AUTHOR=Shu Xiaokang , Chen Shugeng , Yao Lin , Sheng Xinjun , Zhang Dingguo , Jiang Ning , Jia Jie , Zhu Xiangyang TITLE=Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients JOURNAL=Frontiers in Neuroscience VOLUME=12 YEAR=2018 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00093 DOI=10.3389/fnins.2018.00093 ISSN=1662-453X ABSTRACT=
Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = −0.732,