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The walking mechanism of a prosthetic leg user is a tightly coordinated movement of

several joints and limb segments. The interaction among the voluntary and mechanical

joints and segments requires particular biomechanical insight. This study aims to analyze

the inter-relationship between amputees’ voluntary and mechanical coupled leg joints

variables using cyclograms. From this analysis, the critical gait parameters in each gait

phase were determined and analyzed if they contribute to a better powered prosthetic

knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects

and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees,

and 10 different pathological profiles of orthosis users) walked at their comfortable

speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment

and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms

relationship. The model was validated by quantifying the gait disparities of all the

pathological walking by analyzing each cyclograms pairs using feed-forward neural

network with backpropagation. Subsequently, the cyclogram pairs that contributed to

the highest gait disparity of each gait phase were manipulated by replacing it with normal

values and re-analyzed. The manipulated cyclograms relationship that showed highest

improvement in terms of gait disparity calculation suggested that they are the most

dominant parameters in powered-knee control. In case of transfemoral amputee walking,

it was identified using this approach that at each gait sub-phase, the knee variables most

responsible for closest to normal walking were: knee power during loading response and

mid-stance, knee moment and knee angle during terminal stance phase, knee angle and

knee power during pre-swing, knee angle at initial swing, and knee power at terminal

swing. No variable was dominant during mid-swing phase implying natural pendulum

effect of the lower limb between the initial and terminal swing phases. The outcome of

this cyclogram adoption approach proposed an insight into the method of determining

the causal effect of manipulating a particular joint’s mechanical properties toward the joint

behavior in an amputee’s gait by determining the curve closeness, C, of the modified

cyclogram curve to the normal conventional curve, to enable quantitative judgment of

the effect of changing a particular parameter in the prosthetic leg gait.
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INTRODUCTION

Human walking is typically characterized by plotting kinematics
and kinetics curves as a function of time or percentage of gait
cycle. These kinematics and kinetics curves became the primary
guideline in the prosthetic leg design that would mimic the
normal gait. These were done by ensuring that the prosthesis
produces user gait performance that is close to the normal single-
variable curve (Engeberg, 2013; Kutilek et al., 2013).

Although it is more common and convenient to use a
single variable curve of kinematics or kinetics parameters as
guideline in designing the control system for microprocessor
based prosthetic leg, literatures proved that there are advantages
of analyzing it as a pair. A number of relevant dynamic
effects can be identified when pairs of kinematics and kinetic
variables are examined together and correlations among them
were concurrently assessed (Crenna and Frigo, 2011). These
combinations of kinematics and kinetics variables, omitting
the time variables from the two signals, create different cyclic
trajectories known as cyclograms (Goswami, 1998). From the
cyclic trajectories represented by the coupled variables, the
dynamic variation of the gait can be easily visualized through the
changes in the cyclograms pattern. In addition, the interaction
between two co-existing parameter across the joints could be
concurrently assessed. This is the foundation of applying the
cyclograms concept to determine the most influential knee
parameter in producing closest to normal and most efficient gait.

The use of cyclograms over a function of time has been used as
a reference for designing a microprocessor-controlled prosthesis
(Kutilek et al., 2013, 2014a,b). This is because, the fact that
“locomotion is a tightly coordinated movement of several limb
segments” can be more naturally grasped as the coupled variables
of two or more joints rather than individual joint kinematics or
kinetics. The cyclogram pattern was noted to be an extremely
stable mechanism to identify gait behavior due to the use of cyclic
traces of joint variables (Kutilek et al., 2014a). This was achieved
based on the principal that a coordinated motion of a leg is to be
perceived as an interaction between two or more limb segments
rather than a phenomenon of isolated joint movements over time
(Awai and Curt, 2014).

According to Pitkin, designing a better prosthetic leg does
not revolve around the integration to mimic close-to-normal
limb segments behavior (Pitkin, 2010). The design should take
into account the amputees pathological condition (Pitkin, 2010).
Therefore, there is a need to outline the basis for the prosthetic
design that requires minimal modification to adjust with, if not
all, most of the amputees’ conditions.

The techniques that had been used to mathematically
represent gait data and to analyze it include fuzzy system
methods, multivariate statistical analysis, fractal dynamics,
artificial intelligence (including neural networks), and wavelet
methods (Arjunan and Kumar, 2010). Neural networks had been
the most prevalent emerging non-traditional method applied to
the analysis of gait data (Su and Wu, 2000). The combination of
neural network and cyclograms in a single study is rarely found
in the literature, and none has been introduced for identifying
the gait disparity in amputees. To date, neural network has been

used to perform automated diagnosis of gait patterns represented
by angle-angle cyclogram (Barton and Lees, 1997). In one study
(Barton and Lees, 1997), once trained, the network can identify
three different conditions—normal gait, a gait with unequal leg
length and a gait with unequal leg weights at 83.3% success rate.
The work of Kutilek and Farkasova that described the method of
predicting the motion of lower extremities using neural network
and had suggested that the predicted data may be useful for
evaluation of human walking in physiotherapy practice based
on angle-angle diagram (Kutilek and Farkasova, 2011). Their
method was one of the earliest to apply neural network in a
clinical practice for study of disorders or characteristics inmotion
function of human body, and also to be used in new design of
lower limb prosthesis (Kutilek and Farkasova, 2011).

This study proposed a method of using the cyclograms as the
cyclic representation of locomotion and two-variable interaction,
to determine the most influential parameter in each gait sub-
phases for the knee control design in transfemoral prosthesis.
Using neural network, we analyzed the interaction between the
users’ gait coupled parameters holistically (of the joint itself
and across two joints) toward the least error production from
normal profile. The final parameter at each gait sub-phase was
then determined by analyzing the effect of manipulating one
parameter onto another parameter of the coupled variables at the
most deviated cyclogram for different amputee’s profile.

METHODS

This study consists of 3 phases. The first phase involved gait
analysis and cyclogram model generation based on the leg joint
parameters. Phase 2 verified the generated cyclogram models by
determining the gait deviation at each sub phase throughout the
gait cycle of participants with different pathological conditions.
In the last phase, the modified cyclogram models were used to
identify the most dominant parameter at each gait sub-phase in
the case of transfemoral amputees.

Phase 1: Gait Analysis and Generating
Cyclograms
In this section, the data collection procedure was explained
in detail. Then, the generation of cyclogram pairs from the
voluntary and mechanical joints’ parameters was described.

Data Collection and Gait Analysis Method
Table 1 describes the details of the participants involved in this
work.

The profile data for each of the transtibial, transfemoral and
orthosis subjects and their respective pathological condition are
presented in Table 2. All the subjects provided their written
and informed consent by signing the consent form provided to
them, to participate in this study. Approval for the gait analysis
procedures was obtained from the University Malaya Medical
Centre Ethics Review Board and this study confirmed with the
regulatory standards.

The experimental procedures of this study were conducted
in a motion analysis lab on a 4m straight walkway. The lab
was equipped with an optical three-dimensional motion capture
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TABLE 1 | Description of the subjects.

Type of subjects No of

subjects

Mass (kg) Height (cm) Age (years) Criteria

Normal healthy subjects (served as control

group)

20 65.43 ± 17.96 161.4 ± 10.25 24 ± 2.53 • No pathological conditions

• No history of lower limb surgery

• No physiological disease

• Right limb dominant

• Can walk without assistance/any

upper extremity aids

Transtibial amputees 10 77.15 ± 21.45 168.45 ± 9.95 45.70 ± 9.9 • Unilateral amputee

• Has been wearing prosthesis for

more than 6 months.

Transfemoral amputees 5 70.60 ± 19.07 167.2 ± 7.58 34 ± 7.56

Orthosis wearer (represent prosthesis users

who do not have a perfect prosthetic device)

10 67.40 ± 17.31 165.2 ± 10.81 35.40 ± 12.9 • Anatomical joints are still intact

• Able to walk without wearing orthosis

TABLE 2 | Profile data for transfemoral, transtibial and orthosis subjects.

Subject code Reason of amputation/wearing orthosis Type of Prosthesis knee, locking, and foot/orthosis Affected side

TF1 Osteosarcoma Mechanical knee joint, Auto-lock system R

TF2 Diabetes, infection Quadrilateral socket, single axis knee joint, SACH foot R

TF3 Trauma Mechanical knee-joint, single-axis foot R

TF4 Doctor carelessness during surgery Hydraulic knee joint, auto-lock system Flex-foot R

TF5 Trauma Mechanical knee-joint, flex-foot R

TT1 Trauma Pin lock, Flex-foot R

TT2 Trauma Shuttle lock, SACH foot R

TT3 Trauma Pin lock, SACH foot L

TT4 Trauma Shuttle lock, Flex-foot R

TT5 Trauma Pin lock, flex-foot L

TT6 Trauma Shuttle lock, flex-foot L

TT7 Diabetes Shuttle lock, Flex-foot R

TT8 Trauma Pin lock, SACH foot L

TT9 Trauma Shuttle lock, Flex-foot R

TT10 Gangrene on 1st toe, Diabetes Pin lock, Flex-foot R

OT1 Congenital flexible pes planus Custom-made shoe with arch insole B

OT2 Limb length discrepancy (1.2 cm) Custom-made insole L

OT3 Diabetes, 1st metatarsal ray amputation Diabetic shoe L

OT4 Inflammation at medial collateral ligament Knee brace R

OT5 Diabetes, callus at 5th metatarsal Diabetic shoe with insole B

OT6 Flexible Pes Planus Arch insole B

OT7 Diabetes, 2nd metatarsal ray amputation Custom-made insole R

OT8 Flexible pes Planus Custom-made insole B

OT9 Hallux valgus, present of bunion on 1st metatarsal Hinged AFO L

OT10 Charcot foot Rigid AFO R

R, Right; L, Left; B, Both; TT, Transtibial; TF, Transfemoral; OT, Orthotic; AFO, Ankle-foot Orthosis.

system, a 6-infrared camera Vicon Nexus 1.5 (Vicon, United
Kingdom) mounted strategically around the room, working at
50 Hz and integrated with two force plates (Kistler Instruments,
Switzerland) working at 200 Hz, located midway to obtain
synchronized kinematic and kinetic data within a capture volume
of approximately 4× 4× 2 m.

The subjects’ bilateral leg length (from greater trochanter to
lateral malleolus), ankle width and knee width were measured
and recorded to the system software for automated calculation
of mass, center of mass and moment of inertia. The knee width of
residual limb was considered as similar with the sound limb for
transfemoral subjects. The ankle width for both transfemoral and
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transtibial subject residual limbwere also considered to be similar
to the sound limb measurement. Ground reaction force was
obtained from the force plates for kinetic automated calculation
by the Vicon software to obtain joint power and moment. Sixteen
reflective markers of 14 mm diameter were attached bilaterally
based on Helen Hayes marker placement.

At least 20 trials were recorded for each subject and
all the subjects were asked to rest in between the trial
to prevent fatigue effect to the data collection. The gait
data was analyzed with a conventional model Vicon Plug-
In-Gait and filtered using second-order Butterworth filter.
The ankle, knee and hip joint kinematics, moments and
gait events as well as relevant markers’ trajectories, Ground
Reaction Force (GRF) and Center of Pressure (COP) data
were imported into Matlab for extraction and further analysis.
Linear interpolation was applied to the original data points
to obtain data points for joint kinematics and kinetics data
at every 2% of stride duration. The joint moment was
computed by inverse dynamics, using subjects’ measurements
and anthropometric properties and normalized to body weight
(Robertson, 2004).

The ankle dorsi-plantar flexion angles, knee and hip flexion-
extension angles were the kinematic data required in this study,
while for kinetic analysis, all the three joints’ sagittal moment and
power were extracted.

Cyclogram Models Generation
A total of 36 relationships were obtained by pairing the variables
of the joint itself and across the two joints pair. The relationships
can be classified into 6 groups, namely:

i) angle-angle across the two joints pair (3 pairs),
ii) moment-moment across the two joints pair (3 pairs),
iii) power-power across the two joints pair (3 pairs),

iv) angle-moment within the joint and across the two joints pair
(9 pairs),

v) angle-power within the joint and across the two joints pair (9
pairs), and,

vi) moment-power within the joint and across the two joints
pair (9 pairs).

Most of these relationships were not found in the literature except
for angle-angle relationship across the two joints pair (Cavanagh
and Grieve, 1973; Goswami, 1998) and moment-angle of the
ankle joint (Crenna and Frigo, 2011; Wang et al., 2012).

The cyclogram relationships for the normal subjects were
obtained by averaging parameters of 200 trials from 20 subjects
due to the consistency of the gait sub-phase duration among the
normal subjects. On the other hand, this averaging method does
not apply to the transtibial, transfemoral, and orthosis subjects
because of their irregularities of gait sub-phase duration in each
trial. Thus, the relationships were obtained from each of the trial,
for 10 trials for these amputee subjects. The amputee subjects’
cyclograms in addition to its respective gait sub-phases from the
trials would be input into the neural network in Phase 2 to predict
the output of subject-based movement profiles and identify the
gait deviation at each of the gait sub-phase.

From the normal cyclograms relationship obtained, it was
found that the geometric shape of the cyclograms changed as
the traveling direction of the gait sub-phases change between
both legs. Thus, it was deduced that the interaction between
the two variables were different between left and right leg.
Primarily, this geometric difference was influenced by the limb
dominance effect on the normal walking gait. The dominant
limb was the preferred limb (leading limb) that the subjects
used for mobilizing or propulsion; while in contrast, the non-
dominant limb is the non-preferred limb (trailing limb) that is
used to support the actions, i.e., stability control. This support

FIGURE 1 | Example on how the cyclograms being applied to obtain the gait disparity in amputees. The shaded area indicate disparity from norm.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2017 | Volume 11 | Article 230

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Jasni et al. Prosthetic Joints Analysis Using Cyclogram

FIGURE 2 | Illustration of the arrangement of input data and target data for network training.

FIGURE 3 | Workflow to validate the network prediction ability; the errors between the two curves were calculated at each point for each case of the

subject.

and mobility task performed by each leg was interpreted as gait
asymmetry that is normal to occur even to healthy able-bodied
subjects. All the normal subjects in this study were right limb
dominant, therefore, right side served as the propulsion source
during walking. The necessity of defining which limb contributes
to propulsion or support task was important in this study in
order to select the reference side of cyclograms that was identical
to the functional role of the prosthetic and the intact side for
amputees. It has been revealed in the study by Carpenter et al.
that the transtibial amputees who undergone osteomyoplastic
amputation (also known as Ertl) rely on the prosthetic side
to support, while the intact side function to propel the body
forward (Carpenter et al., 2012). This is further supported by the
study that revealed the unilateral amputees experience increased

asymmetry in their intact limb during loading and stance time
due to the loss of ankle plantar-flexors which contribute to body
propulsion and swing initiation (Liu et al., 2006). Therefore, the
subsequent phases in this study make use of the cyclograms on
the left side (non-dominant) to study the deviation that occur on
the prosthetic side of the amputee.

Phase 2: Using Cyclograms to Quantify
Gait Disparity in Terms of Gait Sub-Phases
All 36 cyclograms that were created in previous phase were
used to determine the gait disparity of the amputees. Figure 1
illustrates the example on how the cyclograms was utilized to
determine the gait disparity occurrence at each gait sub-phase for
each of the subject. The orange-colored area represents the error
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between amputee’s cyclogram and the normal cyclogram, i.e., the
gait disparity. The higher the error as compared to the normal
gait’s cyclogram, the higher is the gait deviation of the subject.

At this stage, neural network was adopted as the tool to
model the interaction between two parameters in a cyclogram,
as well as to calculate the disparity between cyclograms. Hence,
the feedforward network with backpropagation algorithm was
employed. This network was chosen as it uses supervised
learning rule during the training. The supervised learning rule
provide an example for the network learning, and the network
learn by comparing the predicted output with the desired
output, and backpropagate the error to update the network
weight/bias (i.e., the constant used to define the strength of
the input in determining the output) (Beale et al., 2010). The
neural network architecture was constructed in Matlab and the
predicted outputs and errors obtained were used to quantify the
disparity occurrence at each of the gait sub-phase.

The network consisted of 3 layers; input layer (30 neurons),
hidden layer (7 neurons) and output layer (3 neurons). The
relationship between the input data and the output data was
found linear, thus linear regression functions were employed. The
input and target data arrangement was illustrated as in Figure 2.
The first 10 rows (E1-E10) represent the first cyclogram’s variable
for 10 trials, the next 10 rows are the second cyclogram’s variable
for 10 trials, and the last 10 rows are the gait sub-phases which
annotated as 1 until 7 corresponding to loading response to
terminal-swing for 10 trials. On the other hand, S1-S50 represents
the samples of the variables series at an interval of 2% gait cycle
and its respective gait sub-phase duration.

The network was first trained with data of 100 trials that was
randomly chosen from 10 healthy subjects as network input and
average normal data of 200 trials from 20 healthy subjects as
the network target in order for the NN to learn the outcome of
different paired variables interactions of normal subject as the
reference. A total of 36 NN were trained with 36 paired variables,
i.e., cyclograms, respectively. During the training, default random
division algorithm was used for the NN to divide the data
randomly for training (60%), validation (20%), and testing (20%).
The network weight was reinitialized if all the following criteria
for the network performance were not met, and only network
that fulfilled the following criteria were kept for simulation with
prosthetic cyclograms: (1) final mean square error <0.9 at the
final iteration, (2) the test set error and validation set error has
similar characteristics, (3) the regression for all set was > 0.9.

Before simulating the trained network with amputee’s
cyclograms, the network was first tested and validated with 5
random normal subjects and 25 different cases of amputees
and orthosis subjects’ pathological conditions. The predicted
output of cyclogram’s pair from the simulation was split into
two variables curve as a function of gait cycle percentage. These
two curves were then compared with the curves that used the
conventional trials averaging method. The errors between the
two curves (ep−c) were calculated for each subject as illustrated
in Figure 3.

The network model prediction ability was presented in terms
of percentage of the closeness of the network predicted output
curve as compared to the conventional trials averaging curve. The

percentage of closeness was calculated as in Equation (1), with
C =100% indicates totally close to normal or a perfect match to
normal.

C = (1− ep−c)× 100 (1)

where,
C = curves closeness

ep−c = Errors between predicted curve points and conventional
curve points, with 1 being maximum (100%) error or difference
between predicted and conventional curve points, and 0 to be no
error at all.

The validation percentage presented in Table 3 indicates that
the model, as it was trained with the normal subjects’ data, was
as expected to have prediction ability of more than 90% with
randomly-selected normal subjects. As for orthosis, transtibial,
and transfemoral subjects, the percentage range indicates that
the NN used has the ability to segregate the deviated data as a
whole series of gait cycle and by the two interacting variables that
might have contributed most to the gait deviation. The validation
for these “pathological” subjects was expected to be <90%, with
transfemoral subject having the greatest error (Table 3) due to the
least voluntary control of residual limb. This error was used as the
quantifying measure in this study.

Phase 3: Using Manipulated Cyclograms to
Identify the Dominant Parameter(s) in Each
Gait Sub-Phases
In this phase, the results obtained from the previous phase were
used to assess the effect of manipulating one variable toward the
other variable of the cyclograms. At each of the gait sub-phase
for each amputee, the cyclograms relationship that resulted in
the largest deviation was then being input back into the linear
network model. A modification of the variable values at the
particular sub-phase with the highest mean normalized error was
done by inserting the normal value (i.e., from healthy subjects
that is averaged using conventional trials averaging method
described in Section Cyclogram Models Generation) at one of
the paired variables as illustrated in Figure 4. The network model
was simulated with the modified input data and the target output
data was again being supplied. The error between the predicted
output and the desired output was calculated again at each of the
sub-phase. This process was repeated with the other variable of
the pair. The results obtained were then compared to determine
which parameter manipulation gives predicted output that was
closer-to-normal cyclograms. This was the crucial identification

TABLE 3 | Percentage range of closeness between networks predicted

output curve and conventional trials averaging curve.

Subjects No. of

subjects

Percentage range

(close-to-conventional-curve), C

Normal 5 91–99%

Orthosis 10 75–87%

Transtibial 10 73–81%

Transfemoral 5 68–79%
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FIGURE 4 | The workflow of transferring the results from Phase 2 and Phase 3.

step in determining the relevant parameter to be controlled at
each of the gait sub-phase.

RESULTS

Using Cyclograms to Quantify Gait
Disparity in Terms of Gait Sub-Phases
The cyclograms relationship that contributed to the highest
mean normalized error at each gait sub-phase for each subject
was summarized in Table 4. At loading response (LR), the
kinematics-kinetics relationship shows high mean normalized
error for each of the subject. The kinetics variable of the pair
indicated in red color contributes to the highest mean normalized
error, except for subjects TT3 (ankle angle, Aθ) and TT5 (knee
angle, Kθ).

At mid-stance (MSt) phase, the result indicated that
the kinematics-kinetics relationship has the highest mean
normalized error for each of the subject, except for TT5
(AM-HP), TT6 (AM-HP), and TT8 (AM-HP), which shows
the kinetics-kinetics relationship. Nevertheless, the variable of
the pairs that contributes the highest mean normalized error at

this phase were all originated from the kinetics variable (knee
power/hip power/hip moment). Except for TT5, TT6, TF4, and
TF5 which shows that kinetics-kinetics relationship has high
mean normalized error at terminal-stance (TSt), the rest showed
that the kinematics-kinetics pair exhibits high mean normalized
error. Similar with the MSt phase, the kinetic variable (knee
power/hip power/hip moment) of the pairs has the highest
mean normalized error in TSt phase compared to the kinematic
variable.

Similar cyclograms’ relationship profile as the aforementioned
MSt and TSt were found for pre-swing (PSw), initial-swing
(ISw) and mid-swing (MSw), whereby most of the relationships
that yield the high mean normalized error were of kinematics-
kinetics pair except for TF4 (AM-HP) in pre-swing and TT2
(AM-HP) in ISw. As for terminal-swing (Tsw), 10 out of the
15 amputee subjects showed unanimously that the kinematics
of knee angle variable yield the highest mean normalized
error. This contradicted with the results of previous gait
sub-phases in which kinetics variable (ankle moment/ankle
power/knee moment/knee power/hip moment/hip power) of the
pair contributed to the highest mean normalized error.
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TABLE 4 | Summary of the paired variables that contribute to the highest mean normalized error at respective gait sub-phase for each amputee subject.

Subjects Cyclograms relationship that contribute to highest mean normalized error

LR MSt TSt PSw ISw MSw TSw

TT1 Kθ-AM

(17.72)

Hθ-HM

(10.88)

Hθ-HM

(115.16)

Aθ-KP

(41.40)

Hθ-HP

(56.37)

Hθ-HP

(579.25)

Kθ-AM

(430.12)

TT2 Hθ-KP

(10.63)

Hθ-HM

(9.08)

Hθ-HM

(141.10)

AM-HP

(140.47)

AM-HP

(36.37)

Hθ-HP

(369.53)

Kθ-KP

(245.60)

TT3 Aθ-HM

(51.69)

Aθ-KP

(50.31)

Hθ-HP

(156.78)

Aθ-KP

(38.67)

Aθ-HP

(223.30)

Aθ-HP

(367.81)

Kθ-AM

(706.88)

TT4 Kθ-AP

(13.89)

Hθ-HM

(6.65)

Hθ-HM

(104.56)

Hθ-HP

(64.19)

Hθ-HM

(50.44)

Hθ-HP

(455.88)

Kθ-AP

(191.65)

TT5 Kθ-KM

(11.16)

AM-HP

(8.48)

AM-HP

(114.92)

Hθ-HM

(49.71)

Hθ-HP

(1181.79)

Kθ-AP

(294.89)

Kθ-AM

(921.14)

TT6 Hθ-KP

(10.70)

AM-HP

(14.42)

AM-HP

(76.40)

Aθ-HP

(36.98)

Hθ-HP

(85.94)

Hθ-HP

(207.19)

Kθ-AP

(365.22)

TT7 Hθ-HM

(8.85)

Hθ-HM

(11.59)

Hθ-HP

(156.96)

Kθ-AM

(26.04)

Hθ-HM

(85.01)

Hθ-HP

(360.35)

Kθ-AM

(255.87)

TT8 Hθ-HM

(13.37)

AM-HP

(15.46)

Hθ-HM

(73.98)

Hθ-HM

(10.24)

Kθ-AP

(73.85)

Hθ-HP

(523.18)

Kθ-AP

(224.12)

TT9 Aθ-KP

(7.93)

Hθ-HP

(8.15)

Hθ-HP

(136.23)

Hθ-HM

(19.62)

Hθ-HM

(39.38)

Hθ-HP

(509.18)

Kθ-AP

(186.91)

TT10 Aθ-KP

(9.43)

Hθ-HM

(9.45)

Hθ-HP

(125.66)

Kθ-AM

(22.24)

Kθ-AP

(69.57)

Hθ-HP

(404.98)

Kθ-AP

(349.92)

TF1 Kθ-AM

(16.11)

Hθ-HM

(9.50)

Hθ-HM

(225.66)

Hθ-HP

(43.74)

Kθ-AP

(127.43)

Hθ-HP

(525.05)

Hθ-Kθ

(402.20)

TF2 Kθ-AM

(15.17)

Hθ-HM

(8.33)

Hθ-HM

(132.96)

Hθ-HP

(51.44)

Hθ-HM

(87.00)

Hθ-HP

(570.20)

Hθ-Kθ

(499.66)

TF3 Hθ-HM

(13.46)

Hθ-HP

(26.83)

Hθ-HP

(400.53)

Hθ-HP

(143.48)

Kθ-AP

(70.98)

Hθ-HP

(525.00)

Hθ-Kθ

(489.07)

TF4 Kθ-AM

(12.71)

Hθ-HM

(9.71)

AM-HP

(230.08)

AM-HP

(87.39)

Hθ-KM

(33.77)

Hθ-HP

(520.47)

Kθ-AP

(502.44)

TF5 Kθ-AM

(15.52)

Aθ-KP

(6.71)

AM-KP

(12.92)

Hθ-HP

(133.40)

Hθ-HM

(38.50)

Hθ-HP

(329.21)

Kθ-AP

(432.54)

A, Ankle; K, Knee; H, Hip; θ , Angle; M, Moment; P, Power.

Red-colored acronyms represent the variable correspond to yielding the highest mean normalized error. The bold figures in bracket refer to the mean normalized error of one of the

paired variable, Ē.

Using Manipulated Cyclograms to Identify
the Most Dominant Parameter in Each Gait
Sub-Phase
The results of the manipulated variable that showed the lowest
mean normalized error were translated as the variable that
induced closest-to-normal cyclograms curve compared to the
after-effect of manipulating the other parameters. The overall
results were summarized as in Table 5. The results indicated that
at the LR phase, when the knee power was manipulated, i.e.,
replaced with normal values, the mean normalized error was
reduced at the phase and consequently the other phases along the
gait cycle were also improved. At MSt phase, the result showed
that manipulating ankle angle and knee power produced the
lowest mean normalized error. The results obtained from NN
showed that manipulating either one of these two parameters
would yield the same result along the whole gait cycle. This
indicated that modifying either one of the parameter is sufficient
to produce close to normal gait profile duringMSt. For TSt, ankle
angle was the dominant parameter that demonstrated the lowest

mean normalized error.While at PSw and ISw, hip power and hip
angle, respectively produced the lowest mean normalized error.

Manipulation of any one of the parameters at MSw does

not improve the sub-phase normalized errors. Observation at
this phase indicated that the manipulation of parameter at this

phase consequently caused the neighboring phases to yield a large

mean normalized error. Therefore, no parameter was selected
for manipulation at this sub-phase. Finally, for the TSw, knee

power parameter was selected as it demonstrated the lowest mean

normalized error when being manipulated.

Identifying Dominant Knee Parameters for Potential

Microcontroller Based Knee Application: A Case

Study
All the dominant parameters identified through this method
were of either hip, knee or ankle parameters. However, in case
of minimizing gait disparity through optimization of the knee
parameters only, results related to hip and ankle parameters were
revisited to identify the dominant knee parameters in its place.
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TABLE 5 | Manipulated parameter that yield the lowest mean normalized error, Ē.

Gait Sub-phase LR MSt TSt PSw ISw MSw TSw

a) Summary of the parameter that yield the

lowest mean normalized error

Knee Power Ankle Angle,

Knee Power

Ankle Angle Hip Power Hip Angle - Knee Power

b) Revised parameter at each of the gait

sub-phase specifically for prosthetic knee

Knee Power Knee Power Knee Moment,

Knee Angle

Knee Angle,

Knee Power

Knee Angle - Knee Power

MSw phase does not require any joint control.

FIGURE 5 | Illustration of how the mid-swing phase connects the end

of initial-swing with the start of terminal swing (knee angle curve).

This was done by referring to the values of mean normalized
error at Phase 2 between hip and ankle variables paired with
knee variables. The knee variables that yielded the least mean
normalized error when paired with hip and ankle variables of the
result as in Table 5(a) was extracted at that particular sub-phase.
The revised result, i.e., for knee parameters only, is presented in
Table 5(b).

DISCUSSION AND CONCLUSION

This study modeled all cyclograms of lower limb joint’s gait
variables holistically and analyzed it to identify the gait disparity
among prostheses users. It also identified the most dominant
knee parameter at each gait sub-phase for a prosthetic knee
design.

The highlight of the finding was the results of MSw gait
phase modified behavior. Manipulation of both parameters in
the coupled pair that was found to have the largest mean
normalized error inMSw phase did not improve the performance
at that particular phase. Worse is, the manipulation of either
parameter at the MSw phase caused the neighboring sub-
phases (ISw and TSw) yield larger mean normalized error. This
indicated biomechanical justification of the momentum and

gravity influence during MSw. The prosthetic knee should be left
independent to extend by the effect of momentum produced by
its weight and the gravity at the mid-swing in order to connect
the end of initial-swing phase with the beginning of terminal-
swing as illustrated in Figure 5. This concept was discussed as
“ballistic synergy” concept introduced by Pitkin that allowed
for the control simplification and reduces the power supplies
demand when compared with robots for which all its degrees of
freedom in motion are controlled during the entire gait (Pitkin,
2010). This would make the kinematics and kinetics match with
normal human ballistic gait synergy.

In this study, the results shown that altering one of the
dominant parameter that was identified using manipulate
cyclogramsmethod yielded to a better performance inmost of the
gait sub-phases. However, it might be oversimplified considering
the complexity in the dynamics of human gait. Therefore,
the findings will need to be further verified by performing
experiment using a micro-controller knee on a patient and the
effect in the gait of the patient is analyzed.

It has been recommended in a previous study that more
prospective intervention studies that take into account the
multifactorial nature on the amputees walking ability should be
conducted (Van Velzen et al., 2006). Thus, we proposed the use
of inter-relationship modification of two-variables interaction
that co-exist during a gait cycle, especially variables across two-
joints which provided an insight into the effect of controlling one
variable onto another variable at other joints during walking for
an amputee.

Finally, only the affected limb of each subject was thoroughly
investigated and reported and the actual speed of each subject
was not considered. Several adaptation strategies in terms of
joint power or work in both the amputated and intact leg were
demonstrated in patients with transfemoral amputation (Prinsen
et al., 2011). Investigation on the bilateral control was only done
to determine the difference in leading or trailing limb kinematic
behavior but not in more detailed toward its cyclograms changes.
Further investigation would offer a more precise understanding
of each subject’s compensatory movement.
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