform as we introduced in the previous sections as long as the
transform matrices are dense. As can be seen, in terms of MACs
the event-based transform consumes only a fraction of what is
required by the dense frame-based transform.

In the above, R is defined under the assumption that
the basis transform is dense. However, when using wavelet
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FIGURE 8 | Number of MACs required by a single event update of a 2D Daubechies 5/3 discrete wavelet transform. Top inset: mean number of MACs required by a

single event update, and an upper bound estimation using (15) with p = 5. Bottom inset: Number of MACs required by a single event update per the total number of

pixels n2. As can be seen, the discrete wavelet transform is much more efficient in terms of numbers of MACs than a general dense transform.

transform, the computational complexities for both event-
based and frame-based transformations are significantly
reduced as described in subsection 2.2.2. To provide a
more accurate comparison for the wavelet transform, we
define Rw as the ratio between the number of MACs
obtained from using the sparse event-update and the
frame-based filter bank method shown in Figure 4. Here
we consider the Haar transform, for which the number of
MACs per a single event update equals (log2(n) + 1)2 +
(log2(n + 1), while the transformation of a frame takes
asymptotically (16/3)n2 MACs as described in Appendix 0.2
Therefore

Rw = N(log22(n)+ 3 log2(n)+ 2)

(16/3)FTn2
. (17)

The rectified ratio for the wavelet transform with respect to the
number of frames per second in the frame-based approach is
depicted in Figure 11. At the rate of 1,000 fps, for example, the
rectified ratios are much smaller than the ratios R at the same fps
presented in Figure 10. This increased computational efficiency
is due to the exploitation of the sparseness of the transform
matrix and the relatively few pixel changes per frame. The “city

day” sequence, the more active one in term of recorded events,
is the most demanding in computation. Its ratio is now reduced
to 0.13 while the other two sequences ratios are lower than
0.05.

At the typical operating frequencies of the asynchronous
sensor (several kHz), we can see the event-based transform
is much more efficient than the frame-based one, as
only updated information needs to be processed. The
number of required MACs amounts to 13% of what
is used by the filter bank implementation of the Haar
transform in the most active sequence. These experiments
show that high temporal accuracy signals acquired
with the ATIS silicon retina can be exactly transformed
in a very resource efficient way when compared to
classic state-of-the-art algorithms used in classic image
processing.

Finally, for closure of the experimental results, we present
in Figure 12 the amplitude of the Haar and Daubechies
5/3 transforms of the “city night” sequence. The results
are obtained with the event-based transforms as described
above and the complexity of the computation ratio is directly
given by rectified ratio in (17). The low and high pass
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FIGURE 9 | Samples of frames generated from the ATIS: three natural and dynamic scenes with different lighting condition are used for evaluating the event-based

basis transform. (Top) A sequence of street traffic with the static camera. (Middle) Daytime driving with the camera. (Bottom) Nighttime driving with the camera.

FIGURE 10 | Ratio of MACs used by an iterative transform (DFT, DCT,...)

applied to the 3 sequences of outdoor traffic scenes: “city traffic” is a camera

static scene while the “city day” and “city night” are acquired with the ATIS

embedded in a moving car. At 1,000 fps, the ratio of MACs for the 3

sequences is at most 0.63.

filters coefficients are respectively (up to a normalization
factor):

{
gHaar =

(
1 1

)

hHaar =
(
1 −1

) (18)

and
{
gDaub5/3 =

(
− 1

8
1
4

3
4

1
4 − 1

8

)

hDaub5/3 =
(
− 1

2 1 − 1
2

) (19)

This is especially interesting when analyzing the dynamic
behavior of a temporal signal. The event-based transform
allows to update in a more continuous and less costly way

FIGURE 11 | Rectified ratio Rw of MACs in event-based and frame-based

wavelet transforms.

the transient content of the scene. Because the event-based
form is an exact reformulation of the standard discrete
transforms, there is no need to assess the transformation
accuracy.

4. DISCUSSION

A compression strategy can be combined to the bank filter
technique to reduce even more the computation load of the
frame-based transform. By using the differences of images—
so-called image residuals—it is actually possible to apply the
Haar transform only on the pixels that changed between two
consecutive frames. This makes the frame-based transformation
approach the event-based formalism, when the frame rate
increases, thus yielding asymptotically a ratio of MACs close
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FIGURE 12 | Haar and Daubechies 5/3 wavelet transforms computed iteratively for the night city sequence. The bottom plane is showing the amplitude of the wavelet

transforms at an arbitrary time t0, the transforms are built progressively as graylevel events are output by the ATIS. Slices of the transforms are plotted for visibility

reason, the actual structure is a volume of transform coefficients and colors are used to scale the coefficients magnitude.

FIGURE 13 | Number of MACs used for bank filter implementation of the Haar

transform and applied to the residual images generated at 1,000 fps. The

three sequences results are represented by the three color clusters. Each dot

is plot as number of MACs vs. the number of non-zero pixel in one residual

image. The black curve is the mean number of MACs used for frames that

contain an increasing number of pixels that changed but randomly distributed

in space. Insets are showing pairs of images and the residuals.

to 1 for these two methods. To verify this, we count the
number of MACs required by the bank filter implementation of
the Haar transformation applied to image residuals generated
at 1, 000 fps. As detailed in the Appendix 0.3, the filter
bank implementation of the event-based Haar transform has
complexity O(k2) (where k = log2 n), and hence for N events,
the number of MACs for the transformation amounts to 2Nk2.
In practice this number is usually lower for image residuals
which contain spatially clustered pixels, which contribute in
updating the same coefficients at each higher wavelet scale.
Therefore the exact number of MACs per frame using this
image residuals approach depends on the considered video
sequence.

TABLE 1 | Ratio of MACs used for the Haar wavelet transform between the

event-based method and the filter bank method applied to images residual.

City traffic City day City night

Rr (@ 1000fps) 1.10 1.45 0.89

In Figure 13 we present a statistical assessment of the number
of MACs per frame required by the filter bank-based wavelet
transform applied on image residuals. Again, we consider the
three sequences, “city day,” “city traffic,” and “city night.” Each
of the three sequences is represented by a cluster of colored dots,
where each dot indicates the number of MACs used to transform
a given image residual of the corresponding sequence. Spatially
clustered pixels require less MACs per frame than spatially
decorrelated pixels, because neighbor coefficients are updating
the same coefficients at the next scale. This effect is more visible
for the “city traffic” sequence with a static camera facing the street
(green dots) as pixels that changed are large clusters generated by
cars passing in front of the camera.

The black curve in Figure 13 illustrates the number of MACs
per frame using the filter bank approach, where the changed
pixels are generated in random locations, uniformly across the
image. The random distribution of the pixels ensures that they
are spatially decorrelated, and hence maximizes the number of
MACs per frame. Thus the black curve serves as an upper bound
to the number of MACs required for the frame residuals-based
transform. The distance of a point to the black curve provides
a measure of the randomness of the spatial distribution of the
pixel changes in one frame. Points significantly below the curve
are characteristic of spatial clusters of updated pixels.

By the definition of the wavelet transformation, the
computation of the transformation coefficients at each scale is
local and depends on the length of the high-pass and low-pass
filters. At the beginning of the video sequences, background
pixels are updated almost randomly, and hence the number of
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MACs per frame is close to the black curve. However, otherwise
the trends are then different for static camera (“city traffic”)
and mobile ones (“city day” and “city night”). In the “city
traffic” sequence, residual images are due to spatial clusters of
pixels generated by cars and pedestrians, and hence the dots
corresponding to this sequence drift away from the black curve
as time increases, emphasizing a lower MACs consumption per
frame. In the other sequences, the background is also changing
and the pixels in the image residuals appear more randomly
distributed. Hence also the corresponding dots in Figure 13

are closer to the black curve. Insets in Figure 13 show samples
(graylevels and residuals) of the sequences, supporting the above
interpretation. We establish in Table 1 the new ratios for the
three sequences comparing the event-based transform and the
frame-residuals based transform. The new modified ratio is
defined as:

Rr =
N(log22(n)+ 3 log2(n)+ 2)

total of MACs used for the residuals
. (20)

The new ratios are closer to 1 when the transform is applied to
the image residuals, as is expected. Processing only the changes
between two successive frames can be seen as an extension of the
event-based approach to a sequence of frames. It is interesting
to observe that the “city night” sequence requires less MACs for
the event-based method than for the residual-frame method, but
the opposite is true for “city day.” This is an example on how the
scene statistics affect the complexities of different transformation
methods.

In this work we reformulated important linear basis
transformations used in signal processing into an iterative
form compatible with the event-based nature of signals
acquired by neuromorphic vision sensors. This event-based
formulation of the basis transformations is mathematically exact,
straightforward and encompasses the frame-based formulation.
The main advantages of this iterative form are the signal time
accuracy preservation and the minimal computation resource

requirement for updating the transform when changes occur
sequentially in the signal. Without need of building frames at
arbitrary frequency, this event-based form allow to calculate the
transformations without delay.

We have shown via natural recordings from the ATIS
the performances of the “on the fly” discrete Haar wavelet
transformation computation. Because the event-based signals
contain low redundancy, only relevant changes in the scene are
registered and processed to update the transformation output.
This is beneficial for low-power real-time computation, where
the computing resources can be used at maximal efficiency with
respect to the desired temporal resolution.

AUTHOR CONTRIBUTIONS

S-HI: Drafting the work or revising it critically for important
intellectual content. Agreement to be accountable for all aspects
of the work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated
and resolved. EL: Drafting the work or revising it critically for
important intellectual content. RB: Final approval of the version
to be published.

ACKNOWLEDGMENTS

This work received the support from the LABEX LIFESENSES
[ANR-10-LABX-65], managed by the French state funds (ANR)
within the Investissements dAvenir program [ANR-11-IDEX-
0004-02]. It also received financial support from the EU Project
[644096-ECOMODE] and the Academy of Finland (277383).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00373/full#supplementary-material

REFERENCES

Andreopoulos, Y., and van der Schaar, M. (2008). Incremental refinement of

computation for the discrete wavelet transform. IEEE Trans. Signal Process. 56,

140–157. doi: 10.1109/TSP.2007.906727

Perez-Carrasco, J. A, Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing–application

to feedforward convnets. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Baas, B. (1999). A low-power, high-performance, 1024-point fft processor. IEEE J.

Solid State Circ. 34, 380–387. doi: 10.1109/4.748190

Benosman, R., Ieng, S., Clerq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Trans Neural Netw. Learn.

Syst. 27, 32–37. doi: 10.1016/j.neunet.2011.11.001

Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic

chips using address-events. IEEE Trans. Circ. Syst. 47, 416–434.

doi: 10.1109/82.842110

Candes, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information. IEEE

Trans. Inform. Theory 52, 489–509. doi: 10.1109/TIT.2005.862083

Carneiro, J., Ieng, S.-H., Posch, C., and Benosman, R. (2013). Asynchronous event-

based 3d reconstruction from neuromorphic retinas. Neural Netw. 45, 27–38.

doi: 10.1016/j.neunet.2013.03.006

Cooley, J. W., and Tukey, J. W. (1965). An algorithm for the machine

calculation of complex fourier series. Math. Comput. 19, 297–301.

doi: 10.1090/S0025-5718-1965-0178586-1

Daubechies, I. (1992). Ten Lectures on Wavelets. New Jersey: Society for Industrial

and Applied Mathematics.

Daubechies, I., and Sweldens, W. (1996). Factoring wavelet transforms into lifting

steps. J. Fourier Anal. Appl. 4, 247–269. doi: 10.1007/BF02476026

Edwards, T., and Cauwenberghs, G. (1995). “Analog vlsi processor implementing

the continuous wavelet transform,” in Advances in Neural Information

Processing Systems 8, eds D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo

(MIT Press), 692–698.

Ieng, S.-H., Posch, C., and Benosman, R. (2014). Asynchronous

neuromorphic event-driven image filtering. Proc. IEEE 102, 1485–1499.

doi: 10.1109/JPROC.2014.2347355

JPEG2000 (2017).Video Codec. Available online at: http://www.analog.com/media/

en/technical-documentation/data-sheets/ADV202.pdf

Kogler, J., Humenberger, M., and Sulzbachner, C. (2011). “Event-based stereo

matching approaches for frameless address event stereo data,” in Proceedings

Frontiers in Neuroscience | www.frontiersin.org 12 June 2018 | Volume 12 | Article 373

https://www.frontiersin.org/articles/10.3389/fnins.2018.00373/full#supplementary-material
https://doi.org/10.1109/TSP.2007.906727
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1109/4.748190
https://doi.org/10.1016/j.neunet.2011.11.001
https://doi.org/10.1109/82.842110
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1016/j.neunet.2013.03.006
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1007/BF02476026
https://doi.org/10.1109/JPROC.2014.2347355
http://www.analog.com/media/en/technical-documentation/data-sheets/ADV202.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADV202.pdf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ieng et al. Iterative Basis Transformations

of the 7th International Conference on Advances in Visual Computing

(Las Vegas).

Lazzaro, J., and Wawrzynek, J. (1995). “A multi-sender asynchrounous extension

to the aer protocol,” in Conference on Advanced Research in VLSI

(Chapel Hill).

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 dB 15 µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ.

43, 566–576. doi: 10.1109/JSSC.2007.914337

Lin, Y.-W., Liu, H.-Y., and Lee, C.-Y. (2005). A 1-gs/s fft/ifft processor for uwb

applications. IEEE J. Solid State Circ. 1726–1735.

Mahowald, M., and Mead, C. (1991). The silicon retina. Sci. Am. 264, 76–82.

doi: 10.1038/scientificamerican0591-76

Mahowald, M. A. (1992). VLSI Analogs of Neuronal Visual Processing: A Synthesis

of Form and Function. Ph.D., thesis, California Institute of Technology.

Mallat, S. (1989). A theory of multiresolution signal decomposition: the wavelet

representation. Trans. Pattern Anal. Mach. Intell. 11, 674–693.

Ni, Z., Ieng, S.-H., Posch, C., Régnier, S., and Benosman, S. R. (2015). Visual

tracking using neuromorphic asynchronous event-based cameras. Neural

Comput. 27, 925–953 doi: 10.1162/NECO_a_00720

Ni, Z., Pacoret, C., Benosman, R., Ieng, S., and Regnier, S. (2011). Asynchronous

event-based high speed vision for microparticle tracking. J. Microsc. 243,

236–244. doi: 10.1111/j.1365-2818. 2011.03565.x

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., and an R. Benosman,

N. T. (2015). Hfirst: a temporal approach to object recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 9, 1–12. doi: 10.1109/TPAMI.2015.2392947

Orchard, G., Zhang, J., Suo, Y., Dao, M., Nguyen, D., Chin, S., et al. (2012). Real

time compressive sensing video reconstruction in hardware. J. Emerg. Select.

Top. Circ. Syst. 2, 604–615. doi: 10.1109/JETCAS.2012.2214614

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A qvga 143 db

dynamic range frame-free pwm image sensor with lossless pixel-level video

compression and time-domain cds. IEEE J. Solid State Circ. 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Reverter-Valeiras, D., Lagorce, X., CLady, X., Bartolozzi, C., Ieng, S., and

Ben, R. (2015). An asynchronous neuromorphic event-driven visual part-

based shape tracking. Trans. Neural Netw. Learn. Syst. 26, 3045–3059.

doi: 10.1109/TNNLS.2015.2401834

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition

in cortex. Nat. Neurosci. 2, 1029–1025. doi: 10.1038/14819

Rogister, P., Benosman, R., Ieng, S., Lichtsteiner, P., and Delbruck, T. (2011).

Asynchronous event-based binocular stereo matching. IEEE Trans. Neural

Netw. 23, 347–353. doi: 10.1109/TNNLS.2011.2180025

Sejdic, E., Djurovic, I., and Jiang, J. (2009). Time-frequency feature representation

using energy concentration: an overview of recent advances. Digit. Signal

Process. 19, 153–183. doi: 10.1016/j.dsp.2007.12.004

Sweldens, W. (1996). The lifting scheme: a custom-design construction

of biorthogonal wavelets. Appl. Comput. Harm. Anal. 3, 186–200.

doi: 10.1006/acha.1996.0015

Uzun, I., Amira, A., and Bouridane, A. (2005). Fpga implementations of fast fourier

transforms for real-time signal and image processing. IEEE Proc. Vision Image

Signal Process. 152, 283–196. doi: 10.1049/ip-vis:20041114

Vaswani, N. (2008). “Kalman filtered compressed sensing,” in IEEE International

Conference on Image Processing (San Diego, CA), 893–896.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Ieng, Lehtonen and Benosman. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 June 2018 | Volume 12 | Article 373

https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1038/scientificamerican0591-76
https://doi.org/10.1162/NECO_a_00720
https://doi.org/10.1111/j.1365-2818. 2011.03565.x
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/JETCAS.2012.2214614
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/TNNLS.2015.2401834
https://doi.org/10.1038/14819
https://doi.org/10.1109/TNNLS.2011.2180025
https://doi.org/10.1016/j.dsp.2007.12.004
https://doi.org/10.1006/acha.1996.0015
https://doi.org/10.1049/ip-vis:20041114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Complexity Analysis of Iterative Basis Transformations Applied to Event-Based Signals
	1. Introduction
	1.1. Event-Based imaging
	1.2. Event-Based Signal Processing

	2. Materials and Methods
	2.1. Event-Based Basis Transformation
	2.1.1. General Formulation
	2.1.2. Event-Based Linear 2D Transform
	2.1.3. Clusters of Events

	2.2. Important 2D Transforms
	2.2.1. Fourier-Related 2D Transforms: Discrete Fourier and Cosine Transforms
	2.2.1.1. Discrete Fourier Transform (DFT)
	2.2.1.2. Discrete Cosine Transform (DCT)

	2.2.2. 2D Discrete Wavelet Transforms
	2.2.2.1. Haar Wavelet Transform
	2.2.2.2. General Wavelet Transform



	3. Results
	4. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


