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Objective: The performance of machine learning algorithms used for neural decoding

of dexterous tasks may be impeded due to problems arising when dealing with

high-dimensional data. The objective of feature selection algorithms is to choose

a near-optimal subset of features from the original feature space to improve the

performance of the decoding algorithm. The aim of our study was to compare the effects

of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance,

Principal Component Analysis (PCA), and Mutual Information Maximization on SVM

classification performance for a dexterous decoding task.

Approach: A nonhuman primate (NHP) was trained to perform small coordinated

movements—similar to typing. An array of microelectrodes was implanted in the hand

area of the motor cortex of the NHP and used to record action potentials (AP) during

finger movements. A Support Vector Machine (SVM) was used to classify which finger

movement the NHP was making based upon AP firing rates. We used the SVM

classification to examine the functional parameters of (i) robustness to simulated failure

and (ii) longevity of classification. We also compared the effect of using isolated-neuron

and multi-unit firing rates as the feature vector supplied to the SVM.

Main results: The average decoding accuracy for multi-unit features and single-unit

features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ±

3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between

using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7

to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features

respectively. MIM had best performance compared to other feature selection methods.

Significance: These results suggest improved decoding performance can be achieved

by using optimally selected features. The results based on clinically relevant performance

metrics also suggest that the decoding algorithm can be made robust by using optimal

features and feature selection algorithms. We believe that even a few percent increase in

performance is important and improves the decoding accuracy of the machine learning

algorithm potentially increasing the ease of use of a brain machine interface.

Keywords: feature selection, neural decoding, principal component analysis, non-human primate, support vector

machine
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INTRODUCTION

Microelectrode array brainmachine interfaces (BMI) have shown
the potential to alleviate various neurological disorders. BMIs
utilizing advances in robotics and machine learning can restore
limited lower and upper extremity motor function. Several
research studies have investigated the viability of a cortical brain
machine interface in humans and NHPs (Carmena et al., 2003;
Shenoy et al., 2003; Musallam et al., 2004; Hochberg et al.,
2006; Santhanam et al., 2006; Kim et al., 2008; Ganguly and
Carmena, 2009; Kellis et al., 2010; Ethier et al., 2012; Gilja
et al., 2012, 2015; Collinger et al., 2013; Hwang and Andersen,
2013; Aflalo et al., 2015; Little et al., 2017). BMI for controlling
a robotic limb or moving a cursor have been successfully
demonstrated in humans and non-human primates (NHP).
These systems provided real time control of a neuroprosthetic
system by decoding neural signals moment by moment with an
objective to provide certain functionality to replace the native
arm. These systems are based on decoding the endpoint goal
of reach and map the neural signals to spatially distributed
targets. Wang et al. (2009) decoded individual finger movements
using neural data recorded using a customized micro-ECoG grid.
The quality of neural data was analyzed by using frequency
domain based characteristics like coherence between different
electrodes, modulation of neural signals and accuracy of finger
movement classification. Shenoy et al. (2007) developed a
finger movement classification algorithm based on neural data
recording using Electrocorticographic BCI. The classification
error achieved using this real-time BCI was 23%. Kubánek et al.
(2009) also demonstrated the ability to decode the time course of
individual finger flexions based on ECoG signals recorded from
the motor cortical region in human subjects. (Graimann et al.,
2004) developed a wavelet packet analysis and genetic algorithm
for detecting ERPs in a single channel ECoG brain computer
interface. Bashashati et al. (2007) and Garrett et al. (2003) provide
a comprehensive review of feature selection methods in EEG-
based brain computer interfaces.

BMIs can be broadly classified based on the type of bio-signal

used to control the prosthesis. Electroencephalogram (EEG),
Local field potential (LFP), and Action potential (AP) constitute

the majority of source signals used in BMI. APs are discrete

spiking events of an individual neuron. In statistics terms,
APs or neural “spiking” can be thought of as a non-stationary
point process in which neural information is largely encoded by
changes in the AP firing rate coding (frequency of APs/spiking)
(Truccolo et al., 2005). In this paper, we utilize neural recordings
of APs from individual neurons to classify various movements
of the fingers. One of the important characteristics of the
human upper extremity functioning is the ability to perform
coordinated and dexterous finger movements. Typing, eating
with a spoon, writing with a pen and opening a lock with a
key are some of the examples in our daily life that require
such dexterous manipulations using individual or combined
finger movements. Incorporating dexterity as a feature in a
neuroprosthesis would help amputees and paralyzed persons to
carry out a wider range of tasks. To achieve such dexterous
control requires a neural decoding algorithm that can map

high-dimensional neural signals onto a high-dimensional hand
prosthesis. Optimizing algorithms for decoding neural signals
will be critical for providing useful control of upper extremity
neuroprosthesis. Feature selection is an important step in
designing a machine learning system. Choosing a O-dimensional
subset from a P-dimensional feature space consisting of “P”
predictors using an objective metric is the aim of feature
selection. Feature selection also reduces the dimensionality of
feature space, inundating it with more “informative” features
thus, removing lesser contributing ones that might occlude the
feature space.

Curse of Dimensionality
Certain machine learning algorithms fail to scale well in high
dimensional feature space. These algorithms suffer from the
“curse of dimensionality,” which refers to the problems that arise
when analyzing and organizing high-dimensional data. Consider
a univariate, independent variable “X” which follows a Gaussian
distribution with mean “µ” and variance “σ” (X ∼ N (µ, σ)).
According to the properties of Gaussian distribution, ∼68% of
the data is enclosed in the region surrounded by the mean ±

1 standard deviation (Figure 1A). Consider two independent
variables X1 and X2 which follow Gaussian distributions with
means “µ1” and “µ2,” and variances “σ1” and “σ2” respectively
(X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2,σ2)). For a bivariate, Gaussian
distribution only ∼40% of the data is enclosed within the
same region (Figure 1B). For a 50-dimensional multivariate
normal distribution, only∼1/250,000,000th of the data lie within
the mean ± 1 standard deviation region. As the number of
dimensions (variables) increase, the amount of data bounded by
the mean ± 1 standard deviation region decreases exponentially
(Figure 2). In neural decoding, data from each electrode is
treated as an individual feature. A microelectrode array usually
consists of 96 electrodes thus, making the feature space 96-
dimensional. In case of a 96-dimensional feature space, only an
infinitesimally small proportion of data points are enclosed in
the mean ± 1 standard deviation region. Results of Figure 1
were generated using a novel approach to constructing the
Multi-dimensional standard deviation ellipsoid based on spectral
decomposition of the sample covariance (Wang et al., 2015).

In high-dimensional space, almost every point is closer to the
edge of a hypercube that encloses the points than to another
sample point. For a sample of size “n,” the expected average
distance between the sample points and the edge of the hypercube
“D” in a “d”-dimensional feature space can be estimated using the
following equation:

D
(

d, n
)

=
1

2
.(
1

n
)

1
d

For a two-dimensional space with 10,000 points, the average
expected distance between the sample points is 0.005 and for
a 100-dimensional space with the same number of points, the
expected distance is 0.45. It should be noted that the maximum
distance from any point to the edge is 0.5 for normalized
values of dimensions (Kantardzic, 2011). The expected distance
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FIGURE 1 | (A) Univariate gaussian distribution. The area shaded in red shows the data points bounded by mean ± 1 standard deviation. 68.27% of the data is

enclosed in this region. (B) Bivariate Gaussian distribution. The area shaded in blue shows the data points bounded by mean ± 1 standard deviation. Only 39.35% of

the data is enclosed in this region. As the number of dimensions increase from a univariate to a bivariate distribution, the amount of data bounded by mean ± 1

standard deviation reduces by ∼42%.

FIGURE 2 | Curse of dimensionality. The plot in blue shows the percentage of data points enclosed by the mean ± 1 standard deviation for 100 dimensions. The

amount of data enclosed by the mean ± 1 standard deviation region asymptotes to zero from an octa-variate (8-dimensional Gaussian distribution contains only

0.18% of the data in mean ± 1 standard deviation region) distribution. The plot in red shows the expected distance for 100 dimensions. Expected distance is defined

as the average distance between the sample points and the edge of a hypercube. The expected distance asymptotes to its maximum value of 0.5 as the number of

dimensions increases.

asymptotes to 0.5 when the number of dimensions approaches
infinity.

It can be seen that the percentage of data points enclosed by
the mean ± standard deviation region decreases as the number
of dimensions increase (Figure 2). Also, the expected distance
increases quadratically (and asymptotes toward its maximum
value, 0.5) as the number of dimensions increase (Figure 2).

The above two examples illustrate the sparsity of finite data
in high-dimensional space. In high-dimensional space, most

data points act as outliers. This sparsity in data distribution
deters the efficacy of certain machine learning algorithms in
high-dimensions. Feature selection is one of the methods to cope
with “curse of dimensionality.”

Using machine learning algorithms for multivariate,
high-dimensional data is often computationally expensive.
Due to the complexity of feature space and rigorous numerical
computations involved in defining the hyperplane in this
high-dimensional feature space, the performance of the machine
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learning algorithm is deterred. Feature selection is the process
of selecting an O-dimensional subset feature space from a
P–dimensional original feature space where “p” is the number of
predictors.

Feature selection is usually applied to reduce information
redundancy and trim the input space to better predict the
responses. Some of the advantages of feature selection are:

• Facilitate data visualization and data understanding
• Reduce data measurement and storage requirements
• Reduce training and utilization times
• Simplify the learning model and aid in better understanding

and interpretation by researchers
• Enhance generalization by reducing overfitting

• Defy the curse of dimensionality to improve predictor
performance (Guyon and Elisseeff, 2003).

Identifying the best subset of features is a time consuming
and resource intensive problem to solve. The only method
to do this is through exhaustive grid search, i.e., exhaustively
searching through every permutation of predictors available.
Mathematically, there exists 2p permutations of features that can
be selected from “p” features. In case of our neural data, this
results in iterating through 296 (96 features for multi-unit firing
rate and >96 features for single-unit firing rate based feature
vector) permutations of features to identify the “best” subset.

When dealing withmultivariate, time-series signals like neural
signals, it is imperative to judge where the learning algorithm

FIGURE 3 | Neural decoding system architecture. After pre-processing the neural data, feature selection was performed. During K-fold segmentation, the entire data

set was divided into 10-folds. 9-folds were used for training and the 10th-fold was used for validation. This process was repeated 10 times until each fold served as a

validation fold. The 9-fold training data was further divided into 3-folds for parameter estimation of the SVM. Validation error and parameters of the SVM were

estimated using a nested cross-validation loop.

FIGURE 4 | Raw neural recording on channel 87. The 30 s recording consisted of multiple different trials. The raw neural recording on each was filtered using a

high-pass Butterworth of cut-off frequency 250Hz (channel 87 was chosen at random). The MATLAB function “filtfilt” was used to filter the neural signal to ensure

zero-phase distortion.
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must focus its attention. Filter or Criterion based feature selection
and Wrapper based feature selection are two broad categories of
feature selection that are commonly applied in machine learning
(Kohavi and John, 1997). Application of statistical, empirical
or other “criteria” based methods such as mean, variance,
student’s t-test and correlation are some examples of criterion
based feature selection. Applying criterion based feature selection
requires some domain expertise in order to determine what
qualifies as a useful criteria. Wrapper based feature selection

iteratively uses various combinations of features as input to a
machine learning algorithm and evaluates the importance of each
feature based on some evaluation criteria from the prediction
such as coefficient of determination (r2). Ideally, it is advisable
to use the same machine learning algorithm as a classifier and
a wrapper for feature selection. Oftentimes, it is also valuable
to use a simpler, computationally efficient machine learning
algorithm as a substitute wrapper. For example, SVMs are an
efficient but computationally intensive solution to solve the

FIGURE 5 | Mean of isolated single-units neural activity on Channel 87. Channel 87 contained three individual single-units post-spike-sorting. Since there was more

than one single-unit recorded on channel 87, the single-unit and multi-unit firing rates were different. For single-unit firing rate, each single-unit was treated as an

individual source of information. Whereas for multi-unit firing rate, the single-units were treated as one and the firing rate was computed. The shaded region around

the mean action potential corresponds to the standard error of the action potential waveforms.

FIGURE 6 | Number of single-unit features, multi-unit features and number of active electrodes with any neural activity. The blue plot corresponds to the number of

isolated single units, red-asterisk plot corresponds to the number of active electrodes with multi-unit activity and the red-circle plot corresponds to the number of

active electrodes with any neural recording (single and/or multi-units).
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problem of face recognition by computing key points (that act
as features) on the face. Using SVM as a wrapper in this case
would demand access to a lot of resources (in terms of clusters)
and still be time consuming. An alternative to using SVM in
this case would be using a simpler algorithm such as Logistic
regression. Care should be taken to ensure both the algorithms
have similar assumptions about the data such as nonlinearity or
heteroscedasticity of noise.

METHODS

Approval for the animal use protocol in this study was obtained
from the University of Utah Institutional Animal Care and Use
Committee (IACUC). All procedures conformed to National
Institute of Health (NIH) standards for animal care. The
recording setup, behavioral task, data collection and preliminary
data processing approaches are explained elsewhere (Baker et al.,
2009). A 96 channel microelectrode array (MEA, Blackrock
Microsystems) was implanted in the hand area of primary
motor cortex of a male macaca mulatta. The NHP was trained
to perform cued combined flexions of the thumb, index and
middle finger and individual flexions and extensions of the same
digits using a manipulandum. Visual cues were provided using
a computer screen placed in front of the monkey. In order to
start a trial, the monkey had to relax all its fingers moving
all of the finger switches in the manipulandum to the open
state. After a randomized wait time of 1,000–3,000ms, a visual
cue indicating which finger(s) to flex/extend appeared on the
computer screen. The monkey then had 2,000ms to react to the
visual cue and depress the associated switch. Once the correct
switch was pressed, the monkey had to hold the switch for
500ms. The trial was deemed successful if the monkey pressed
the correct switch and adhered to the time constraints. The
behavioral task was implemented using a real-time operations
systems in a custom LabVIEW (National Instruments) program.

Neural Decoding System Architecture
Neural data recorded from the NHP was spike sorted. The
timestamp of spike events was obtained from the offline
sorter. Pre-processing also included binning/moving average
windowing of the point process using a boxcar window. After
applying the moving average technique, neural “firing rate” for
each single or multi-unit was obtained. Neural firing rate was
used as the feature vector (input) to the SVM. Neural activity
corresponding to each successful finger movement trial was
extracted and concatenated. The entire dataset was randomly
divided into 10-folds. Each fold served as the testing set once
while data from the remaining folds was used for training.
Model parameters such as box constraint(C) and sigma (for

the RBF kernel) were estimated using an exhaustive grid search
algorithm with exponentially increasing values from 1e-5 to
1e5. Classification accuracy was calculated after predictions were
made on the unseen test set. This process was repeated 20 times
to reduce generalization error of the SVM (Figure 3).

Pre-processing
The MEA is a 10 × 10 grid of 1mm tall electrodes that
are capable of recording APs in addition to LFPs (House
et al., 2006). The MEA data were sampled at 30 kHz. Neural
data collected using the MEA were sorted offline using an
expectation-maximization based competitive mixture of t-
distributions decomposition algorithm (Shoham et al., 2003).
Data were then imported to Matlab (Mathworks) for further
analysis. The time stamps of APs recorded at 30 kHz were
downsampled to 600Hz. A boxcar moving average window of
300ms width and 33.3ms step size was used to obtain a moving
average firing rate (Davis et al., 2016). Electrodes in the motor
cortex can record from more than one neuron. The features
extracted from neural signals recorded from such electrodes
are called “multi-unit” firing rate. However, the neural activity
recorded on such electrodes can be separated using techniques

FIGURE 7 | Selecting optimal number of multi-units. The plot above shows the

cross validated accuracy of feature selection algorithms for increasing number

of multi-unit features. The solid circle (cyan) in each graph shows the maximum

cross-validated accuracy for a feature selection algorithm. The number of

single or multi-unit features corresponding to this accuracy was chosen as the

optimal number of features. The points and error bars correspond to the mean

and standard error of maximum cross-validated accuracy respectively.

TABLE 1 | Feature selection algorithms and their respective optimal number of features on post-implantation day 36.

Wilcoxon signed-rank test Relative importance PCA MIM Random features

Multi-unit 9 (50.48%) 19 (92.07%) 18 (92.88%) 25 (93.71%) 20 (88.28%)

Single-unit 19 (89.84%) 21 (90.53%) 16 (93.19%) 25 (95.71%) 17 (85.27%)
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such as Principal Component Analysis (PCA), Expectation-
Maximization algorithm or Independent Component Analysis
(Lewicki, 1998). Features extracted from such individual, isolated
neurons are called “single-unit” firing rate. The moving average
firing rate was downsampled in order to reduce data size. A
4th order low pass Butterworth filter with a cut-off frequency of

FIGURE 8 | Selecting optimal number of single-units. The plot above shows

the cross validated accuracy of feature selection algorithms for increasing

number of single-unit features. The solid circle (cyan) in each graph shows the

maximum cross-validated accuracy for a feature selection algorithm. The

number of single or multi-unit features corresponding to this accuracy was

chosen as the optimal number of features. The points and error bars

correspond to the mean and standard error of maximum cross-validated

accuracy respectively.

10Hz was used prior to downsampling the neural firing rate to
20Hz and the neural firing rate was obtained as a time varying
vector. This process was repeated for all 96 electrodes to obtain
multi-unit neural firing rate, i.e., the cumulative firing rate of all
neurons recorded on a particular electrode. An average of 142.2±
36.3 neural units were recording from 96 electrodes during each
session. Spike-sorting was performed on all neural data for each
experimental recording session separately from other recording
sessions.

Data from individual trials was aligned in time on switch
closure times of successful trials. Amovement period was defined
as the duration corresponding to 450ms prior and 1,000ms after
the switch closure. A baseline period (resting state) for a trial was
defined as the duration corresponding to 2,500–1,000ms prior to
switch closure. Baseline and movement period data was obtained
for all available degrees of freedom and all successful trials for
each day experiments were conducted and represented a vector
of time-series data.

Feature Selection
In this study, we have limited our comparisons to criteria based
feature selection methods.

Wilcoxon Signed-Rank Test
Wilcoxon signed-rank test is a non-parametric alternative to
the student’s t-test. This non-parametric test can be used to
identify if samples from two independent yet related distributions
are significantly different (Randles, 1988). In the context of
selecting single or multi-unit data as input to the SVM, the
difference between baseline and movement related firing rate was
computed. The null hypothesis was that the data came from a
continuous, symmetric distribution with a median equal to zero
(i.e., no electrode recorded increased firing rates in themovement

FIGURE 9 | Accuracy of neural decode on post-implantation day 36. Classification accuracy of feature selection algorithms on the test set using cross validated

optimal number of features. The plots in black and red correspond to classification accuracy obtained using multi-unit firing rate and single-unit firing rate respectively.

Level of chance was 10% (10 degrees of freedom). The central box represents the central 50% of the data with the top and bottom sides of the central box

representing the 75% quantile and 25% quantile respectively. The central line in the central box represents the median of the central 50% of the data. The vertical lines

extending above and below the central box represent the remaining data that are not regarded as outliers.
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period as compared to the baseline period). Electrodes for which
the null hypothesis was rejected (p < 0.001) with a positive
median difference from baseline were kept. These electrodes were
then sorted in order of increasing median difference. For the
purpose of feature selection, themedian difference was computed
as a scalar to select features (single unit/multi-unit).

Relative Importance
Relative importance was a feature selection technique initially
developed for selecting neurons in the primary motor cortex for
decoding (Kim et al., 2012). First the movement only firing rate
(difference of movement and baseline firing rate) was computed.
The trial averaged firing rate for each neuron for all the successful
trials was calculated. Then, the inter-movement variance was
computed as the difference of trial averaged firing rate and
the average firing of a neuron for a particular movement. The
neural recordings were then ranked in descending order of inter
movement variance. For the purpose of feature selection, the
inter movement variance was computed as a scalar to rank
features (single/multi-unit).

Principal Component Analysis
PCA can be used as a feature transformation technique, where
a transform function is applied to the data to represent it in
a higher dimensional transform space. For an “n” dimensional
possibly correlated data, PCA represents the data in a (n−1)
dimensional space in linearly uncorrelated principal component
coordinates (Jolliffe, 2002; Lu et al., 2007). The transformation
is carried out in such a way that the first principal component
contains the maximum possible variance of the data. The
succeeding principal components are ordered in descending
order of variance. This transformation of data according to the
variance at each time point can be used to eliminate noise,
but does not necessarily extract discriminative features. Neural
firing rates corresponding to each movement was provided as
an input to PCA. The operation of PCA can be thought of
as revealing the internal structure of the data based on its

variance. For a multivariate dataset that can be represented in
a high-dimensional space, PCA provides a better representation
in low-dimensional space from an “informative” viewpoint. This
is done by considering only the first few principal components
and thus, PCA serves as a dimensionality reduction method. The
features extracted using PCA were ranked based on the amount
of variance explained by the individual principal components.

Mutual Information Maximization
Mutual information is the mutual dependence of two random
variables. Unlike correlation, mutual information is not limited
to real-valued random variables and estimates how similar the
joint distribution P(X|Y) is to the products of the factored
marginal distribution P(X) and P(Y) (Torkkola, 2003). Entropy
of a random variable C can be defined as:

H (C) = −
∑

c

P (c) log(P (c))

The conditional entropy of two random variables C and Y can be
defined as:

H (C|Y) = −
∑

c

P
(

c|y
)

log
(

P
(

c|y
))

dy

Then, the mutual information of random variables C (neural
firing rate) and Y (movement type) can be defined as the I(C;Y)
=H(C) – H(C|Y) and can be represented as:

I (C|Y) =
∑

c

∑

y

P
(

c|y
)

log
P(c|y)

P (c) ∗ P(y)

Mutual Information maximization (MIM) was implemented
using the FEAST Toolbox available for MATLAB (Brown et al.,
2012). For a class label Y, the mutual information score of feature
C is defined as:

J(C) = I(C|Y)

FIGURE 10 | Robustness to simulated failure of multi-unit features. The plot above shows the cross-validated classification accuracy at various failure levels. Error

bars indicate standard error of the cross validation folds.
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This score J(C) is referred to as MIM and we rank the features
in descending order of the mutual information score. Neural
firing rates corresponding to movement period for each degree
of freedom was used as the input to MIM algorithm.

Support Vector Machine
Support vector machines (SVM) have shown promising results
in upper extremity decoding tasks using various source signals
such as MEG, EEG, ECoG, and EMG (Bitzer and van der Smagt,
2006; Demirer et al., 2009; Quandt et al., 2012;Wissel et al., 2013).
SVM is a class of non-probabilistic, binary, linear classifier (Platt,
1999). SVMs represent the data in higher dimensional space and
find the best separating hyperplane in this space. The objective of
the SVM is to find a hyperplane that has the maximum distance
from a point belonging to any class. Such a classifier is also
called a maximum margin classifier whose generalization error
is low. During training, each point in the training set is assigned a
weight α. Those points with training weights α 6= 0 are called
the support vectors since, they help forming the hyperplane.
In case of linearly non-separable cases, a soft margin classifier
is implemented which allows for misclassified instances. Non-
linear problems can be solved by using the “kernel trick” in
the SVM. Kernel functions map data into a higher dimensional
space where, the hyperplane is now formed. Gaussian (radial
basis function) kernel was employed in our classification problem
to account for non-linearity in the input-output relationship.
Gaussian kernel K(x,x’) for two samples x and x’ defined as a
feature vector in some predictor space is defined by:

K
(

x, x′
)

= exp

(

−
||x− x′||2

2σ 2

)

where σ is a free parameter that defines the smoothness of the
Gaussian kernel.

SVMs are inherently binary classifiers, i.e., they can
distinguish between only two classes. Their functionality

can be expanded to solve multiclass problems by decomposing
it into multiple binary sub-problems (Hsu and Lin, 2002;
Duan and Keerthi, 2005). We used a one-vs.-one multiclass
implementation of the SVM to differentiate between the
many available movements. For a problem of classifying “k”

classes, we require k(k−1)
2 binary SVM classifiers for each pair

of the “k” classes. The class of a test instance is predicted by
taking the mode of predictions of all the one-vs.-one SVM
pairs.

In addition to extracting neural activity corresponding to
valid trials for all available degrees of freedom for a particular
session, we included 30 random baseline periods as a “rest”
phase (11th degree of freedom). During the training phase of
supervised learning algorithms such as SVM, the algorithm
must be provided with corresponding outputs (class labels). The
class labels were created depending on the movement type. For
example, thumb flexion was encoded as 1, index flexion as 2,
middle finger flexion as 3 and so on.

Performance Metrics
The first step in assessing the performance of feature selection
methods was to find the optimal number of features for each
feature selection algorithm that best classified the different
finger movements and the resting state. For this purpose, all
available successful trials in a session were split into a 70%
for training and the remaining 30% for testing. A 10-fold
cross validation routine was performed to reduce variability in
performance estimates during validation. For a given input data
(multi-unit or single-unit firing rate), the features were ranked
based on the results of the feature selection algorithms. The
extracted features were ordered and selected in a descending
order based on their ranking by each feature selection method
with the best features being selected first. We iteratively
incremented one feature (neural firing rate on a single electrode
or from an isolated neuron) at a time and used it as an

FIGURE 11 | Robustness to simulated failure of units. The plot above shows the cross-validated classification accuracy at various failure levels. Mutual information

maximization based feature selection had a classification accuracy of 90.79% with just 10% of the neural units as feature vector. Error bars indicate the standard error

of classification accuracy.
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input to the classifier to identify the optimal number of
features. In order to evaluate the performance of features
selected at random, we also included random multi-unit and
isolated unit firing rate feature to compare with the other
methods.

Robustness to Simulated Failure
The performance of the brain machine interface (BMI) can
be influenced by the quantity of neural information available
for decode. Previous research has shown that there is a
significant decrease in the signal to noise ratio of the neural
signals and a steady decrease in impedance of the recording
electrodes over time (Vetter et al., 2004; House et al., 2006).
There can be a steady decrease in the number of electrodes
that record APs, which can have a deleterious effect on BMI
performance. AP recordings can also be affected due to glial
scarring or electrode location changes (Frien and Eckhorn,
2000; Leopold and Logothetis, 2003; O’Leary and Hatsopoulos,
2006; Stark and Abeles, 2007; Berens et al., 2008; Jia et al.,
2011). Feature selection algorithms should be robust enough to
handle the sudden losses in neural information over time. In
order to test the endurance of the feature selection algorithms,
we randomly dropped 10’s of percent of the available neural
firing rate and tested its performance. The random removal
procedure was repeated 20 times to reduce generalization
bias.

Longevity of Neural Decodes
BMI are devices which will be used over an extended period
of time. In order to be useful the neuroprosthetic device must
be capable of accurate performance over this extended period
of time. We present here the chronic decoding results of 47
sessions collected over 142 days. Spike-sorting was performed
individually on each of the 47 sessions. For a given session the

optimal number of features was computed. Decoding accuracy
for a feature selection algorithm on a particular day was then
calculated using the cross validated optimal features.

RESULTS

Quality of Neural Recordings
The raw neural data was high-pass filtered using a Butterworth
filter with a cut-off frequency of 250Hz (Figure 4). To
demonstrate the quality of neural recordings used in this analysis,
we extracted a 30 s neural recording on a randomly selected
channel (channel 87). PCA followed by k-means clustering was
performed to separate the isolated units and noise. In Channel
87, there were 3 isolated single-units (Figure 5). Single-unit
firing rate was obtained by treating the isolated neural units as
individual sources of information. Therefore, we obtained three
single-unit firing rates for channel 87 by treating single-units 2,
3, and 4 as individual sources of information. Multi-unit firing
rate was obtained by treating the individual single-units as one
source of information. Therefore, we accrued the neural activity
of the single-units and obtained one multi-unit firing rate for
channel 87. To summarize, the number of multi-unit features
is equal to the number of active electrodes (irrespective of the
number of isolated units it was recording). Whereas, the number
of single-unit features is equal to the number of isolated units.
Spike sorting was performed individually on all data from each
session.

The number of single and multi-unit features was calculated
(Figure 6). For the 1st session on post-implantation day 9 there
were 92 electrodes (red-circle plot; out of a possible 96) with
any neural activity (single and/or multi-unit recordings), 89
electrodes (red-asterisks; out of 92) had multi-unit recordings,

FIGURE 12 | Longevity of neural decodes using multi-unit firing rate. High levels of accuracy over an extended period of time is imperative for a fully functional

neuroprosthesis. On certain days, two sessions of recordings were conducted. Repeated x-axis indices (Number of days post-implantation) in the above figure

correspond to different sessions conducted on the same day.
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i.e., more than one isolated single unit, and 378 isolated-single
units (on the 92 electrodes).

Selecting Optimal Number of Features
The optimal number of features for various feature selection
algorithms on post-implantation 36 was differing (Table 1). The
classification accuracy for incremental values of number of
features was plotted (Figures 7, 8).

The values in Table 1 correspond to the optimal number
of features (values outside the parentheses) and maximum
cross-validated accuracy (values within the parentheses). With
an exception of Wilcoxon signed-rank test, the other feature
selection algorithms did not show significant changes (two
sample t-test, p < 0.05) from using multi-unit and single-
unit firing rate both in terms of number of optimal features
and classification accuracy (less than ± 3% difference in
classification accuracy and ± 1 feature). In case of Wilcoxon
signed-rank test, the number of optimal features increased
from 9 features for multi-unit firing rate to 19 feature for
single-unit firing rate. The classification accuracy improved
from 51.12 ± 0.65% for multi-unit firing rate to 88.12 ±

0.61% for single-unit firing rate (Figures 7, 8). The number of
optimal features for multi-unit features using Wilcoxon signed-
rank test stops at 9 features because this feature selection
methods returned only 9 multi-unit features as having a
significant difference between the movement and baseline
period.

The performance of the various feature selection methods
was analyzed on a randomly selected session (post-implantation
day 36). On post-implantation day 36, MIM performed
significantly better than the other algorithms and random
selection (two sample t-test, p < 0.05, α – values calculated using
Bonferroni correction to account for multiple comparisons
correction). There was no significant difference in the

performance of single-unit and multi-unit features selected
using PCA and MIM (Two sample t-test, p < 0.05). Whereas,
single-unit features selected using Wilcoxon signed-rank
test and Relative Importance performed significantly better
than the multi-unit features selected using the respective
algorithms (Figure 9).

Robustness to Simulated Failure
There was a total of 96 multi-unit features and 350 single-unit
features from neural data recorded from post-implantation day
36 available for this analysis (corresponding to 100% of features).
Therefore, for the 10% case there was 9 multi-unit features and
35 single-unit features. There is a general trend of decrease in the
performance of feature selection algorithms when we decrease
the number of features from 100 to 10%. While using multi-
unit firing rate, the performance of PCA was best at 64.82 ±

2.27% for 10% of multi-unit features, whereas the performance
of Wilcoxon signed-rank test was 21.08 ± 0.63%. When we used
single-unit firing rate as the feature vector, the robustness to
simulated failure was higher for all feature selection algorithms
when compared to their respective multi-unit firing rate. In
case of Wilcoxon signed-rank test there was a ∼10% increase
in classification accuracy while there was a ∼40% increase in
classification accuracy for MIM based feature selection. The
performance of MIM feature selection for single-unit firing
rate stayed above 90% classification accuracy even while using
only 10% of the available units. MIM based single-unit features
performed significantly better than all of the other algorithms
for all levels of simulated failure (100–10%) (Kruskal-Wallis test,
p < 0.05) (Figures 10, 11).

Longevity of Neural Decodes
The improvement in classification accuracy from multi-unit to
single-unit firing rate requires an AP isolating pre-processing

FIGURE 13 | Longevity of neural decodes using single-unit firing rate. The optimal number of features for each feature selection technique was identified using an

iterative cross validation scheme. For a given day, cross validation and performance evaluation were computed as described in section Performance Metrics.
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TABLE 2 | Longevity of neural decoding.

Wilcoxon

signed-rank

test

Relative

importance

Principal

component

analysis

Random

selection

Multi-unit 46 21 13 45

Single-unit 45 32 13 45

The values in this table correspond to the number of sessions during which MIM yielded

higher decoding accuracies compared to the other methods.

procedure. Relative importance, PCA and MIM had comparable
accuracies across 47 sessions and performed better than
randomly selected features (Figures 12, 13).

Assessing the chronic decoding capability of various feature
selection methods, MIM produced the best results for both
single-unit and multi-unit based firing rate (Table 2). The
decoding accuracies of MIM based feature selection was
compared to the other methods used in this analysis (two sample
t-test, p < 0.05, α – values calculated using Bonferroni correction
to account for multiple comparisons correction). In general,
single-unit firing rate feature vector yielded slightly better (∼3–
4% on average) performance compared to multi-unit firing rate
feature vector for all feature selection methods except Wilcoxon
signed-rank test. The chronic decoding results also validate the
viability of using a neuroprosthetic device with high classification
accuracies (>90% classification accuracy on average).

Isolating the APs from individual neurons is routinely
performed on neural recordings from microelectrodes. We
have shown that by applying feature selection techniques to
single-unit and multi-unit firing rates, we can get comparable
performance over a chronic level. However, utilizing single-
unit firing rates demonstrated better performance than multi-
unit firing rates when the number of active electrodes
decreased.

DISCUSSION

Feature selection is an efficient method to cope with the
“curse of dimensionality.” As explained in the previous sections,
performing feature selection increases the amount of data that is
bounded by the mean ± 1 standard deviation region. Reducing
the dimensionality of neural data from a few hundred features to
an average of 20 features, increases the amount of data bounded
by the mean ± 1 standard deviation region exponentially.
Therefore, the sparsity of data points in the feature space is
reduced. In addition to reducing the sparsity, feature selection
algorithms also inundate the feature space with more relevant
information based on some criteria (Guyon and Elisseeff, 2003).
In a way, feature selection can be thought of as a procedure to
“prune” the feature space with only “informative” features. All the
feature selection algorithms consistently performed better than
the randomly selected features. This significant improvement in
performance adds ∼10% accuracy in case of both multi-unit
and single-unit features compared to randomly selected features.
Ideally in real world applications, we would expect the prosthesis

to work with 100% accuracy for all different types of movement.
To increase user compliance and ease of use, feature selection
algorithms must yield accuracies as close to 100% as possible.
Misclassifications in prediction can impede or in the worst-
case cause physical damage to the user and/or people around
them. Misclassifications in real time prediction can lead to
undamaging mishaps that might still be critical in accomplishing
tasks such as slips while holding a cup of coffee or other
objects that might steer the user away from efficiently using the
prosthesis for activities of daily living.We also speculate that with
increasing misclassifications, user acceptance and performance
might deteriorate non-linearly.

Feature selection algorithms operate in various mechanisms
and perform significantly better than level of chance and
randomly selected features. While Wilcoxon signed-rank test,
Relative Importance and MIM retain the innate properties of
the feature space (in terms of retaining it in time domain), PCA
transforms the features to uncorrelated, orthogonally located
principal component axes. It is interesting to note that for
many sessions, PCA has comparable performance as MIM.
Exploiting this property of PCA and the noise reduction it
provides innately, it will be interesting to program algorithms
that do not require re-training for each session. This would
be a significant improvement in terms of user experience since
training time is usually of the order of 20–30min (performing the
training trials and parameter selection for the feature selection
and machine learning algorithm) which might be monotonous
and tiresome.

Global models, i.e., models that are trained on multiple
subjects and then tested on data from an unseen test subject are
used for categorizing subjects into groups, e.g., diagnosis. For
such an application, a subject-wise cross validation approach is
preferred. Subject specific models, i.e., models that are trained
on multiple segments of past data and then tested on unseen
current data in a single subject are used for estimation of the
current state of a given subject, e.g., prognosis. The appropriate
approach is needed to approximate the use-case in machine
learning (Saeb et al., 2017). We are developing a model that
is unique to each subject, therefore, the appropriate method of
cross validation is by partitioning the training and testing sets
sequentially based on time from an individual subject rather
than across multiple subjects. It is also not scientifically accurate
to group data from different subjects as the placement of the
electrode grids relative to the anatomy of the motor cortex
will vary from subject to subject, resulting in a unique spatial
sampling of the neurological data from each subject. Using a
subject specific approach an intracortical prosthesis allowing
people with paralysis to communicate using a virtual keyboard
been demonstrated (Pandarinath et al., 2017). We believe that
developing subject specific models is the appropriate method for
developing BCIs.

One of the limitations of developing subject specific models
for clinical applications is the lack of generalization across
subjects. The data used in this study was recorded from the
primary motor cortex of a healthy NHP. The primary motor
cortex is a relatively well-understood part of the brain where
the firing of APs is correlated and causally related to movement.
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The somatotopic and cytoarchitectonic structure of the primary
motor cortex is conserved across primates. Therefore, it is a fair
assumption that the primary motor cortex of this animal is a
standard representation of the primary motor cortex of primates.
Although it is impossible to predict the global performance of
an algorithmic approach a priori, given the conserved structure
of the primary motor cortex, we believe that general trends
presented in our analysis will still be transferable across subjects
and to similar neuroprosthetic applications.

In this study, we have tested the feature selection algorithms
based on scenarios encountered with real-world neural data.
Loss of active single and multi-units over a long duration of
time has been observed and reported in various studies. In
order to make a neuroprosthesis commercially and practically
viable, the algorithm must be robust to handle reduction of
available features. We have reported the performance of feature
selection algorithms when subjected to a reduced subset of
features. We achieved accuracies several folds above level of
chance with only 10% of the single-unit features using MIM
based feature selection. One of the main reasons for the loss of
active single and multi-units is due to physiological interactions
at the tissue-electrode interface. With technology available at our
disposal today, the only way to cope with such physiological
interactions might be to replace the micro-electrode array itself.
Feature selection algorithms help sustain the performance of the
neural decode and maximize the classification accuracy when
encountering such intractable conditions.

During some chronic microelectrode array implantations,
several studies have reported losing neural information (Frien
and Eckhorn, 2000; Leopold and Logothetis, 2003; O’Leary and
Hatsopoulos, 2006; Stark and Abeles, 2007; Berens et al., 2008;
Jia et al., 2011). In this paper, we compared the performance
of multi-units and single-units neural features to simulated
failure. Single-unit features were more robust to simulated failure
than multi-unit features. We speculate that multi-unit features
performed poorer than single-unit features due to aggregation
of neural information from the underlying single-units. The
amplitude and frequency of firing of the underlying single-units
play a significant role in helping decode motor movements.
Single-units with unique information could be masked by
other single units with higher frequency of firing, therefore,
increasing the chance of redundant information when viewing
neural information as multi-units. Using single-units might help
provide information that results in higher separability of the

classes, especially when the number of neural units decreases (like
in a simulated failure model).

Neural decoding algorithms must also be reliable over a
long duration of time. In this paper, we also present results
of various feature selection algorithms over 47 sessions of
neural decode. Across all the sessions, single-unit and multi-
unit features had comparable performances for multiple types

of movements. According to our results, for 60% of the sessions
there was a significant difference between the performance of
single and multi-unit features. Although there is an average∼5%
increase in performance when using single-unit features, it comes
with a trade-off of expensive computation. This computational
latency can also manifest in the form of execution delays of the
neuroprosthesis while performing a task which might directly
affect user performance. We speculate that MIM performs better
across all three performance metrics as it maximizes the class
conditional entropies of features in the predictor space. Future
analysis will investigate the stability of neural decodes. Stability
of neural decodes refers to the performance of a trained model
over time without updating the model. The stability of neural
decoding models will impact how often a user will need to retrain
the classifier model.
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