AUTHOR=Wilson Gina N. , Smith Matthew A. , Inman Denise M. , Dengler-Crish Christine M. , Crish Samuel D. TITLE=Early Cytoskeletal Protein Modifications Precede Overt Structural Degeneration in the DBA/2J Mouse Model of Glaucoma JOURNAL=Frontiers in Neuroscience VOLUME=10 YEAR=2016 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2016.00494 DOI=10.3389/fnins.2016.00494 ISSN=1662-453X ABSTRACT=
Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins, and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau), calpain-mediated spectrin breakdown product (145/150 kDa), β–tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC; the main retinal target in mice). Phosphorylated neurofilament-heavy chain (pNF-H) was elevated within the optic nerve (ON) and SC of 8–10 month-old DBA/2J mice, but was not evident in the retina until 12–15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau) occurred in ON and SC between 3 and 8 month of age while retinal ptau accumulations occurred at 12–15 months in DBA/2J mice.