
METHODS
published: 11 November 2016
doi: 10.3389/fnins.2016.00513

Frontiers in Neuroscience | www.frontiersin.org 1 November 2016 | Volume 10 | Article 513

Edited by:

Olcay Akman,

Illinois State University, USA

Reviewed by:

Jongrae Kim,

University of Leeds, UK

Dan Hrozencik,

Chicago State University, USA

*Correspondence:

David Murrugarra

murrugarra@uky.edu

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Neuroscience

Received: 01 August 2016

Accepted: 25 October 2016

Published: 11 November 2016

Citation:

Murrugarra D, Miller J and Mueller AN

(2016) Estimating Propensity

Parameters Using Google PageRank

and Genetic Algorithms.

Front. Neurosci. 10:513.

doi: 10.3389/fnins.2016.00513

Estimating Propensity Parameters
Using Google PageRank and Genetic
Algorithms
David Murrugarra *, Jacob Miller and Alex N. Mueller

Department of Mathematics, University of Kentucky, Lexington, KY, USA

Stochastic Boolean networks, or more generally, stochastic discrete networks, are

an important class of computational models for molecular interaction networks. The

stochasticity stems from the updating schedule. Standard updating schedules include

the synchronous update, where all the nodes are updated at the same time, and the

asynchronous update where a random node is updated at each time step. The former

produces a deterministic dynamics while the latter a stochastic dynamics. A more

general stochastic setting considers propensity parameters for updating each node.

Stochastic Discrete Dynamical Systems (SDDS) are amodeling framework that considers

two propensity parameters for updating each node and uses one when the update

has a positive impact on the variable, that is, when the update causes the variable to

increase its value, and uses the other when the update has a negative impact, that

is, when the update causes it to decrease its value. This framework offers additional

features for simulations but also adds a complexity in parameter estimation of the

propensities. This paper presents a method for estimating the propensity parameters

for SDDS. The method is based on adding noise to the system using the Google

PageRank approach to make the system ergodic and thus guaranteeing the existence

of a stationary distribution. Then with the use of a genetic algorithm, the propensity

parameters are estimated. Approximation techniques that make the search algorithms

efficient are also presented and Matlab/Octave code to test the algorithms are available

at http://www.ms.uky.edu/∼dmu228/GeneticAlg/Code.html.

Keywords: Boolean networks, stochastic systems, propensity parameters, Markov chains, Google PageRank,

genetic algorithms, stationary distribution

1. INTRODUCTION

Mathematical modeling has been widely applied to the study of biological systems with the goal of
understanding the important properties of the system and to derive useful predictions about the
system. The type of systems of interest ranges from the molecular to ecological systems. At the
cellular level, gene regulatory networks (GRN) have been extensively studied to understand the key
mechanisms that are relevant for cell function. GRNs represent the intricate relationships among
genes, proteins, and other substances that are responsible for the expression levels of mRNA and
proteins. The amount of these gene products and their temporal patterns characterize specific cell
states or phenotypes (Murrugarra and Dimitrova, 2015).
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Gene expression is inherently stochastic with randomness
in transcription and translation. This stochasticity is usually
referred to as noise and it is one of the main drivers of
variability (Raj and van Oudenaarden, 2008). Variability has an
important role in cellular functions, and it can be beneficial as
well as harmful (Kaern et al., 2005; Eldar and Elowitz, 2010).
Modeling stochasticity is an important problem in systems
biology. Different modeling approaches can be found in the
literature. Mathematical models can be broadly divided into two
classes: continuous, such as systems of differential equations and
discrete, such as Boolean networks and their generalizations. This
paper will focus on discrete stochastic methods. The Gillespie
algorithm (Gillespie, 1977, 2007) considers discrete states but
continuous time. In this work, we will focus on models where
the space as well as the time are discrete variables. For instance,
Boolean networks (BNs) are a class of computational models
in which genes can only be in one of two states: ON or OFF.
BNs and, in general, multistate models, which allow genes to
take on more than two states, have been effectively used to
model biological systems such as the p53-mdm2 system (Abou-
Jaoudé et al., 2009; Choi et al., 2012; Murrugarra et al., 2012),
the lac operon (Veliz-Cuba and Stigler, 2011), the yeast cell cycle
network (Li et al., 2004), the Th regulatory network (Mendoza,
2006), A. thaliana (Balleza et al., 2008), and many other
systems (Albert and Othmer, 2003; Davidich and Bornholdt,
2008; Helikar et al., 2008, 2013; Zhang et al., 2008; Saadatpour
et al., 2011).

Stochasticity in Boolean networks has been studied in different
ways. The earliest approach to introduce stochasticity into
BNs was the asynchronous update, where a random node is
updated at each time step (Thomas and D’Ari, 1990). Another
approach considers update sequences that can change from step
to step (Mortveit and Reidys, 2007; Saadatpour et al., 2010). More
sophisticated approaches include Probabilistic BooleanNetworks
(PBNs) (Shmulevich et al., 2002) and their variants (Layek et al.,
2009; Liang and Han, 2012). PBNs consider stochasticity at the
function level where each node can use multiple functions with
a switching probability from step to step. SDDS (Murrugarra
et al., 2012) is a simulation framework similar to PBNs but the
key difference is how the transition probabilities are calculated.
SDDS considers two propensity parameters for updating each
node. These parameters resemble the propensity probabilities in
the Gillespie algorithm (Gillespie, 1977, 2007). This extension
gives a more flexible simulation setup as a generative model but
adds the complexity of parameter estimation of the propensity
parameters. This paper provides a method for computing the
propensity parameters for SDDS.

For completeness, in the following subsection, we will define
the stochastic framework to be used in remainder of the paper.

Stochastic Framework
In this paper we will focus on the stochastic framework
introduced in Murrugarra et al. (2012) referred to as Stochastic
Discrete Dynamical Systems (SDDS). This framework is a natural
extension of Boolean networks and is an appropriate setup
to model the effect of intrinsic noise on network dynamics.
Consider the discrete variables x1, . . . , xn that can take values
in finite sets S1, . . . , Sn, respectively. Let S = S1 × · · · × Sn be

the Cartesian product. A SDDS in the variables x1, . . . , xn is a
collection of n triplets

F = {fi, p
↑
i , p
↓
i }

n
i= 1

where

• fi : S→ Si is the update function for xi, for all i = 1, . . . , n.

• p
↑
i is the activation propensity.

• p
↓
i is the degradation propensity.

• p
↑
i , p
↓
i ∈ [0, 1]. These are the parameters of interest in this

paper.

The stochasticity originates from the propensity parameters p
↑

k

and p
↓

k
, which should be interpreted as follows: If there would

be an activation of xk at the next time step, i.e., if s1, s2 ∈ Sk
with s1 < s2 and xk(t) = s1, and fk(x1(t), . . . , xn(t)) = s2, then

xk(t+1) = s2 with probability p
↑

k
. The degradation probability p

↓

k
is defined similarly. SDDS can be represented as a Markov chain
by specifying its transition matrix in the following way. For each
variable xi, i = 1, . . . , n, the probability of changing its value is
given by

Prob(xi → fi(x)) =











p
↑
i , if xi < fi(x),

p
↓
i , if xi > fi(x),

1, if xi = fi(x),

and the probability of maintaining its current value is given by

Prob(xi → xi) =











1− p
↑
i , if xi < fi(x),

1− p
↓
i , if xi > fi(x),

1, if xi = fi(x).

Let x, y ∈ S. The transition from x to y is given by

axy =

n
∏

i= 1

Prob(xi → yi). (1)

Notice that Prob(xi → yi) = 0 for all yi /∈ {xi, fi(x)}.
Then the transition matrix is given by

A = (axy)x,y∈S (2)

The dynamics of SDDS depends on the transition probabilities
axy, which depend on the propensity values and the update
functions. Online software to test examples is available at http://
adam.plantsimlab.org/ (choose Discrete Dynamical Systems
(SDDS) in the model type).

In Markov chain notation, the transition probability axy =
p(Xt = x|Xt− 1 = y) represents the probability of being in state
x at time t given that system was in state y at time t − 1. If
πt = p(Xt = x) represents the probability of being in state x
at time t, then we will assume that π is a row vector containing
the probabilities of being in state x at time t for all x ∈ S. If π0 is
the initial distribution at time t = 0, then at time t = 1,

π1 =
∑

x∈S

π0(x)axy. (3)
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If we iterate (Equation 3) and if we get to the point where

π =
∑

x∈S

π(x)axy (4)

then we will say that the Markov chain has reached a stationary
distribution and that π is the stationary distribution.

2. METHODS

In this section we describe amethod for estimating the propensity
parameters for SDDS. The approach is based on adding noise
to the system using the Google PageRank (Brin and Page,
2012; Lay, 2012; Murphy, 2012) strategy to make the system
ergodic and thus guaranteeing the existence of a stationary
distribution and then with the use of a genetic algorithm the
propensity parameters are estimated. To guarantee the existence
of a stationary distribution we use a special case of the Perron-
Frobenius Theorem.

Theorem 2.1 (Perron-Frobenius). If A is a regular m × m
transition matrix with m ≥ 2, then

• For any initial probability vector π0, limn→∞ A
nπ0 = π .

• The vector π is the unique probability vector which is an
eigenvector of A associated with the eigenvalue 1.

A proof of Theorem 2.1 can be found in Chapter 10 of Lay (2012).
Theorem 2.1 ensures a unique stationary distribution π

provided that we have a regular transition matrix, that is, if some
power Ak contains only strictly positive entries. However, the
transition matrix A of SDDS given in Equation (2) might not be
regular. In the following subsection, we use a similar approach to
the Google’s PageRank algorithm to add noise to the system to
obtain a new transition matrix that is regular.

TABLE 1 | PageRank scores for the states of the attractors of the system.

Propensities Attractor Score

In Equation 10 0001110000 0.3346

(all fixed to 0.9) 1111000101 0.0463

In Equation 11 0001110000 0.0199

(genetic algorithm) 1111000101 0.5485

The order of variables in each vector state is M, P, B, C, R, Rm, A, Am, L, Lm.

2.1. PageRank Algorithm
For simplicity, consider a SDDS, F = {fi, p

↑
i , p
↓
i }

n
i= 1 where fi:S→

Si, S = K
n, and |K| = p. Then its transition matrix A given

in Equation (2) is a pn × pn matrix. To introduce noise into the
system we consider the Google Matrix

G = gA+ (1− g)K, (5)

where g is a constant number in the interval [0, 1] andK is a pn×
pn matrix all of whose columns are the vector (1/pn, . . . , 1/pn).
The matrixG in Equation (5) is a regular matrix and then we can
use Theorem 2.1 to get a stationary distribution for G,

π = πG = (π1, . . . ,πpn ) (6)

This stationary distribution reflects the dynamics of the SDDS

F = {fi, p
↑
i , p
↓
i }

n
i= 1. The importance of a state x ∈ S can

be measured by the size of the corresponding entry πx in the
stationary distribution of Equation (6). For instance, for ranking
the importance of the states in a Markov chain one can use the
size of the corresponding entries in the stationary distribution.
We will refer to this entry πx as the PageRank score of x.

FIGURE 1 | PageRank scores before and after the genetic algorithm. In each panel, the x-axis shows the PageRank scores while the y-axis shows the

frequencies of states with the given scores in the x-axis (the exact scores for the states of interest are given in Table 1). Left panel shows the PageRank scores where

all the propensities are equal to 0.9 while the right panel shows the PageRank scores where the propensity parameters where estimated using the genetic algorithm.

(A) Scores with propensities in Equation (10). (B) Scores with propensities in Equation (11).
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2.2. Genetic Algorithm
The entries of the stationary distribution π in Equation (6)
can also be interpreted as occupation times for each state.
Thus, it gives the probability of being at a certain state. Now
suppose that we start with a desired stationary distribution
π∗ = (π∗1 , . . . ,π

∗
pn ). We have developed a genetic algorithm

that initializes a population of random propensity matrices
and searches for a propensity matrix prop∗ such that its
stationary distribution π = (π1, . . . ,πpn ) gets closer to the
desired stationary distribution π∗. That is, we search for
propensity matrices such that the distance between π and π∗ is
minimized,

min
p
↑
i ,p
↓
i

d(π ,π∗) or min
p
↑
i ,p
↓
i

|π(j)− π∗(j)| (7)

The pseudocode of this genetic algorithm is given
in Algorithm 1 and it has been implemented in
Octave/Matlab and our code can be downloaded
from http://www.ms.uky.edu/~dmu228/GeneticAlg/Code.
html.

2.3. Estimating the Stationary Distribution
The genetic algorithm, Algorithm 1, uses the exact stationary
distribution through PageRank (see Equation 6) which is
computationally expensive for larger models. Here we present
an efficient algorithm for estimating the stationary distribution
based on a random walk. The expensive part of Algorithm 1 is
the calculation of the stationary distribution π in Equation (6).
We have implemented an algorithm for estimating the stationary
distribution by doing a random walk using SDDS as a generative
model; see Algorithm 2. The idea behind Algorithm 2 is to
use SDDS for simulating from an initial state according to
the transition probabilities given in Equation (5). That is,
we initialize the simulation at an initial state x ∈ S and
then with probability g we move to another state y ∈ S
according to axy (see Equation 1) and with probability 1 −
g we jump to a random node. We repeat this process for a
given number of iterations. At the end of a maximum number
of iterations, we count how often we visited each state and
the normalized frequencies will be the approximated stationary
distribution.

To make the genetic algorithm more efficient, we used
the estimated stationary distribution described in the previous
paragraph. Thus, within the fitness function of Algorithm 1, we
use the estimated stationary distribution to assess the fitness
of the generated propensity matrices. The pseudocode for this
new algorithm is the same as Algorithm 1, the only change is
in the fitness function. This version of the algorithm has also
been implemented in Octave/Matlab and our code can be found
in http://www.ms.uky.edu/~dmu228/GeneticAlg/Code.html.

RESULTS

We test our methods using two published models that are
appropriate for changing the stationary distribution under the
choice of different propensity parameters. The first model is

Algorithm 1 Genetic Algorithm with PageRank.

Require: Functions: F = (f1, . . . , fn), number of generations:
NumGen, population size: PopSize, states of interest: States,
and desired probabilities: π∗ = π∗(States).

Ensure: Propensity parameters: prop∗

1: procedure GENETICGOOGLE(F, NumGen, PopSize, π∗)
2: PopPropensities ← initialize a population of propensity

matrices.
3: [fitnesses,min(PopPropensities)] = FITNESSGOOGLE(F,

PopPropensities, π∗)
4: for i= 1,. . . , NumGen do

5: NewPropensities ← initialize new population of
propensities.

6: for j= 1,. . . , PopSize do
7: if rand < fitnesses(j) then

8: parent1(j) = PopPropensities(j)
9: else

10: parent2(j) = PopPropensities(j)

11: children = CROSSOVER(parent1, parent2,mut, σ )
12: NewPropensities(j) = children

13: [fitnesses,min(NewPropensities)] =

FITNESSGOOGLE(F, NewPropensities, π∗)
14: PopPropensities = NewPropensities.

15: prop∗ = min(NewPropensities).

16: function FITNESSGOOGLE(F, PopPropensities, π∗)
17: for i= 1,. . . , length(PopPropensities) do ⊲ For each

propensity matrix.

18: π =



















PageRank(F, PopPropensities(i))

for exact distribution, see Equation 6,

ESTIMATESTADIST(F, c,NumIter, g)

for estimated distribution, see Algorithm 2.

19: d = d(π ,π∗) ⊲We used a weighted distance to give
predominance to important states.

20: fitnesses(i) = e(−d
2/s)

21: return ([fitnesses,min(PopPropensities)]) ⊲ Keep
propensity with minimum fitness.

22: function CROSSOVER(parent1, parent2,mut, σ )
23: NewProp← initialize new propensity matrix.
24: DivLine = random integer between 1 and

length(parent1).
25: for i= 1,. . . , length(parent1) do
26: if i < DivLine then

27: NewProp(i) = parent1(i)
28: else

29: NewProp(i) = parent2(i)

30: if rand < mut then
31: NewProp(i) = NewProp(i)+ normrand(0, σ ) ⊲

Introduce mutation.

32: return (NewProp)

a Boolean network while the second is a multistate model.
In both models bistability has been observed but the basin
size of one of the attractors under the synchronous update is
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much larger than the basin of the other attractor, and thus
the stationary distribution will be more concentrated in one
of the attractors. We will use our methods to change the
stationary distribution in favor of the attractor with a smaller
basin.

Example 2.2. Lac-operon network. The lac-operon in
E. coli (Jacob and Monod, 1961) is one of the best studied

gene regulatory networks. This system is responsible for the

metabolism of lactose in the absence of glucose. This system

exhibits bistability in the sense that the operon can be either

ON or OFF, depending on the presence of the preferred

energy source: glucose. A Boolean network for this system has

been developed in Veliz-Cuba and Stigler (2011). This model

considers the following 10 components

FIGURE 2 | State space comparison before and after the genetic algorithm. Left panel shows the state space where all the propensities are equal to 0.9 while

the right panel shows the state space with the estimated propensity parameters using the genetic algorithm. The edges in blue represent the most likely trajectory. The

size of the labels of the nodes were scaled according to their PageRank score. (A) State space with propensities in Equation (10). (B) State space with propensities in

Equation (11).

FIGURE 3 | PageRank scores before and after the genetic algorithm. In each panel, the x-axis shows the PageRank scores while the y-axis shows the

frequencies of states with the given scores in the x-axis (the exact scores for the states of interest are given in Table 2). Left panel shows the PageRank scores where

all the propensities were equal to 0.9 while the right panel shows the scores where the propensity parameters where estimated using the genetic algorithm. The score

for the state 2000 is 0.6040. (A) Scores with propensities in Equation (12). (B) Scores with propensities in Equation (13).
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Algorithm 2 Estimate Stationary Distribution.

Require: Functions: F = (f1, . . . , fn), propensities: c, number of
iterations: NumIter, noise: g.

Ensure: Estimated stationary distribution π

π = ESTIMATESTADIST(F, c,NumIter, g)
2: return π

function ESTIMATESTADIST(F, c,NumIter, g)
4: distribution← initialize frequency vector.

s← initialize random initial state.
6: for i = 1,. . . , NumIter do

if rand < g then

8: y = random state between 1 and pn.
else

10: y = SDDS.nextstate(s, c)

distribution(y) = +1 increase state frequency.
12: sum = total frequencies.

π = distribution/sum

14: return π

x1 =M: lacmRNA, x2 = P: lac permease,
x3 = B: lacβ-galactosidase, x4 = C: CAP,
x5 = R: repressor, x6 = Rm: repressor at

medium concentration,
x7 = A: allolactose, x8 = Am: allolactose at

medium concentration,
x9 = L: lactose, x10 = Lm: lactose at medium

concentration,
(8)

and the Boolean rules are given by

f1 = x4 ∧ x5 ∧ x6,
f2 = x1,
f3 = x1,

f4 = Ge,
f5 = x7 ∧ x8,
f6 = (x7 ∧ x8) ∨ x5,
f7 = x9 ∧ x3,
f8 = x9 ∨ x10,

f9 = x2 ∧ Le ∧ Ge,

f10 = ((Lem ∧ P) ∨ Le) ∧ Ge.

(9)

where Ge, Lem, and Le are parameters. Ge and Le indicate the
concentration of extracellular glucose and lactose, respectively.
The parameter Lem indicates the medium concentration of
extracellular lactose. For medium extracellular lactose, that is
when Lem = 1 and Le = 0, this system has two fixed points:
s1 = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) and s2 = (1, 1, 1, 1, 0, 0, 0, 1, 0, 1) that
represent the state of the operon being OFF andON, respectively.

To test our method we calculated the stationary distribution
of the system using Equation (6) with g = 0.9 in Equation (5).
First we used the propensity values given in Equation (10)
where all propensities are fixed to 0.9. This choice of parameters
approximates the synchronous dynamics in the sense that each
function has a 90% change of being used during the simulations
and 10% chance of maintaining its current value. Under this

TABLE 2 | PageRank scores for the states of the attractors of the system.

Propensities Attractor Score

In Equation 12 2000 0.2772

(all fixed to 0.9) 0200 0.2185

0300 0.2108

In Equation 13 2000 0.6040

(genetic algorithm) 0200 0.0716

0300 0.00016

The order of variables in each vector state is CI,CRO,CII,N.

selection of parameters, the fixed point s1 has a PageRank
score of 0.3346 while the other fixed point s2 has a score of
0.0463, see Figure 1A and Table 1. Then we have applied our
genetic algorithm to search for parameters that can increase the
PageRank score of s2 and decrease the score of s1. After doing
so, we found the propensity parameters given in Equation (11).
With this new set of parameters, the fixed point s1 has a score of
0.0199 while s2 has a score of 0.5485, see Figure 1B and Table 1.
To appreciate the impact of the change in propensity parameters,
we have plotted the state space of the systemwith both propensity
matrices in Figure 2. The edges in blue in Figure 2 represent the
most likely trajectory. Notice that in Figure 2B the trajectories
are leading toward s2 and the size of the labels of the nodes were
scaled according to their PageRank score, see Table 1.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

p
↑
i 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

p
↓
i 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

(10)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

p
↑
i 0.81 1.00 0.97 0.62 0.11 0.63 0.22 0.82 0.48 0.60

p
↓
i 0.17 0.59 0.03 0.98 0.39 1.00 0.33 0.07 0.52 0.06

(11)

Example 2.3. Phage lambda infection. The outcome of phage
lambda infection is another system that has been widely studied
over the last decades (Ptashne and Switch, 1992; Thieffry and
Thomas, 1995; St-Pierre and Endy, 2008; Zeng et al., 2010; Joh
and Weitz, 2011). One of the earliest models that has been
developed for this system is the logical model by Thieffry and
Thomas (1995). The regulatory genes considered in this model
are: CI, CRO, CII, and N. Experimental reports (Reichardt and
Kaiser, 1971; Kourilsky, 1973; Thieffry and Thomas, 1995; St-
Pierre and Endy, 2008) have shown that, if the gene CI is fully
expressed, all other genes are OFF. In the absence ofCRO protein,
CI is fully expressed (even in the absence ofN and CII). CI is fully
repressed provided that CRO is active and CII is absent.

This network is a bistable switch between lysis and lysogeny.
Lysis is the state where the phage will be replicated, killing the
host. Otherwise, the network will transition to a state called
lysogeny where the phage will incorporate its DNA into the
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bacterium and become dormant. These cell fate differences have
been attributed to the spontaneous changes in the timing of
individual biochemical reaction events (Thieffry and Thomas,
1995; McAdams and Arkin, 1997).

In the model of Thieffry and Thomas (1995), the first variable,
CI, has three levels {0, 1, 2}, the second variable, CRO, has four
levels {0, 1, 2, 3}, and the third and fourth variables, CII and N,
are Boolean. Since the nodes of this model have different number
of states, in order to apply our methods, we have extended the
model so that all nodes have the same number of states. We have
used the method given in Veliz-Cuba et al. (2010) to extend the
number of states such that all nodes have 5 states (the method
for extending requires a prime number for number of states so
we have chosen 5 states). The method for extending the number
of states preserves the original attractors. The update rules for
this model are available with our code that is freely available. The
extended model has a steady state, 2000, and a 2-cycle involving
0200 and 0300. The steady state 2000 represents lysogeny where
CI is fully expressed while the other genes are OFF. The cycle
between 0200 and 0300 represents lysis where CRO is active and
other genes are repressed.

To test our method we calculated the stationary distribution
of the system using Equation (6) with g = 0.9 in Equation (5).
First we used the propensity values given in Equation (12)
where all propensities are fixed to 0.9. This choice of parameters
approximates the synchronous dynamics in the sense that each
function has a 90% change of being used during the simulations
and 10% chance of maintaining its current value. Under this

selection of parameters, the fixed point 2000 has a PageRank
score of 0.2772 while the states of the cycle 0200 and 0300 have
scores of 0.2185 and 0.2108, respectively. Notice that this cycle
attractor will have an overall score of 0.4293, see Figure 3A

and Table 2. Then we have applied our genetic algorithm to
search for parameters that can increase the PageRank score of the
fixed point 2000 and found the propensity parameters given in
Equation (13). With this new set of parameters, the fixed point
2000 has a score of 0.6040 while the states of the cycle 0200
and 0300 have scores of 0.0716 and 0.00016, respectively, see
Figure 3B and Table 2. To appreciate the impact of the change
in propensity parameters, we have plotted the state space of the
system with both propensity matrices in Figure 4. The edges in
blue in Figure 4 represent the most likely trajectory. Notice that
in Figure 4B the trajectories are leading toward 2000 and the size
of the labels of the nodes were scaled according to their PageRank
score, see Table 2.

CI CRO CII N

p
↑
i 0.9 0.9 0.9 0.9

p
↓
i 0.9 0.9 0.9 0.9

(12)

CI CRO CII N

p
↑
i 1.0000 0 0.4277 0.7968

p
↓
i 0.3962 1.0000 0.6063 0.6946

(13)

FIGURE 4 | State space comparison before and after the genetic algorithm. Left panel shows the state space where all the propensities are equal to 0.9 while

the right panel shows the state space with the estimated propensity parameters using the genetic algorithm. The edges in blue represent the most likely trajectory. The

size of the labels of the node were scaled according to their PageRank score. (A) State space with propensities in Equation (12). (B) State space with propensities in

Equation (13).
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3. DISCUSSION

Parameter estimation for stochastic models of biological
networks is in general a very hard problem. This paper focuses
on a class of stochastic discrete models, which is an extension
of Boolean networks. The methods presented here use a well
stablished approach for introducing noise into a system in
a way that ergodicity and thus the existence of a unique
stationary distribution is guaranteed. Then a genetic algorithm
for calculating a set of parameters able to approximate a
desired stationary distribution was developed. Also, techniques
for approximating the stationary distribution at each iteration of
the genetic algorithm that make the search process more efficient
was applied.

One shortcoming of the method is that it is a stochastic
method. That is, each time we run the algorithmwe get a different
result. An exhaustive investigation about the variance of the
results is still missing. For the examples that we presented in the
results section, the output of the algorithm might vary in about
20% of the reported propensities.

In parameter estimation, sometimes, it is useful to identify
a smaller set of key parameters to estimate. This problem is
out of the scope of the paper. However, for Boolean network
models, one way to address this problem could be by using the
different network reduction algorithms, for instance see Veliz-
Cuba et al. (2014) and Saadatpour et al. (2010), to identify a
smaller “core” network that preserves the important features of
the dynamics of the original network. And then one could apply
the parameter estimation techniques that are described in this
paper. This type of approach could be especially useful if dealing
with very large networks where running the genetic algorithm is
computationally expensive.

4. CONCLUSIONS

In this paper we present an efficient method for estimating the
parameters of a stochastic framework. The modeling framework

is an extension of Boolean networks that uses propensity
parameters for activation and inhibition. Parameter estimation
techniques are needed whenever one needs to tune the propensity
parameters of the stochastic system to reproduce a desired
stationary distribution. For instance, if dealing with a bistable
system and if it is desired to have the stationary distribution that
have the PageRank score concentrated in one of the attractors of
the system, then one needs to estimate the propensity parameters
that represent such a desired distribution. Parameter estimation
methods for this purpose were not available. In this paper we
present a method for estimating propensity parameters given
a desired stationary distribution for the system. We tested the
method in one Boolean network with 10 nodes (where the size
of the state space is 210 = 1024) and a multistate network with
4 nodes where each node has 5 states (where the size of the state
space is 45 = 625). For each system, we were able to redirect the
system toward the attractor with the smaller PageRank score. The
method is efficient and for the examples we have shown it can be
run in few seconds in a laptop computer. Our code is available at
http://www.ms.uky.edu/~dmu228/GeneticAlg/Code.html.
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