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Asynchronous event-based sensors, or “silicon retinae,” are a new class of vision sensors

inspired by biological vision systems. The output of these sensors often contains a

significant number of noise events along with the signal. Filtering these noise events

is a common preprocessing step before using the data for tasks such as tracking

and classification. This paper presents a novel spiking neural network-based approach

to filtering noise events from data captured by an Asynchronous Time-based Image

Sensor on a neuromorphic processor, the IBM TrueNorth Neurosynaptic System. The

significant contribution of this work is that it demonstrates our proposed filtering algorithm

outperforms the traditional nearest neighbor noise filter in achieving higher signal to noise

ratio (∼10 dB higher) and retaining the events related to signal (∼3X more). In addition,

for our envisioned application of object tracking and classification under some parameter

settings, it can also generate some of the missing events in the spatial neighborhood of

the signal for all classes of moving objects in the data which are unattainable using the

nearest neighbor filter.

Keywords: TrueNorth, neuromorphic vision, noise filtering, event based camera, silicon retina, neural network

1. INTRODUCTION

Inspired by the efficient operation of biological vision, research on neuromorphic event-based
image sensors, or “silicon retinae,” took off a few decades back (Mahowald and Mead, 1991).
Recently, the technology has matured to a point where the sensors are commercially available.
Dynamic Vision Sensor (DVS) (Lichtsteiner et al., 2008), Asynchronous Time-based Image Sensor
(ATIS) (Posch et al., 2011), the sensitive DVS (Leñero-Bardallo et al., 2011), and the Dynamic and
Active pixel Vision Sensor (DAVIS) (Berner et al., 2013) are some of the popular Address Event
Representation (AER) change detection sensors that can be employed for various applications.
Unlike conventional image sensors that operate by sampling the scene at a fixed temporal rate
(typically between 30 and 60 Hz), these sensors employ level crossing sampling pixels which
asynchronously and independently signal an event if sufficient temporal contrast is detected
(Posch et al., 2014). This results in a higher dynamic range, lower data rate and lower power
consumption compared to frame based imagers. Several possible applications of these sensors have
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been investigated including traffic monitoring (Litzenberger
et al., 2006), stereovision (Rogister et al., 2012), high speed
sensory-motor loops (Delbruck and Lang, 2013), motion
estimation (Orchard and Etienne-Cummings, 2015) and pose
estimation (Valeiras et al., 2016).

However, most works on processing the events generated
by silicon retina are performed on FPGA or microcontrollers
resulting in lower power efficiency of the whole system than
that afforded by the sensors. Hence, interfacing these sensors
with low-power neuromorphic processors would benefit the
development of low power systems that could potentially be
deployed in wearables or as sensors in the Internet of Things
(IoT). Several low power neuromorphic processors have been
proposed in recent years (Painkras et al., 2013; Benjamin et al.,
2014; Chen et al., 2016) and some of them have been interfaced
with spiking image sensors (Orchard et al., 2015). However, the
power dissipation of these systems are still an order of magnitude
more than that required for a wearable device. On the other hand,
the TrueNorth processor developed by IBM (Merolla et al., 2014)
has both the low power footprint and the large neuron count
available on a single chip required to interface with image sensors.
It processes spiking data in real-time with a fixed 1 kHz clock
using distributed memory kept locally in each core instead of
one central location. TrueNorth consumes very low power of
approximately 50–70 mW for typical networks and results in a
good combination of power efficiency and configurability. As a
consequence, there have been recent reports of interfacing the
TrueNorth with “silicon retinae” to create real-time low-power
vision applications (Amir et al., 2017).

In keeping with the above trend, we propose in this work
a set of noise filtering primitives that may be used as a pre-
processing block for event-based image processing applications
on TrueNorth. The concepts presented in this paper can also
be used to implement noise filtering for silicon retinae on
other embedded hardware platforms. In this work, we focus
on the case of a static camera observing a scene such as in a
surveillance scenario. Noise filtering algorithms such as nearest
neighbor for event-based imagers presented in the literature
exploit the temporal correlation associated with activity across
the neighborhood pixels (Dominguez-Morales, 2011; Ieng et al.,
2014; Linares-Barranco et al., 2015; Liu et al., 2015; Czech and
Orchard, 2016). Though these filters capture the activity of the
fast moving objects, they typically filter out the activity by the
small and slow-moving objects due to weak temporal support.
The spiking neural network based noise filter proposed in this
paper is shown to work better than other popular filters in
this respect and preserve a large fraction of activity associated
with the signal (and sometimes generate more events than
input) while filtering out most of the noise events which is
beneficial to object tracking and classification in our envisioned
applications.

This paper is structured as follows. In section 2, we describe
the ATIS setup used in our experiments as well as the nature
of data recorded. Section 3 provides an overview of TrueNorth,
while in section 4, we introduce the noise filtering approaches.
We present the implementation of the noise filter on TrueNorth
in section 5 and the results of the experiments are presented in

section 6. Finally, we conclude the paper with some discussions
about future work in section 7.

2. ASYNCHRONOUS EVENT BASED IMAGE
SENSOR (ATIS)

Unlike the traditional frame-based computer vision sensors
which capture the absolute light intensity information (grayscale
or color pixel values) at constant time intervals (frame-period),
AER change detection image sensors operate by detecting when
and where the intensity changes are occurring in the scene. In
this work, we use ATIS which has a resolution of 304 × 240
= 72,960 pixels.The output of the ATIS data is represented in
the form of a stream of events in the AER format. In the AER
format, the kth event, ek, consists of the physical address (xk,yk)
of the pixel which generated the event, time stamp, tk, of the event
(in microseconds) and the polarity, pk, representing whether the
intensity change is in positive or negative direction, i.e., pk ∈
{1,−1}. In the mathematical form of this event, ek is represented
as follows:

ek = (xk, yk, tk, pk) (1)

The description of event generation mechanism, in-depth details
and the working of the internal circuitry of various event-based
sensors is presented in Posch et al. (2014).

2.1. ATIS Data
The ATIS setup at a traffic junction used to acquire AER data of
the moving objects on the road from the side view is shown in
Figure 1A. The moving entities in the data fall into six categories:
(1) Car, (2) Bus, (3) Van, (4) Pedestrian (Human), (5) Bike, and
(6) Truck. There are 9 sample recordings of varying duration and
a varying number of these objects, capturing the movement of
pedestrians and vehicles on the road in the field of view from
this camera setup and at a fixed distance of approximately 50 m.
Each recording has a different amount of daylight starting from
the first recording at 6:00 p.m. to the last one at around 7:15
p.m. Comprehensive details of these recordings are provided in
Tables 1, 2.

The screenshots of the ATIS video output at various time
instances from the four different recordings are presented in
Figure 1B. These screenshots provide a glimpse of how objects
were captured by the ATIS with varying background activity over
time. We can also notice from the ATIS setup in Figure 1A and
the screenshots of the recordings in Figure 1B that the activity
of the objects captured primarily lies in the middle of the scene
along the horizontal direction where objects are moving from
right to left and left to right. For visual clarity, each object of
interest in those screenshots is shown with a particular label/class
number and color of the tracker it belongs to as mentioned in
Table 2.

Annotation files for all the recordings were generated
manually by observing the video outputs. They capture
information about the track of each object in these recordings
belonging to a particular class. The tracker (or the bounding box)
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FIGURE 1 | Data Recording from the ATIS setup. (A) ATIS setup to record the moving vehicles and (B) Four Screenshots at (i) 111.78 s from 6:00 p.m. recording, (ii)

39.67 s from 6:30 p.m. recording, (iii) 34.29 s from 6:50 p.m. recording and (iv) 34.48 s from 7:15 p.m. recording showing the moving objects captured by the ATIS in

(A) in the scene with six different types of objects (1) Car (Red), (2) Bus (Yellow), (3) Van (Green), (4) Human (Cyan), (5) Bike (Blue), and (6) Truck (Pink) indicated with

respective label number and color tracker mentioned in Table 2.

of varying size surrounding the object is devised to encapsulate
the event stream generated for each moving object track. Using
the information of each tracker in the scene from the acquired
data and the annotation files, we summarized the details of
bounding box size and average events captured in each class of
objects in the recordings in Table 2.

2.2. Data Characteristics
From Table 1, it can be seen that the recordings fall under
three groups depending on the frequency of object occurrence
in the scene. The first group consists of most frequent appearing

objects, which in our case is cars. The second group is buses,
pedestrians and bikes whose frequency of appearance is less
compared to that of cars. The last group is Van and Truck that
appear even fewer times. These recordings have a number of
non-idealities typically present in outdoor scene recordings. The
characteristics of the events generated by the fast moving objects
like a car, bus and bike differ significantly from the slow moving
pedestrians. Often, it is challenging to preserve the activity of
the slow moving pedestrians compared to the background noise
during the noise filtering . Also, compactness of the vehicle (bike),
contrast of the moving vehicle across its length (bus), shape of the
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TABLE 1 | Details of the traffic data recorded using ATIS.

Recording start time Recording length (s) Tracks Car Bus Van Human Bike Truck Average noise activity

[(events per

pixel)/sec]

6:00 p.m. 113.4332 33 19 2 1 6 2 3 0.2760

6:10 p.m. 149.2754 46 29 4 0 11 2 0 0.2996

6:30 p.m. 123.6664 35 16 4 0 14 0 1 0.3755

6:35 p.m. 153.8343 38 27 2 1 6 2 0 0.3933

6:45 p.m. 138.3563 41 29 4 2 3 3 0 0.6463

6:50 p.m. 90.2431 38 26 0 3 3 6 0 0.7881

7:00 p.m. 117.7797 35 19 4 5 2 5 0 1.5035

7:05 p.m. 92.3087 23 14 1 0 7 1 0 1.6560

7:15 p.m. 143.4216 40 32 1 2 5 0 0 1.8294

TABLE 2 | Details of each class of object present in the traffic data files.

Label No 1 2 3 4 5 6

Tracker color Red Yellow Green Cyan Blue Magenta

Class Car Bus Van Pedestrian Bike Truck

Total objects in each class 211 22 14 57 21 4

Range of tracker width

(in pixels) 40–95 90–200 50-110 8-26 15–42 65–150

Range of tracker height

(in pixels) 16–35 26–125 20-45 12-36 16–35 30–60

Average tracker width

(in pixels) 62 142 68 16 29 112

Average tracker height

(in pixels) 24 54 32 22 26 47

Avg. no of events/track 69,942 364,738 145,969 36,795 38,820 169,805

Total events in each class 14,757,904 8,024,246 2,043,578 2,097,337 815,226 679,222

Total track time (in sec) 83.3188 11.0117 6.8088 112.8199 7.6030 1.7351

Spike rate (spikes/sec) 177,130 728,700 300,140 18,590 107,220 391,450

Average Area of tracker

(average no. pixels) 1,488 7,668 2,176 352 754 5,264

Spike rate per pixel

(per second) 119 95 138 53 142 74

vehicle (Van vs. Car and Bus vs. Truck) are some of the factors
which determine how the moving object is captured in these
recordings. These recordings also have a tree and two electric
poles which occlude some part of the vehicle while moving
through that location.

2.3. Signal and Noise Definitions
In this study, since our interest lies in extracting the moving
objects, Signal is defined as the events captured in each
tracker/bounding box surrounding the moving object. Noise
is considered as the events or activity present outside this
tracker/bounding box. Any noise filter acts on both the signal
events which captures the moving object and the noise events
present outside the bounding box of the object tracker. The task
of filtering away the unwanted noise outside the tracker is an
important pre-processing step in order to extract the objects for
the classification task. A good filter retains most of the signal

and removes most of the noise events present outside the tracker
effectively after the filtering.

The sensor not only captures the change in the light intensity
at a location due to moving objects but also produces some
noise activity throughout the scene at various pixels due to
the movements of background objects like trees and also due
to the sensor noise. The presence of this noise activity in the
background is a challenge for extracting objects for tracking.
Depending on the time of recording, as illumination reduces,
the relative strength of background activity increases as shown
in Figure 1B and last column of Table 1. In the rest of the paper,
we describe a neural network and its hardware implementation
to filter out noise in scenes with such a variety of objects.

2.4. Evaluation Metric
In order to quantify the noise filtering performance using the
algorithms detailed in section 4 and their implementation on
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TABLE 3 | Definition and notation of the variables used in the metrics calculation.

Variable name Notation

Total no. of events inside all the trackers of sample data

before filtering

Eo
Signal

Total no. of events outside all the trackers of sample data

before filtering

Eo
Noise

Total no of events inside all the trackers of sample data

after applying the filter

Ef
Signal

Total no of events outside all the trackers of sample data

after applying the filter

Ef
Noise

Total events inside all trackers of a particular class for all

data files before applying the filter

Eo
class

Total events inside all trackers of a particular class for all

data files after applying the filter

Ef
class

TrueNorth described in section 5 (Table 3), we first define the
following terms and the metrics below to compute them on the
unfiltered and filtered data.

• Percentage of Signal Remaining

The percentage of signal remaining after filtering, PSRf , is defined
as the number of the signal events after filtering with respect to
the original number of signal events before filtering, i.e.,

PSRf =
E
f

signal

Eo
signal

× 100 (2)

• Percentage of Noise Remaining

The percentage noise remaining after filtering, PNRf , is defined
as the number of noise events post-filtering as a percentage of
number of noise events pre-filtering, i.e.,

PNRf =
E
f
Noise

EoNoise
× 100 (3)

• Signal to Noise Ratio

Signal to Noise Ratio before filtering:

SNRo = 10× log10(
Eo
Signal

EoNoise
)in Decibels (4)

Signal to Noise Ratio after filtering:

SNRf = 10× log10(
E
f

Signal

E
f
Noise

) in Decibels (5)

• Percentage of Average number of Events remaining Per

Class

The percentage of average number of events remaining after

filtering per class, EPC
f

class
, is defined as the percentage of the

total no of events after filtering of a particular class of object
with respect to the original number of events of that class before
filtering, i.e.:

EPC
f

class
=

E
f

class

Eo
class

× 100 (6)

3. TRUENORTH: AN OVERVIEW

The IBM TrueNorth in Figure 2A is a neuromorphic chip with
a multicore array of programmable connectivity, synapses and
neurons parameters. In our experiment, we used the IBM NS1e
board, which contains 4,096 cores, 1 million neurons, and 256
million synapses. TrueNorth has been employed for various
convolutional neural network based deep learning applications
and serves as ideal hardware for the task of filtering as well.

3.1. TrueNorth Architecture
TrueNorth chip architecture is organized into programmable
neurosynaptic cores and each core consists of 256 incoming input
lines mapped to 256 output neurons using a synaptic crossbar
as shown in Figure 2B. The crossbar matrix has 256 × 256
programmable synapses and their strength is determined by the
corresponding neurons to which they are connected. There are
four different axon types that can be assigned to each core’s axons,
where each core neuron must have identical synaptic weights
for synapses connected to axons of the same type. Each synaptic
weight is a signed 8-bit value. Each output neuron can connect
to the other neurons by projecting its axon (output) to a single
input line at the same core or at a different core. Data flow is
mediated through spikes either from axons to all the neurons on
the same core through binary gate synapses in the crossbar or
the neuron itself connects to an axon on the same or a different
core. This architecture supports a maximum of 256 incoming
axonal inputs for each output neuron and also each input axon
can send that input to 256 output neurons on the same core.
IBMprovides a Corelet Programming Environment (CPE) (Amir
et al., 2013) that enables the user to build algorithms that can later
be implemented on TrueNorth hardware very effectively. To test
various parameters of the axons, neurons and synaptic crossbar
connections between axons and neurons, we need to construct a
corelet that encapsulates these synaptic cores and their inter-core
connectivity. Details of the corelet abstraction and programming
are given in Amir et al. (2013)

3.2. TrueNorth Neuron Model
The TrueNorth neuron model is a variation of the “integrate
and fire” neuron model with 23 parameters to produce rich
neuronal dynamics. The salient features of the membrane
potential dynamics of the TrueNorth neuron relevant to this
study are captured in Equations (7) and (8).

The update of the neuron membrane potential or the state
variableVj(t+1) of an output neuron j in the next time step (t+1)
is evaluated by summating the product of incoming synaptic
input Si(t) from each input axon i with the corresponding
synaptic weights wi and adding leak parameter λj, and updating
in the next time step (t + 1) according to the Equation (7).
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FIGURE 2 | (A) IBM TrueNorth chip on NS1e board. (B) Each TrueNorth chip has 4,096 cores and each core has 256 input axons, 256 output neurons and 256 ×
256 synapses in the connection matrix. Figure adapted from Esser et al. (2016).

After the update, if the membrane potential exceeds the threshold
αj of the neuron, then the neuron generates a spike output
OutSpikej(t + 1) (1 for ON and 0 for OFF). After the spike

generation, the membrane potential Vj(t + 1) resets to reset
potential Rj as summarized in Equation (8):

Vj(t + 1) = Vj(t)+
∑

i

Si(t)wi + λj (7)

if Vj(t + 1) ≥ αj,OutSpikej(t + 1) = 1 & Vj(t + 1)← Rj

(8)

For comprehensive details about the nomenclature and range of
the variables, and various reset mechanisms that are available for
TrueNorth neuron model, please refer to Cassidy et al. (2013).

4. NOISE FILTERING APPROACH IN
SOFTWARE AND ON TRUENORTH

Noise in the data from the ATIS recordings has two broad
characteristics: (1) high-frequency burst events occur at around
0.7% of the total pixels and (2) low-frequency random events
occur throughout the scene. To eliminate both types of noise
events, we use a two-layer filtering approach both in software
and on TrueNorth as shown in Figure 3. The filtering in software
is done to compare the evaluation metrics on the filtered data
from software to the filtered data on TrueNorth. This helps
us understand the advantage of filtering on TrueNorth both
qualitatively and quantitatively. In the first layer filtering on both
software and TrueNorth, a refractory period is introduced in the
data and the details are discussed in sections 4.1 and 5.1.

There are multiple noise filtering methods for event-based
data available in the literature and the Nearest Neighbor (NNb)
filter (Dominguez-Morales, 2011; Ieng et al., 2014; Linares-
Barranco et al., 2015; Liu et al., 2015) is the most commonly

employed filtering method among the other approaches like
differing polarity, refractory period and inter-spike interval
(Czech and Orchard, 2016). Because the focus of our task is to
extract the moving objects and remove the background activity,
we look at the NNb filter, which captures the activity of the
moving object more aptly. For the second layer filtering on
software, the NNb filter is implemented in MATLAB and the
description of the algorithm is presented in section 4.2.

For the second layer filtering on TrueNorth, our proposed
Neural Network-Based Nearest Neighbor (NeuNN) filtering
algorithm, detailed in section 4.3, is used after applying the
particular refractory period as the first layer filtering. The NeuNN
filtering algorithm is inspired by the Nearest Neighbor filter in
Czech and Orchard (2016) and combined with image smoothing
operations in conventional image processing (Gonzalez and
Woods, 2008). It has been adapted for the TrueNorth hardware
to filter the noise from event-based data in real time and the
implementation details are discussed in section 5.2.

4.1. Layer 1: Refractory Period Filter
Algorithm
The concept of refractory period draws inspiration from
neuronal physiology where a neuron or a cell does not exhibit
an immediate response to the stimulus after an action potential
and takes a particular duration of time called the “refractory
period,” to recover its resources to the normal resting state after
an excitation. The refractory period limits the highest frequency
of the neuronal spiking and thereby the maximum firing rate.

In the data under study, there are multiple pixels with
abnormal firing rates due to the sensor leakage currents at
some of the pixels, thus creating high-frequency burst events
at these pixels. By applying the refractory period, we introduce
a minimum time difference between two consecutive events
at a particular pixel and this helps remove the high-frequency
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FIGURE 3 | Two layer filtering approaches in software and TrueNorth. The first layer introduces refractoriness and reduces the firing rate of repeatedly firing pixels

while the second layer eliminates random noise as they do not have sufficient spatio-temporal support.

sensor noise events more effectively in the next layer on both
the NNb filter in software and the NeuNN filter in TrueNorth.
The algorithm for applying the refractory period Tref on the
event-based AER data from the ATIS is as follows.

Let the current event received from the image sensor be
denoted by e = (x, y, t, p) and let Tlast

(x,y)
be the time stamp of the

last input event at location (x, y), independent of polarity that is
passed by this filter to the output. Let 1T(x,y) denote the time
since the last valid event at the location (x, y) as given by the
following equation:

1T(x,y) = t − Tlast
(x,y) (9)

Then, the current event is passed by the filter to the output if and
only if the following condition is met:

1T(x,y) > Tref (10)

Otherwise, this event is rejected and does not pass through the
filter output.

4.2. Layer 2 on Software: Nearest Neighbor
(NNb) Filter
As the name suggests, whenever the mth event e(x,y)

m occurs
at any particular location (x, y), with the time stamp Tm

(x,y)
,

the Nearest Neighbor (NNb) filter considers the time stamp
Tm
NNb(x,y)

, of most recent neighborhood event em
NNb(x,y)

, excluding

the current pixel at (x, y) and within a particular distance D(x,y)

surrounding this pixel (x, y) in all directions (horizontal, vertical
and diagonal). The event is passed through the NNb filter if
the time difference between Tm

(x,y)
and Tm

NNb(x,y)
is less than the

programmable threshold TNNb, i.e.:

if Tm
(x,y) − Tm < TNNb, then event e(x,y)

m at (x, y) will be passed

(11)
The filtered event signifies that the event is associated with
neighborhood activity and it is likely related to themoving object.
If the time difference is greater than the threshold, then it is more
likely that this is a noise event and eliminated through this filter.
We will strictly consider the above described NNb filter with
distanceD(x,y) ≤

√
2 (i.e., surrounding eight neighborhood pixels

around (x, y).

4.3. Layer 2 on TrueNorth: Neural Network
Based Nearest Neighbor (NeuNN) Filter
As the name suggests, the filter considers the activity or events
occurring at that particular pixel location (x, y) including the
activity at the neighborhood pixels surrounding this pixel (x, y).
This activity is summed on to a neuron and the output of
the activity is determined based on the configuration of the
neuronal parameters. The summation of the synaptic activity
is combined with the leak and the membrane voltage of the
neuron in the previous time step using the neuronal dynamics
Equations (7) and (8) given in section 3.2. This summation is
compared with the threshold and if it is greater than or equal to
the threshold, then the neuron fires a spike. The output of this
neuron corresponds to the filtered output of this pixel.

5. IMPLEMENTATION OF NOISE FILTER ON
TRUENORTH HARDWARE

5.1. Layer 1: Introducing Refractory Period
Using the Neurons on TrueNorth Cores
As described in section 4.1, the refractory period layer
incorporates a minimum time difference between the successive
events at any pixel location before passing through the NeuNN
filter. Each pixel needs three input axons and three output
neurons available on the core of the TrueNorth to stream events
for the refractory period function. The connectivity mapping and
neuronal parameters specified in Figure 4A are used to create the
refractory period operation on each input pixel. The output of
the neuron labeled 2 produces the spike output with the desired
refractory period by configuring the weight of neuron 0. The
parameters for neurons 1 and 2 are identical thereby generating
multiple copies of the neuronal output. The operation of this
circuit may be described as follows: at the start when there is
a spike input coming from axon 0, neurons 1 and 2 produce
spikes, thereby allowing the first input spike to appear at the
output. When there is no spike input, neuron 0 emits a spike
every millisecond due to the leak value (+1), threshold value
(1) and reset value (+1). However, when there is feedback input
coming from the neuron 1 output and it has a negative weight of
−(Tref − 1), it brings down the membrane potential and inhibits
the spike, thus providing parameter control to set the desired
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FIGURE 4 | (A) Connectivity mapping for refractory neuron function along with the neuronal parameters. (B) Statistics of the ISI for both signal and noise events show

many noise events at ISI between 1 and 10 ms, whereas signal events mostly have ISI higher than 10 ms. This is used to choose a refractory period value in the range

of 3–5 ms.

refractory period. Because there are 256 input axon lines and 256
output neurons in each core, up to 85 pixel inputs can be mapped
to each core taking a block of three axons and three neurons for
each pixel. To map all the data coming from all pixels of ATIS at
least a total of 859 (304× 240/85) cores are required.

To decide the appropriate setting for Tref , we have plotted
the inter-spike interval (ISI) histogram (Figure 4B) for both
signal and noise events. To do this, signal events were extracted
based on annotated tracks of valid objects in the scene while
noise events correspond to those occurring outside these marked
bounding boxes. It can be seen from Figure 4B that there is as
many noise events with ISI < 10 ms, whereas most signal events
are at ISI > 10 ms. To suppress these frequently occurring
noise events, a refractory period between 3 and 5 ms seems an
appropriate choice.

Based on the above analysis, the refractory period Tref of
5 ms is used at the first layer of processing the data both on
software and TrueNorth, before applying either of the second
layer filters such as NNb and NeuNN on software and TrueNorth
respectively. There are a total of 96,232,414 events in all the
recordings combined and after passing the entire data set through

the refractory layer, there is a loss of around 86.6 % of the original
events and a total of 12,909,503 events (around 13.4 % of the
original events) were retained for the second layer of filtering.
The effect of the refractory period on the hardware adaptation
of the refractory period layer on TrueNorth is identical to the
software implementation with respect to the filtered events and
discussed in detail in section 6.

5.2. Layer 2: Applying NeuNN Filter Using
the Neurons on the TrueNorth Cores
To map data coming from the ATIS in a regular fashion to
each TrueNorth core, we divide the entire frame (304 × 240)
into patches of size 12 × 12. Each patch from this is mapped
to each core in TrueNorth and this mapping requires a total of
520 cores for mapping all pixels of the ATIS. In this example,
we use a 3 × 3 filter size, i.e., for the output neuron at location
(i, j), we connect it with input pixel (i, j) and its eight neighboring
pixels. However, the method we describe has also been used to
implement 5×5 or 7×7 filters. All the neurons in this filter use the
same parameters of positive and negative reset= 0 and leakmode
= 0. For design space exploration, the weightw is fixed during the
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TABLE 4 | Effect of varying parameter TNNb in the NNb filter on Filtering Metrics.

TNNb (ms) PSRf PNRf SNRf

0.5 11.97 0.09 20.17

1 21.54 0.18 19.74

2 35.36 0.35 19.02

3 44.38 0.51 18.32

4 50.42 0.68 17.69

5 54.49 0.83 17.12

simulation while the other two neural parameters of threshold, α
and leak, λ are varied to find optimal parameter sets. This is done
because only relative values of (α/w) and (λ/w) determine the
neuronal dynamics and, hence, filtering performance. The details
of ATIS input pixels mapping to TrueNorth core are provided in
Appendix in Supplementary Material.

6. RESULTS AND DISCUSSION

6.1. Layer 2 Filter Parameter Optimization
6.1.1. Software Filter (NNb)

For the NNb filter, we swept the value of TNNb in the range
of 0.5–5 ms to observe the effect it has on the three metrics
PSRf , PNRf and SNRf (in dB). The result of this exploration (on
recording at 6:30 p.m.) is shown in Table 4. From Table 4, we can
see that SNRf (in dB) is highest for the smallest value of TNNb

due to the very small amount of remaining noise. However, at
this setting, the amount of signal remaining PNRf is also very
low, and in practice, we need a balance between SNRf (in dB)
and PSRf . Hence, in practice, it is better to use values of TNNb in
the range of 1–3 ms. In the rest of the simulations in this paper,
we use TNNb = 1 ms.

6.1.2. TrueNorth Filter (NeuNN)

The NeuNN network is configured with a single type of synapse
with synaptic weight w for all the synapses and one neuron type
with threshold α and leak λ for all the neurons. The design
space exploration is carried out with ratio of threshold/weight,
(α/w) and leak/weight, (λ/w) ranging from [1–3] and [0.150–
0.7], respectively with a fixed synaptic weight. The filtering
metrics presented in section 2.4 are used to study the effect
of TrueNorth neuron parameters and the results are plotted in
Figure 5.

From Figure 5A, the signal remaining after filtering increases
with the decrease of both (α/w) and (λ/w) and it can be higher
than 100%. The reason for this is that the output neurons
are receiving inputs from all the neighboring pixels within a
particular distance and when (α/w) and (λ/w) is low, the filter
spikes very often, resulting in more output events than input
events for the signal. Therefore, instead of any signal loss that
typically happens after using traditional filtering methods, we
can observe a tremendous amount of signal gain for certain
parameter ranges of the NeuNN filter. This behavior can be
explained by thinking of NeuNN in this parameter range
as a spatiotemporal version of the dilation operator used in

traditional image processing (Gonzalez and Woods, 2008). From
Figure 5B, we can see that the noise remaining after filtering
is also affected similarly as signal remaining with both (α/w)
and (λ/w). Because the objective of this filtering is to keep the
noise as low as possible without compromising too much on the
signal, we a have a window of parameter space, where (α/w) and
(λ/w) can be configured. It can be seen from Figure 5C that the
signal to noise ratio (SNR) increases with both increasing (α/w)
and (λ/w). Choosing the parameters of the filter cannot depend
on the high SNR (which is due to the reduction in the noise)
alone; the signal remaining and noise remaining both need to be
considered in conjunction with the requirements of the following
processing steps (Tracking–prefers as low noise as possible and
Classification–prefer high amount of signal). We chose two sets
of parameters: (1) (α/w) = 2 and (λ/w) = 0.33, and (2) (α/w)
= 2.5 and (λ/w) = 0.583 where the first set results in higher
PSRf than NNb filter (due to the dilation like behavior described
earlier) while the second set results in similar PSRf as NNb filter.
The results in the paper are reported for parameter set 1 by
default while we specifically mention when parameter set 2 is
used.

6.2. Qualitative Comparison of Both
Filtering Approaches
From Figure 6, the refractory layer reduces high-frequency
temporally localized noise while layer 2 removes spatially spread
noise. NeuNN also retains more signal events than the NNb
filter. We can notice that the refractory layer significantly reduces
the high-frequency noise pixel in yellow.We can also notice the
missing activity due to the occlusion of objects and there is a small
region of dead pixels (around 8–10 pixels) toward of the right of
the frame and the activity is not possible to be removed by both
the filters.

Figure 7 that NeuNN retains many more signal events while
keeping slightly more noise. The benefits of NeuNN are most
evident for slow-moving objects like pedestrians, where the NNb
filter removes almost all signal events. We can visually verify that
there are more events in the tracker for all classes of objects in the
scene from the NeuNN filter screenshots on the right compared
with the NNb filter on the left. Slow-moving pedestrians are
the worst performing class in terms of retaining the signal and
they are barely visible on NNb filter and this makes them quite
challenging to detect and classify. Their activity, however, is
visible on the NeuNN filter. There are slightly more noise events
present outside the tracker after filtering using the NeuNN filter
in comparison with the NNb filter when there is very high back
noise activity.

6.3. Quantitative Comparison of Filtering
Approaches Using the Metrics
Next, we quantitatively evaluate the benefits of the NeuNN
filter over the NNb filter using the metrics described earlier.
The results are plotted in Figure 8. It can be seen from
Figure 8A that the signal remaining after filtering using the
NeuNN filter is significantly higher (∼3X) compared with the
NNb filtering. NeuNN is also capable of producing missing
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FIGURE 5 | Effect of TrueNorth neuron parameters on the metrics from section 2.4 (the above plot used 6:30 p.m. data).

FIGURE 6 | Comparison of color-coded average spike frequency (events/s) at each pixel for all 304× 240 pixels combining all the sample files for (A) original data; (B)

after layer 1refractory period of 5 ms; (C) after layer 1 refractory filter and layer 2 NNb filter on software; and (D) after layer 1 refractory filter with layer 2 NeuNN filter on

TrueNorth.

activity in the neighborhoodnone of the traditional filters are
capable of doing this. Figure 8B shows that the remaining
noise is slightly higher (∼2.5X) when the background noise
increases significantly at the later part of the night. Finally,
Figure 8C shows the SNR before and after filtering. The SNR
ratio before and after filtering is compared for the two filtering
methods and the SNR (in dB) is significantly higher (by 14.75–
29.3 dB) for filtering using NeuNN on TrueNorth due to the
retention of the signal after using the neural network-based
filter.

A refractory period of 5 ms is used for the first layer filter
and the filtering performance for the NNb filter on software
and NeuNN filter on TrueNorth are compared. Across all cases,
NeuNN generates more than 5X events compared with the NNb
filter for all classes of objects moving in the scene. We observe
from Figure 9 that the signal loss for the NNb filter is significant
for all objects (at around 80%). However, the NeuNN filter
generates extra signal events in the case of fast-moving objects
(all except pedestrians) compared with the NNb filter. This is a
significant advantage of the NeuNN on TrueNorth over the NNb
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FIGURE 7 | Comparison of NNb filter on software (on the left) with the NeuNN filter on TrueNorth (on the right) using the same time instances and same files

mentioned in Figure 1B.

filter. Though slow-moving humans with least spike rate per pixel
of 52 spikes/sec (averaged over all videos) are affected the worst
in comparison with other objects using both approaches, the
signal loss is only around 30% with the NeuNN filter compared
with 83% with the NNb filter. This makes it easier to track and
classify pedestrians using the NeuNN filter in the later stages
of processing. Finally, we observe that the signal remaining is
highest for bikes in both approaches. The reason for this is that
bikes are compact and fast-moving objects with highest spike rate
per pixel of 142 spikes/ sec (averaged across all videos). Other
fast-moving objects, like buses, have regions of low contrast (e.g.,
glass windows) that do not generate events, making their spatial
density of events low (approximate spike rate per pixel of 95
spikes/sec averaged across all videos).

6.4. Discussion
We have demonstrated a new noise filtering algorithm for
event based imagers and shown its implementation on
TrueNorth. There are some important points to note about
our proposed method. First, it should be noted that since
TrueNorth processes data at a millisecond clock tick, we
lose the original microsecond resolution of events coming
from the sensor. However, for our application of object
tracking and classification in traffic monitoring or surveillance,
this is acceptable and microsecond temporal resolution is
unnecessary.

Second, the response of a rectangular photodiode, such as
the ones in ATIS, will be different for horizontally and vertically
moving contours (Clady et al., 2017). However, for the traffic
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FIGURE 8 | Comparison of all the metrics of NNb filter and NeuNN filter with respect to each sample file at various recording times representing varying background

noise characteristics.

FIGURE 9 | Average percentage of signal events remaining compared with the original data for each class after two-layer filtering using all the samples in Table 1.
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monitoring and surveillance applications we are considering, the
orientation of the camera will be fixed and we presented results
for this orientation. For changes of orientation, our filtering
method will still work–however, the exact gains in SNRf might
be different.

Third, we expect the effect of adding more events in regions
with signal events (spatio-temporal dilation) will be helpful in
tracking under noisy conditions. However, the shape information
of the object may be distorted by this filtering. We propose
an architecture with two parallel processing paths in that case–
the raw signal (or mildly filtered one) goes to a classifier in
one path, while in the other path, we have the NeuNN filter
followed by the tracker. The tracker informs the classifier about
which spatial location to focus on for object classification. In
this way, the classifier gets access to raw shape of the object as
well as precise location. Also, for applications where the added
events are undesirable, we can use other parameters such as
parameter set 2 described earlier that has similar PSRf as NNb
filter. Quantitatively, the average values of PSRf , PNRf , and
SNRf for NNb filter are 21.54, 0.18, and ∼20dB respectively
while the same ones for NeuNN filter with parameter set 2
are 24.04, 0.09, and 29 dB respectively. This shows that even
when NeuNN reduces signal similar to levels of NNb filter, it
can produce better SNR due to stronger attenuation of noise.
For reference, the average values of PSRf , PNRf , and SNRf

for NeuNN with parameter set 1 are 92, 0.11, and 28 dB
respectively. Though this setting can address the reduction of
dilation effect it cannot ensure complete elimination of this
phenomenon and in our envisioned applications it is not a
significant issue. However, in applications such as event-based
stereovision or event-based optical flow computation (which are
principally based on small local spatiotemporal neighborhoods
and precise timing) they could have a significant local
effect.

7. CONCLUSION AND FUTURE WORK

In this work, we presented a novel neural network-based
noise filtering (NeuNN) approach and compared it with the
typically used nearest neighbor (NNb) noise filter for event-
based image sensors. We also described how we can map the
NeuNN filter algorithm to TrueNorth architecture efficiently.
Though the filter used is available on the TrueNorth platform for
implementation, it can be adapted to any other neural network-
based neuromorphic hardware for filtering noise from event-
based sensors. We showed that the proposed NeuNN filter is
capable of generating new events that can be associated with the
signal while the output events of traditional filters are strictly
a subset of input events. This approach results in much higher
signal retention for NeuNN and also results in higher SNR for
NeuNN-filtered images.

We used manual annotation information for analysing
metrics. In future, we will integrate a tracker and classifier

after the filter and evaluate the performance of the filtering
algorithm based on tracker and classifier performance. Finally,
in the current study, the background noise characteristics change
with respect to the time of the recording. When the noise in
the environment changes, configuring the neuronal parameters
for the task of filtering across varying noise conditions becomes
more challenging. To improve the noise filtering performance,
a learning mechanism for updating the parameters based
on the noise characteristics could be introduced and the
possibility of incorporating such a mechanism needs to be
studied.

The total number of cores used in this two-layer filtering
approach is quite high and increases rapidly with the size of the
filter and image. One way to reduce the number of cores is to
combine both filtering operations into one layer. In this method,
the neurons in the layer 2 filter can be reset to a low value below
the threshold and can slowly recover to resting potential through
a leak. The time taken by the neuron to recover to its resting
potential acts like a refractory period. This method is similar to
a relative refractory period (Gerstner and Kistler, 2002) because
the neuron can still fire a spike in this period if it receives a
large number of input spikes, whereas the method we propose is
akin to absolute refractory period. However, this method has the
problem that neurons in layer 2 become less excitable in general
and do not generate output events even if inputs are coming from
surrounding pixels within that refractory period. We found that
the percentage of signal that remains after using this approach
is less than our proposed solution. Another possibility is to use
two layers, but instead of using three neurons per pixel in layer
1 for the refractory period, use one neuron per pixel using the
relative refractory method described earlier. However, this still
suffers from a non-constant refractory period due to the variable
number of spike inputs the neuron receives during the refractory
period.
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