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Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation

exercises with their affected upper extremity. Advanced rehabilitation technology may

support them in performing such reach-to-grasp movements. The challenge is, however,

to provide assistance as needed, while maintaining the participants’ commitment during

the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis

for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular

stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic

stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom

exoskeleton which was attached to the paretic arm for performing reach-to-grasp

exercises resembling activities of daily living in a virtual environment. During the exercises,

adaptive electrical stimulation was applied to seven different muscles of the upper

extremity in a performance-dependent way to enhance the task-oriented movement

trajectory. The stimulation intensity was individualized for each targeted muscle and

remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular

stimulation could be well integrated into the exoskeleton-based training, and increased

the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015),

while preserving accuracy. The highest relative stimulation intensity was required to

facilitate the grasping function. The facilitated range of motion correlated with the upper

extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive

multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual

motor capabilities of severely affected stroke patients during rehabilitation exercises and

may thus provide a customized training environment for patient-tailored support while

preserving the participants’ engagement.

Keywords: functional electrical stimulation, robot-assisted rehabilitation, feedback, virtual reality, individualized

therapy, hemiparesis, upper-limb assistance, hybrid assistance
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INTRODUCTION

The majority of stroke survivors remain dependent on others
for activities of daily living due to a dysfunctional upper
extremity (Jørgensen et al., 1999; Dobkin, 2005; Feigin et al.,
2008). However, when clinically meaningful improvements are
achieved, they correlate positively with the dose of therapy (Lohse
et al., 2014; Pollock et al., 2014). Many studies, therefore, aimed
to further increase the number of task-oriented exercises by
applying assistive robotic technologies for stroke rehabilitation;
often resulting in improved arm/hand function and muscle
strength, albeit respective trials have, as yet, provided only
low-quality evidence (Mehrholz et al., 2015). However, critical
voices attribute technology-assisted improvements such as these
to unspecific influences like increased enthusiasm for novel
interventions on the part of both patients and therapists
(Kwakkel and Meskers, 2014). In the same vein, when compared
to dose-matched conventional physiotherapy, robot-assisted
training showed no clinically relevant, additional benefits in
controlled trials (Lo et al., 2010; Klamroth-Marganska et al.,
2014).

This dilemma might be illustrated, for example, by the most
advanced commercially available training system for the upper
limb; an active robotic exoskeleton with seven actuated axes
(i.e., degrees of freedom) that provides antigravity support for
the paretic arm and enables patients with severe impairment to
perform task-oriented movements (Klamroth-Marganska et al.,
2014; Kwakkel and Meskers, 2014; Brauchle et al., 2015).
This device provided slightly more functional gain for the
participating stroke survivors, but was less effective in restoring
arm strength than conventional therapy (Klamroth-Marganska
et al., 2014), probably because it was too supportive when
providing assistance as needed during the exercises (Chase, 2014;
Brauchle et al., 2015).

In this context, neurophysiological parameters might
constitute a means of preserving patient engagement and
of avoiding under-challenge. Other studies applied surface
electromyography to infer the person’s intention to perform a
particular movement and used it as a control signal for robotic
assistance (Maciejasz et al., 2014). For severely impaired stroke
patients, however, who might benefit most from robotic therapy
(Klamroth-Marganska et al., 2014; Brauchle et al., 2015), this
physiological parameter might be inadequate due to paralysis
and/or abnormally co-activated muscles (Wright et al., 2014).
Novel robotic devices, therefore, move only when the brain is
most responsive to the feedback by the multi-joint exoskeleton
(Brauchle et al., 2015). More specifically, patients control the
rehabilitation robots with their brain signals—i.e., via motor
imagery-related oscillations of the ipsilesional cortex—within
the framework of a brain-robot interface (BRI) for stroke
rehabilitation (Brauchle et al., 2015). Although, this technique
makes it possible to successfully link three-dimensional robotic
training to the participants’ own effort, some findings also suggest
that sustained brain self-regulation for brain-controlled robotic
training is challenging and that it may even be characterized by
a significant association with the experience of frustration for
the participants (Fels et al., 2015). This potential drawback of

connecting rehabilitation exercises to physiological parameters
might possibly be overcome, if the resources available for
coping with the mental load, that occurs in conjunction with
BRI technology, are taken into consideration and when the
task difficulty is adjusted accordingly (Naros and Gharabaghi,
2015; Bauer and Gharabaghi, 2015a,b; Naros et al., 2016a). At
the same time, however, a direct comparison of the perceived
workload of BRI tasks and classical rehabilitation exercises
on the basis of voluntary muscle contraction suggested that
the experience of frustration and over-challenge was task-
independent, thus supporting the notion that the perceived
workload was influenced by the characteristics of the individual
subject (Fels et al., 2015).

Accordingly, assistance as needed has to be individually
adjusted during stroke rehabilitation and, if not used precisely,
is constantly confronted with the dangers of both under- and
over-challenge, no matter what assistive technology is applied.
However, current assisted approaches usually take an all-or-
nothing approach, e.g., by providing active robotic guidance
to complete a movement as soon as the patient failed to
reach the defined goal (Klamroth-Marganska et al., 2014); or
by triggering functional electrical stimulation (FES) for overt
muscle contraction as soon as a predefined physiological state
(recorded with EMG or EEG) is achieved (Howlett et al.,
2015).

More targeted assistance might, therefore, be necessary during
these rehabilitation exercises to maintain engagement without
compromising the patients’ motivation; i.e., providing support
as little as possible and as much as necessary. Along these
lines, we explored an alternative approach to classical assistive
technology in this feasibility study. Instead of applying standard
robot-guided rehabilitation or triggered FES, we minimized the
robotic assistance to pure antigravity support while providing
performance-dependent, neuromuscular electrical stimulation
with subthreshold modulation of individual upper limb muscles.
Notably, the robotic assistance was passive, and the electrical
stimulation was non-functional, i.e., elicited no overt movement.
We hypothesized, however, that this combined, closed-loop
approach leads to a wider range of motion than any one of these
assistive tools by itself.

METHODS

Eighteen stroke patients (female/male: 6/12; right/left
hemispheric stroke: 13/5, ischemic/hemorrhagic: 13/5; mean
age: 56 ± 9.8 [34 69] years) in the chronic phase after stroke
(78± 55.3 [8 244] months) presented with a severe and persistent
hemiparesis. The modified upper extremity Fugl-Meyer-
Assessment score (i.e., mean motor UE-FMA score without
coordination, speed, and reflexes; Naros and Gharabaghi, 2015)
of our group of patients was 15.6 ± 4.9 [9 25]. This study,
which was approved by the ethical review committee of the
local medical faculty, involved two sessions of reach-to-grasp
training with a multi-joint exoskeleton attached to the paretic
arm. Each session lasted approximately 30min. and consisted of
150 trials. The exoskeleton, virtual reality, and task design have
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been described in detail elsewhere (Grimm et al., 2016) and are
cited here.

Exoskeleton and Virtual Reality
We used a commercially available (Armeo Spring, Hocoma,
Volketswil, Switzerland) rehabilitation exoskeleton for shoulder,
elbow and wrist joints with seven axes (i.e., degrees of freedom),
providing antigravity support for the paretic arm and registration
of movement kinematics and grip force. The un-weighing
was realized via two springs incorporated into the device.
This device could be used to make individual adjustments
e.g., of gravity compensation, thereby supporting patients with
severe impairment in performing task-oriented practice within
a motivating virtual environment. We extended these features
in-house by using the real-time sensor data of the exoskeleton
to display a three-dimensional multi-joint visualization of the
user’s arm in virtual reality. This entailed capturing the angles
of all arm joints and the grip force from a shared memory
block using a file mapping communication protocol. The virtual
arm engine was programmed in a Microsoft XNATM framework.
The arm model utilized by the engine was constructed as a
meshed bone-skin combination with 54 bones (3Ds Max 2010TM,
Autodesk). The measured joint angles (accuracy 0.1◦) and grip
forces of the device were used to modify the bone-vectors of
the meshed model according to the movements of the user,
thereby providing online closed-loop feedback. The joint angles
of the exoskeleton were directly represented in virtual reality,
whereas the grip forces were augmented to feedback natural hand
function. Prior to each session, participants were instructed to
perform a natural reach-to-grasp movement during the task by
using distal (elbow) rather than proximal (shoulder) movements.
The three-dimensional visualization of the arm was then applied
during each task as an implicit online feedback of the movement
since explicit information can disrupt motor learning in stroke
patients (Boyd and Winstein, 2004; Cirstea and Levin, 2007).
Various virtual training paradigms were designed to allow for
different rehabilitation exercises resembling activities of daily
living.

Task Design
In this study, participants performed self-paced, three-
dimensional (in x-, y-, and z-direction) reach-to-grasp
movements in virtual space. Patients could interact within
the virtual space via the virtual arm representation described
above. The position of the virtual arm changed in real-time
according to the patient’s arm position tracked by the orthosis.
The grasping and releasing of the virtual ball was performed
by applying force to the grip sensor and opening the hand,
respectively. The relationship between the force applied to the
grip sensor and the virtual movement was adjusted individually
to each user.

After system setup, the exercise was presented on a screen
in front of the patient. This exercise consisted of a transfer
movement, i.e., a ball had to be grasped in virtual space and
transferred to a basket. The position of the ball and the basket
in space and in relation to each other was randomly distributed
in x- (left to right/ right to left), y- (up to down/down to up),

or z-direction (front to back/ back to front). After presenting
the objects in virtual space, the patients had to move the virtual
hand toward the presented ball. The movements were self-paced
and no distinct timing was given. After grasping the ball, three-
dimensional transfer movements toward a basket were necessary,
i.e., the ball had to be grasped, carried to a distant basket and
then released again. The timing for this transfer movement was
self-induced. The virtual hand could interact with the ball as
soon as it entered a defined range around the latter. The ball
changed its color according to the hand position (white: out of
range, green: possible to grasp, yellow: possible to transfer, red:
possible to release). After releasing the ball in the basket, the next
exercise started by presenting the next ball randomly distributed
in virtual space.

Closed-Loop Neuromuscular Stimulation
We integrated a neuromuscular electrical stimulation device
in the exoskeleton-based training environment (Rehastim, 8-
channel stimulator, Hasomed GmbH, Magdeburg, Germany),
and applied biphasic square impulses (frequency: 30Hz, pulse
width: 500µs). The stimulation intensity of this integrated
neuroprosthesis was updated in a closed-loop, real-time iteration
at 60Hz via a controller area network (CAN)/universal serial
bus (USB) port using a custom-made algorithm. This made it
possible to stimulate seven different muscles / muscle groups
relevant for reaching and grasping, while the output current was
adapted continuously for each of them: M. extensor digitorum
communis, M. flexor digitorum superficialis, M. biceps brachii,
M. triceps brachii, M. pectoralis major, M. infraspinatus/M.
teres minor (i.e., muscle group), M. deltoideus pars anterior.
In pairs of antagonist muscles/muscle groups, only one of
them was stimulated at the same time; i.e., either M. extensor
digitorum communis or M. flexor digitorum superficialis, either
M. biceps brachii or M. triceps brachii, either M. pectoralis
major or M. infraspinatus/M. teres minor. This resulted—
together with the M. deltoideus pars anterior—in up to four
simultaneously stimulated, co-activated muscles/muscle groups
(Figure 1).

According to a biomechanical movement model (Figure 2)
on the basis of the vector positions of the virtual arm, the
neuromuscular stimulation pattern and intensity was calculated
(Figure 3).

More specifically, the target vector and the estimated
movement vector of each individual muscle group were
calculated on the basis of the real-time arm position measured
by the exoskeleton, while using the cosine similarity functions
between the two vectors for weighting. This function gives
a maximum output of 1 when the target vector and the
estimated movement vector of the corresponding muscle group
are pointing in the same direction. When the vectors point
in opposite directions, the function would result in a negative
output and is then set to zero, i.e., resulting in no stimulation.
For positive outputs, i.e., when target vector and estimated
movement vector point in the same direction, the stimulation
amplitudes are calculated by multiplying the weighting of the
muscle vectors with a Boltzmann-fitting of the time course of
a ramping stimulation toward maximum stimulation strength
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FIGURE 1 | Set-up of multi-channel neuromuscular stimulation integrated into a gravity-compensating, seven-degree-of-freedom exoskeleton.

FIGURE 2 | Biomechanical movement model on the basis of the vector positions of the virtual arm. The vector vt (blue) is representing the target vector

necessary to reach the object. The vector x4t (green) is representing the movement vector of stimulating the M. biceps brachii in the elbow joint. The ellipses represent

the movement radius.

(Equation 1). This stimulation began with a 2 s delay to avoid
instability of the induced movement.

ci(t) =
(

1− 1
et

)

ci max

−→xιt
−→vt

‖−→xιt‖‖
−→vt ‖

ci ∈ R0+ : stimulation current, muscle group i
xιt : estimated movement vector, muscle group i
−→vt : estimated target vector

(1)

Each patient performed two consecutive exoskeleton-supported
training sessions—one with and one without concurrent
stimulation—in randomized order. Both the exoskeleton and
the maximum stimulation intensity (Stimmax) were individually
calibrated: The exoskeleton was adjusted to provide optimized
gravity compensation for every joint and to allow for goal-
directed movements in three-dimensional space. The gravity
compensation was provided by a spring mechanism of the
orthotic device, which was calibrated individually to balance the
weight of the patient’s paretic arm. Thereby, the exoskeleton
was adjusted to the corresponding functional anatomy of

the participant before each session. Particularly, the shoulder

position, forearm, and upper arm length were considered for the

adjustments.
For calibration of the stimulation intensity, the different

muscles/muscle groups where identified anatomically before

applying the self-sticking FES electrodes (Han-Sen GmbH,
Hamburg, Germany; 50mm diameter and 50 × 80mm).
The electrode positions were optimized by subsequent test
stimulation. Since all participants suffered from severe

upper limb impairment, prolonged supra-motor threshold
stimulation was perceived as painful and ineffective and
was therefore not applied. The Stimmax for each muscle

group was empirically determined as the output current
perceived as comfortable and approaching the motor
threshold, but remaining still subthreshold. The motor
threshold was identified by a visible joint movement. Each
muscle group was stimulated separately before the training
session to determine the individual maximum stimulation
strength.
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FIGURE 3 | Flow diagram of the autoadaptive stimulation algorithm.

Outcome Measures
The kinematic assessment included movement smoothness,
temporal efficiency, and range of motion (volume). Movement
smoothness was captured by calculating changes of movement
direction along an optimal direct path toward the targets, by
estimating the distance function between the hand-position and
the final endpoint, and by calculating the second derivative of the
function to determine the number of turning points for each task

(Cirstea et al., 2006). In order to avoid compensatory shoulder
movements the stimulation patterns for shoulder and biceps
activation were equally distributed for an inbound trajectory.
Temporal efficiency was captured as the time required to

complete each task, and as the mean and peak velocity of the
hand between the targets while calculating their distance for
x-, y-, and z-directions in virtual units (vu). The overall range
of motion (volume, vu3) was measured as the complete space
covered during the exercises. The range of sensor data from the

grip-sensor was estimated as the mean change in grip pressure.
The range of shoulder, upper arm, and forearm movement was

measured in degrees.
The maximum (Stimmax) and mean stimulation amplitude (in

mA) was calculated per channel, i.e., muscle group. In addition,

we captured the stimulation period for different stimulation
intensities, i.e., <25% Stimmax, 25–50% Stimmax, >50–75%

Stimmax, >75% Stimmax.

Statistics
Statistical analysis was performed on a Matlab 2010b Engine.
For paired data points a t-test for paired samples was
performed. The significance level was set at p = 0.0125 for
all tests after conservative Bonferroni correction. Correlation
coefficients r and respective p-values were calculated
between the overall range of motion and the UA-FMA
score.

RESULTS

The three-dimensional reach-to-grasp exercises of this study
could be completed only with the help of assistive technology.
None of the patients was able to complete grasping exercises in
unsupported conditions, i.e., they all scored 0 out of a possible
4 points in the related FMA sub-scores (“grasp cylinder,” “grasp
tennis ball”). However, neuromuscular stimulation alone was not
sufficient in our severely impaired patient group, i.e., none of the
targeted muscles was stimulated in a functionally relevant way to
allow for overt muscle contraction. The patients were, therefore,
unable to perform a reach-to-grasp movement per se, even when
neuromuscular stimulation was applied. Instead, the multi-joint
antigravity assistance was essential to facilitate the goal-oriented
grasping exercises in the 3D-virtual environment and required
commitment from the patients.
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Fifteen of the patients were able to complete all 150 trials
in each session. The amount of training had to be reduced for
three patients, two of whom completed 75 trials and the third 50
trials in each session. This resulted in a group mean of 135 trials
(±32.2808, [50 150]). The reach-to-grasp direction was randomly
distributed (x: 44.4± 12.1 vu, y: 45.1± 11.2 vu, z: 44.1± 12.6 vu).

Closed-loop neuromuscular stimulation could be integrated
well into the exoskeleton-based training; this neuroprosthesis

increased the task-related range of motion (ROM) in 16 out of 18
participants as well as themean ROMof all patients (p = 0.0004).
More distant targets in the virtual training space were achieved
in all three x-, y-, z-directions and the participants were able to
perform longer transfer movements, i.e., inter-target distances
(Table 1, Figure 4).

Moreover, the movement range of the shoulder, upper
arm, and forearm increased significantly in the neuroprosthesis

TABLE 1 | Virtual training space with and without stimulation.

Volume (vu3) Distance between x-Movements y-Movements z-Movements

targets (vu) distance (vu) distance (vu) distance (vu)

Training space in virtual units (with

and w/o stim)

4877 [548 13539] 27.8± 10.9 [1.650.4] 39.6± 18.0 [2.974.6] 28.0±12.7 [0.852.6] 18.9± 6.45 [1.632.4]

Neuroprosthesis (with stimulation) 5667 [7366 13538.8] 30.7± 12.2 [7.250.4] 44.1± 19.2 [9.574.6] 30.5±14.3 [0.852.6] 20.3± 6.5 [10.132.4]

Orthosis (w/o stimulation) 4087 [5488 9023] 24.86± 9.58 [1.639.8] 35.1± 16.7 [2.969.8] 25.4±10.9 [1.141.9] 17.5± 6.4 [1.628.6]

Significance level,

p-value(*significant)

0.0004* 0.0001* 0.0007* 0.001* 0.002*

FIGURE 4 | Comparison of paired plots for mean values of the range of motion (volume) and distances in x-, y-, and z- direction with and without

stimulation.
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condition, while the grip pressure showed a trend (Table 2,
Figure 5). The range of motion correlated with the upper
extremity Fugl-Meyer Assessment score of the patients for both
the antigravity orthosis (r = 0.62, p = 0.01) and the
neuroprosthetic condition (r = 0.58, p = 0.028).

The neuroprosthesis increased the movement velocity (3.8 vs.
3.5 vu/s, p = 0.015) with a trend toward a faster task completion
(6.9 vs. 7.2 s, p = 0.02) while preserving the smoothness of the
trajectory (9.3 vs. 9.31, p = 0.46; Figure 6).

The stimulation was applied after the self-inducedmovements
of the patients by adapting the intensity in accordance with
the output of the dynamic biomechanical arm model and the
estimated target vector for each targeted muscle group (Table 3,
Figure 7). Completion of the overall task took on average 6.9 s,
while most of the time (mean 4.8 ± 0.6 s, i.e., 82% of the time)
no or only minimal stimulation, i.e., <25% of Stimmax, was
applied. The same was true for the virtual transfer task of the ball
into the basket, which was supported by minimal stimulation,
i.e., <25% of Stimmax, in 78% of the trajectory.The highest
relative stimulation intensity was necessary to facilitate the
grasping function, i.e., the grip strength in transfer movements,
by applying stimulation intensities of >75% Stimmaxto the finger
flexion muscle for about 22% of the time. The performance-
dependent adaptation of stimulation resulted in a decrease in
both stimulation intensity (on average by 35.4%) and period
(on average by 36.77%) in the course of the session, which is
suggestive of motor learning.

DISCUSSION

The present study demonstrated the feasibility of integrating
multichannel closed-loop neuromuscular stimulation in an
exoskeleton-based training; this neuroprosthesis increased the
goal-oriented range of motion and movement velocity while
preserving accuracy in chronic stroke patients with a severe
impairment of the upper-extremity. The multi-joint exoskeleton
for the paretic arm enabled the patients to perform task-oriented
practice within a virtual environment (Housman et al., 2009),
which they were unable to perform without assistance. Notably,
unlike other studies with similarly affected stroke patients, in
which robots completed a movement that the patients had
begun (Klamroth-Marganska et al., 2014; Brauchle et al., 2015),
this hybrid technology delivered antigravity-support only, i.e.,
provided no active assistance. Thus, the patient engagement
was maximized by default in the present study, leaving no
room for slacking; the continuous visual feedback of the arm
kinematics enabled the patients to adjust their action online

during each task; an approach closely resembling natural motor
learning.

Such a closed-loop framework adheres to an operant
conditioning rationale (Bauer et al., in press), providing
contingent feedback to facilitate the targeted activity considered
to be beneficial to recovery and which might ultimately lead to
functional gain (Bauer and Gharabaghi, 2015a). One drawback
of such restorative approaches, however, is that the considerable
challenge of these exercises (Fels et al., 2015; Bauer and
Gharabaghi, 2015b) might condition the patients to explore
alternative, i.e., therapeutically undesirable strategies such as
compensatory shoulder movements (Cirstea and Levin, 2000) or
co-activation of non-targeted muscles (Gharabaghi et al., 2014b).
Moreover, particularly in patients with severe impairments,
non-successful trials may frustrate the participants, thereby
compromising their motor learning.

In this context, adaptive neuromuscular stimulation, as
applied in the present study, may support the exercises by
extending the range of motion in accordance with the actual
ability of each patient. More specifically, the range of motion
correlated with the upper extremity Fugl-Meyer Assessment
score of the patients for both the non-NMES and the NMES
condition, indicating a targeted assistance of the genuine
movement capability of each patient. Importantly, to avoid
under-challenge, stimulation was applied adjunct to voluntary
contraction and not as an alternative. Moreover, such an additive
stimulation approach has proved effective in assisting reaching
and grasping exercises in severely impaired, chronic stroke
patients for repetitive task practice (Thrasher et al., 2008;
Oujamaa et al., 2009; Mann et al., 2011). Unlike these previous
approaches, however, our stimulation paradigm was (i) multi-
channeled, i.e., targeting seven different muscles, (ii) model-
based to follow the three-dimensional movement trajectory, (iii)
performance-dependent to enhance task-oriented training, and
(iv) subthreshold to avoid slacking:

(i) Previous approaches combining functional electrical
stimulation (FES) with mechanical support for the upper
limb usually stimulated one or two muscles. Only recently,
FES of thee joints, i.e., shoulder, elbow, and wrist, was
implemented and shown to be effective in reducing upper
limb impairment following stroke (Meadmore et al., 2014).
Notably, more functional motor activities of the upper limb
could be performed following this intervention: a finding
that could not be achieved in an earlier study conducted
by the same research group using exactly the same therapy
dose (18 sessions, 60min each) with FES to two proximal
muscles only (Meadmore et al., 2012). Future studies will

TABLE 2 | Movement range of joints with and without stimulation.

Joint Shoulder (◦) Upper arm (◦) Forearm (◦) Grip (pu)

Movement in degrees (with and w/o stim) 18.2 ± 10.8 [1.7 54.4] 9.7 ± 4.9 [0.4 19.4] 8.9 ± 5.8 [0.2 29.2] 0.1 ± 0.1 [0.0 0.2]

Neuroprosthesis (with stimulation) 20.2 ± 11.9 [5.2 54.4] 11.0 ± 5.2 [2.7 19.4] 10.8 ± 9.2 [0.1 27.7] 0.1 ±0.1 [0.0 0.2]

Orthosis (w/o stimulation) 16.3 ± 9.7 [1.7 43.5] 8.4 ± 4.5 [0.4 16.1] 7.5 ± 4.9 [0.2 18.5] 0.1 ± 0.1 [0.0 0.2]

Significance level, p-value (*significant) 0.0012* 0.0002* 0.0007* 0.08 (not significant)
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FIGURE 5 | Comparison of paired plots for mean values of kinematic data (for shoulder movement, upper arm movement, forearm movement, and

grip force) with and without stimulation.

TABLE 3 | Stimulation parameters.

Muscle M. flexor digitorum M. extensor M. biceps M. triceps M. pectoralis M. infraspinatus M. deltoideus

superficialis carpi radialis brachii brachii major pars anterior

Channel 1 2 3 4 5 6 7

Calibrated maximum stimulation

intensity (mA)

9.67 [2.00 20.00] 8.8 [3 17] 11.4 [6 22] 11.7 [6 22] 8.9 [4 17] 9.8 [4 18] 8.7 [4 17]

Mean stimulation intensity (mA)

and range

3.3 [0.8 6.3] 0.7 [0.3 1.3] 2.2 [0.9 4.7] 1.1 [0.4 2.0] 1.5 [0.6 4.1] 0.9 [0.4 2.1] 1.1 [0.4 2.5]

Stimulation period % (Amplitude

[0% 25%])

48.6 [36.7 77.3] 88.4 [77.7 97.8] 69.9 [57.6 89.4] 87.6 [76.5 96.2] 71.2 [52.0 94.9] 84.2 [68.1 94.9] 79.4 [61.1 96.8]

Stimulation period % (Amplitude

[25% 50%])

12.4 [0.0 21.8] 5.8 [1.2 14.5] 12.4 [6.0 18.5] 5.6 [2.4 8.5] 11.7 [3.6 22.4] 7.4 [2.9 16.8] 8.8 [1.6 19.0]

Stimulation period % (Amplitude

[50% 75%])

16.9 [8.9 22.5] 3.5 [0.4 7.1] 9.9 [3.5 14.8] 4.0 [0.3 6.6] 10.0 [1.3 18.3] 4.5 [2.0 6.9] 5.7 [1.3 11.8]

Stimulation period % (Amplitude

[75% 100%])

22.1 [5.6 40.3] 2.4 [0.4 5.2] 7.9 [0.6 17.5] 2.9 [0.2 8.5] 7.0 [0.2 13.0] 3.9 [0.2 8.9] 6.1 [0.3 13.3]
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FIGURE 6 | Comparison of paired plots for mean values of distance to target, velocity, time per task, and smoothness of trajectories with and without

stimulation.

reveal whether a more fine-graded targeting of even more
muscles—as shown to be feasible in the present study for
stimulation-assisted task-oriented 3D exercises—leads to
further functional gains when applied repetitively within a
multi-session intervention.

(ii) Conventional FES of the upper limb, even when
physiologically triggered, follows an all-or-nothing
concept. Only few research groups have explored model-
based stimulation paradigms to precisely control FES for
goal-oriented movements of the upper limb (Hughes et al.,
2009; Meadmore et al., 2012, 2014). The most advanced
approach used iterative learning control, which applied
data from previous attempts in an effort to update the
FES control signal on the current attempt (Meadmore
et al., 2014). The reduction of error between real and
reference trajectories within a biomechanical model thereby
corresponded to improved performance over successive
attempts. In addition, the supplied FES was reduced
as performance improved to optimize motor learning
(Meadmore et al., 2014). Our approach complements this
strategy; instead of adjusting the stimulation from trial to
trial, we tuned it within each trial. Rather than aiming to

reduce the error between actual and reference trajectory
with suprathreshold FES, we applied a ramping stimulation
which, nevertheless, remained subthreshold throughout the
task-oriented attempt (see below). Instead of one (Hughes
et al., 2009), two (Meadmore et al., 2012), or three muscles
(Meadmore et al., 2014), we integrated a total of seven
muscles into our biomechanical model. By adding more
muscles a larger number of movement directions could be
addressed, thereby, covering a three-dimensional volume
with movements in x-, y-, and z-direction. Despite these
differences, the supplied multi-channel stimulation was
reduced in our feasibility study as well. This could already
be observed in the course of one session, suggesting that,
even when applied subthreshold, an online adaptation of
stimulation has immediate effects on motor learning.

(iii) The performance-dependent stimulation applied in the
present study was more subtle than in other approaches.
Since no functional muscle contraction was achieved by
the actual stimulation, performance was instead captured
by gradual modulations of self-initiated, orthosis-assisted
movements. It is therefore somewhat surprising that
this novel approach resulted in task-adapted stimulation
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FIGURE 7 | Exemplary three-dimensional movement trajectory (upper row) with the respective movement in x-direction over time for different phases

of the task (middle row). Stimulation intensities during the movement that were applied to the respective muscles (lower row).
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intensities for each of seven targeted muscles during
the task-oriented exercises, e.g., with the highest relative
stimulation intensity for facilitation of grip-strength
occurring during transfer movements. This information
about the different levels of assistance required by the
muscles for specific goal-oriented tasks might be used
in future studies to customize the exercises and training
protocols in such a way as to target specific weaknesses,
e.g., particular muscles/muscles groups in the course of a
long-term training program.

(iv) Neuromuscular stimulation alone, however, was not enough
to facilitate reach-to grasp movements in our severely
impaired patient group. Instead, multi-joint antigravity
assistance was required to facilitate the task-oriented
training in the 3D-virtual environment. Although, none
of the targeted muscles was stimulated in a functionally
relevant way to allow for overt muscle contraction,
the cumulative effect of multi-channel subthreshold
stimulation resulted in an increased range of motion and
movement velocity while preserving smoothness during
the goal-oriented exercises. This finding suggests a general
facilitation of sensorimotor networks, which might provide
a novel restorative approach in chronic stroke patients with
a severe impairment of the upper-extremity. However, it has
to be borne in mind that the applied ramping stimulation,
based on a Boltzmann-fitting algorithm during each task,
led to minimal stimulation intensity, i.e., <25% of Stimmax,
during most of the training period. Future studies need to
explore whether different adaptive stimulation paradigms
may achieve larger kinematic gains, e.g., by applying more
neuromuscular stimulation, or by utilizing transcranial
direct current stimulation to facilitate exoskeleton-based
motor leaning (Naros et al., 2016b).

However, the current approach resulted in kinematic gains while
still encouraging effort from the participants. To further generate
a challenge for motor learning, the progression of training is
necessary (Guadagnoli and Lee, 2004) and might be realized
by reducing the FES support level (Meadmore et al., 2014) or
by automated adaptation of training difficulty during robot-
assisted stroke rehabilitation (Metzger et al., 2014). Both of these
requirements are integrated into the presented neuroprosthetic
set-up and need to be examined in more detail with regard
to their respective clinical relevance in the targeted patient
population by performing intervention studies with repetitive
sessions.

The presented neuroprosthesis sparks hope for a general
capacity for even larger gains, e.g., when additional interventions

such as brain state-dependent cortical stimulation (Kraus
et al., 2016a) are applied to maximally exploit the salvaged
restorative potential. In particular, the task-related and muscle-
specific facilitation provided by this hybrid device during
reach-to-grasp exercises of severely impaired stroke patients,
may deliver the framework for concurrent cortical stimulation.
Activity-dependent transcranial magnetic stimulation, for
example, may constitute such an additional input during
robot-assisted training (Gharabaghi, 2015; Massie et al., 2015).

Associative brain state-dependent stimulation (Royter and
Gharabaghi, 2016) during brain-robot interface exercises has
the potential to unmask latent corticospinal connectivity after
stroke (Gharabaghi et al., 2014a). The application of such
state-dependent stimulation synchronized to maximum gains
of assisted range of motion may consolidate the involved
corticospinal circuits in accordance with Hebbian-like plasticity
rules. More specifically, neuroprosthetic exercises based on
brain-robot feedback may result in connectivity changes of
cortico-cortical motor networks (Vukeliæ et al., 2014; Vukelić
and Gharabaghi, 2015a,b) and lead to a re-distribution of
cortico-spinal connections (Kraus et al., 2016b). This advanced
assistive rehabilitation technology may thereby constitute a
back-door to the motor system to further improve the scope for
recovery (Bauer et al., 2015).

In summary, combining robotic assistance with adaptive
closed-loop neuromuscular stimulation provides customized
rehabilitation environments for severely impaired stroke
patients, and may increase kinematic parameters while
preserving the voluntary effort of patients, during rehabilitation
training. Whether these technological refinements also
lead to relevant functional gains requires investigation in
controlled intervention studies in comparison to dose-matched,
conventional physiotherapy.
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Bauer, R., Fels, M., Vukelić, M., Ziemann, U., and Gharabaghi, A. (2015). Bridging

the gap between motor imagery and motor execution with a brain-robot

interface. Neuroimage 108, 319–327. doi: 10.1016/j.neuroimage.2014.12.026

Bauer, R., and Gharabaghi, A. (2015a). Reinforcement learning for

adaptive threshold control of restorative brain-computer interfaces:

a Bayesian simulation. Front. Neurosci. 9:36. doi: 10.3389/fnins.2015.

00036

Bauer, R., and Gharabaghi, A. (2015b). Estimating cognitive load

during self-regulation of brain activity and neurofeedback with

therapeutic brain-computer interfaces. Front. Behav. Neurosci. 9:21. doi:

10.3389/fnbeh.2015.00021

Frontiers in Neuroscience | www.frontiersin.org 11 June 2016 | Volume 10 | Article 284

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grimm and Gharabaghi Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance

Boyd, L. A., and Winstein, C. J. (2004). Providing explicit information disrupts

implicit motor learning after basal ganglia stroke. Learn. Mem. 11, 388–396.

doi: 10.1101/lm.80104
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