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INTRODUCTION

Synaptic cell-adhesion molecules and their interactions with other molecular pathways affect
both synapse formation and its function (Varoqueaux et al., 2006; Sudhof, 2008; Bemben et al.,
2015a). Neurexins are presynaptic cell-adhesion molecules that interact with neuroligins and other
postsynaptic partners. Neurexins are encoded by three genes, each of which encodes a long and
short isoform, termed α- and β-neurexins, respectively (Sudhof, 2008). Interestingly, despite studies
linking neurexins to autism and other neuropsychiatric disorders (Leone et al., 2010; Rabaneda
et al., 2014), the precise cellular mechanisms underlying the role of neurexins in cognition remain
poorly understood.

Since most biochemical studies of neurexins have focused on β-neurexins, investigating the
synaptic actions of β-neurexins is particularly imperative. In their timely Cell article, Anderson
et al. reported that β-neurexins selectively modulate synaptic strength at excitatory synapses
by regulating postsynaptic endocannabinoid synthesis, describing an unexpected trans-synaptic
mechanism for β-neurexins to control neural circuits via endocannabinoid signaling (Anderson
et al., 2015; Summarized in Figure 1A).

β-NEUREXINS REGULATE EXCITATORY NEUROTRANSMISSION
VIA ENDOCANNABINOID SIGNALING

Functional study of neurexins represents a major technical challenge due to their diversity and
complexity. To study the specific role of β-neurexins, Anderson et al. generated conditional
knockout mice of all β-neurexin genes. Using electrophysiological and pharmacological
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FIGURE 1 | Transsynaptic regulation of endocannabinoid signaling by β-neurexins and its implications in synaptic plasticity and diseases. (A)

Regulation of excitatory synaptic strength by β-neurexins via endocannabinoid system. Anderson et al. demonstrated that presynaptic β-neurexins regulate

endocannabinoid signaling by controlling postsynaptic endocannabinoid 2-AG synthesis. When β –neurexins are removed, 2-AG synthesis is disinhibited, presynaptic

CB1Rs are activated, and synaptic strength is decreased (Anderson et al., 2015). In addition, the AC-PKA dependent LTP in burst-firing neurons is blocked, which

may account for the impaired contextual memory in hippocampal CA1 β-neurexin knockout mice. β-neurexins act as a brake on endocannabinoid signaling possibly

via transsynaptic interaction with postsynaptic neuroligin isoforms that exclusively bind to β-neurexins, but not a-neurexins (Anderson et al., 2015). β-neurexins might

downregulate tonic endocannabinoid signaling through mGluR1/5 or M1/M3 receptors since activation of those GPCRs is known to trigger 2-AG production via PLC

pathway (Varma et al., 2001; Chevaleyre et al., 2006; Heifets and Castillo, 2009; Kano et al., 2009; Castillo et al., 2012; Rinaldo and Hansel, 2013; Martin et al., 2015).

This regulation might also involve VGCCs, NMDARs, or AMPARs as Ca2+ influx through these channels could facilitate PLC-DAGL mediated 2-AG production

(Ohno-Shosaku et al., 2005; Castillo et al., 2012). The exact postsynaptic partners of β-neurexins in this process await to be identified. (B) The regulation of

endocannabinoid signaling by β-neurexins supports neurexins/neuroligins-endocannabinoid signaling as a common pathomechanism in cognitive disorders (Krueger

and Brose, 2013; Anderson et al., 2015). Abnormalities in this signaling pathway could disrupt synapses and neural circuits, and contribute to neurological and

psychiatric diseases (Chubykin et al., 2005; Tabuchi et al., 2007; Katona and Freund, 2008; Sudhof, 2008; Gogolla et al., 2009; Bot et al., 2011; Etherton et al., 2011;

Foldy et al., 2013; Singh and Eroglu, 2013; Rothwell et al., 2014; Sindi et al., 2014; Aoto et al., 2015; Bedse et al., 2015; Born et al., 2015; Di Marzo et al., 2015;

Parsons and Hurd, 2015; Wang and Doering, 2015; Wang et al., 2015; Bemben et al., 2015b; Chanda et al., 2016). Abbreviations: 2-AG, 2-arachidonoyl-sn-glycerol;

AC, adenylyl cyclase; AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CB1R, cannabinoid receptor 1; DAG, diacylglycerol; DAGL,

diacylglycerol lipase; LTP, long-term potentiation; M1/3R, muscarinic acetylcholine receptor 1/3; mGluR, metabotropic glutamate receptor; NMDAR,

N-methyl-D-aspartate receptor; PIP2, phosphatidylinositol 4, 5-bisphosphate; PKA, protein kinase A; PLC, phospholipase C; VGCC, voltage-gated Ca2+ channels.

approaches, the authors elegantly analyzed neurotransmission
and synaptic strength in preparations of cultured cortical
neurons and acute subiculum slices from those β-neurexin
knockout mice (Anderson et al., 2015).

Can β-neurexins be specifically involved in excitatory or
inhibitory neurotransmission? In cultured cortical neurons,
Anderson et al. found that β-neurexin knockout decreased the
excitatory synapse parameters including AMPA receptor- and
NMDA receptor-mediated excitatory postsynaptic currents
(EPSCs), release probability and action-potential induced
calcium influx, but had no effect on GABA receptor-mediated
inhibitory postsynaptic currents (IPSCs; Anderson et al., 2015).
Consistently, β-neurexin knockout decreased spontaneous
miniature EPSCs (mEPSCs) and lowered the surface GluA1
AMPARs, but had no effect on miniature IPSCs (mIPSCs)
(Anderson et al., 2015). These data indicate that β-neurexins
are selectively essential for neurotransmission at excitatory
synapses. Importantly, the impaired mEPSCs could be rescued
by re-expression of neurexin-1β, but not by increased expression

of neurexin-1α, suggesting that modulation of excitatory
neurotransmission by β-neurexins, despite their lower
abundance, is independent of α-neurexins (Anderson et al.,
2015).

How can β-neurexins modulate excitatory transmission? As
their previous study has suggested that neuroligin-3 is specifically
required for tonic endocannabinoid signaling at inhibitory
synapses (Foldy et al., 2013), Anderson et al. hypothesized
that β-neurexins, the presynaptic interactor of neuroligin-
3, might regulate neurotransmission via endocannabinoid
system. To test this, the authors pharmacologically manipulated
the endocannabinoid system in cultured cortical neurons.
Indeed, treatment with a cannabinoid receptor 1 (CB1R)
antagonist, enhanced the mEPSC frequency in β-neurexin
knockout neurons, but had no effect in control neurons;
the CB1R agonist caused less decrease in mEPSC frequency
in β-neurexin knockout neurons than in control ones
(Anderson et al., 2015). These findings indicate that β-
neurexin knockout enhances basal endocannabinoid tone and
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tonic presynaptic CB1R activation, further revealing a link
of the neurexins/neuroligins complex to endocannabinoid
signaling. As presynaptic CB1R activation are known to inhibit
presynaptic Ca2+ channels and decrease neurotransmitter
release (Castillo et al., 2012), the authors conclude that β-
neurexins might control excitatory neurotransmission through
downregulating endocannabinoid system and the impaired
excitatory neurotransmitter release is at least partially due to
enhanced endocannabinoid signaling in absence of β-neurexins
(Anderson et al., 2015).

How does β-neurexin knockout increase tonic
endocannabinoid signaling at excitatory synapses? The
examination of CB1R levels detected no changes in β-neurexin
knockout neurons (Anderson et al., 2015), suggesting that
β-neurexin knockout may affect endocannabinoid synthesis.
To identify which of the two major endocannabinoids—2-
arachidonoylglycerol (2-AG) and anandamide—is affected by
β-neurexin knockout, Anderson et al. compared the effects
of bath application of each endocannabinoid, and found that
the enhanced endocannabinoid tone might be caused by the
increase of 2-AG as exogenous 2-AG produced little additional
inhibition on mEPSCs in β-neurexin knockout neurons. 2-AG
is synthesized via a postsynaptic phospholipase C-dependent
pathway (Anderson et al., 2015). Unsurprisingly, inhibition of
2-AG synthesis in postsynaptic neurons with phospholipase
C inhibitor rescued mEPSC frequency and restored the
sensitivity of CB1Rs to exogenous 2-AG in β-neurexin knockout
neurons, further confirming that loss of β-neurexins cause
synaptic phenotypes via presynaptic CB1R activation by
elevated postsynaptic 2-AG production (Anderson et al., 2015).
Notably, the postsynaptic partners of β-neurexins in regulating
endocannabinoid synthesis remain unknown (Figure 1A).

Impressively, in acute subiculum slices, Anderson et al.
found that presynaptic β-neurexin knockout in CA1 pyramidal
neurons selectively decreases excitatory synaptic strength at
burst-firing subiculum neurons, at least in part, by enhancing
tonic endocannabinoid signaling, indicating that β-neurexins
also control endocannabinoid system in vivo (Anderson et al.,
2015). Particularly, β-neurexin knockout selectively blocked
long-term potentiation (LTP) in burst-firing neurons (Anderson
et al., 2015). LTP is induced by presynaptic activation of PKA
in burst-firing neurons of the subiculum (Wozny et al., 2008).
Activation of CB1Rs, which are Gi/o protein-coupled receptors,
inhibits adenylyl cyclases/PKA (Castillo et al., 2012) and possibly
blocks presynaptic LTP. The authors next demonstrated both
CB1R antagonist and 2-AG synthesis inhibitor rescued the
LTP impairment caused by β-neurexin knockout, firstly linking
endocannabinoid signaling to presynaptic LTP of excitatory
synapses (Anderson et al., 2015; Figure 1A). Further research is

needed to investigate the mechanism underlying the cell-specific
function of β-neurexins in burst-firing neurons relative to
regular-firing ones.

Finally, the authors showed that deleting β-neurexins from the
hippocampal CA1 region selectively impaired mouse contextual

fear memory, indicating that β-neurexins in hippocampal CA1
neurons is important for learning and memory (Anderson
et al., 2015). However, the behavioral evidence is still limited.
Additionally, the authors did not confirm the involvement
of endocannabinoid system in behavioral deficits caused by
hippocampal β-neurexin knockout.

Altogether, Anderson et al. exquisitely revealed that β-
neurexins have a unique role in transynaptic modulation of
endocannabinoid tone at excitatory synapses, which is essential
for synaptic plasticity and behaviors, thus mechanistically linking
β-neurexins to cognitive function (Anderson et al., 2015).

FUTURE PERSPECTIVE

Investigating the synaptic function of neurexins/neuroligins is
crucial to elucidate the pathomechanisms of diseases associated
with these cell-adhesionmolecules. The discovery of transynaptic
modulation of endocannabinoid signaling by β-neurexins, not
only provides insights into themolecularmechanisms underlying
neural circuits, but also helps understand synaptopathies in
cognitive diseases.

Endocannabinoid system regulates neural circuits and offers
therapeutic opportunities for neuropsychiatric diseases (Castillo
et al., 2012; Wyrofsky et al., 2015). The neurexins/neuroligins-
endocannabinoid signaling pathway likely modulates circuit
dynamics in distinct brain regions and may implicate many brain
disorders (Figure 1B). The conditional knockout mice combined
with other genetic or pharmacological approaches will provide
useful tools for investigating this pathway in neural circuits and
its behavioral and therapeutic relevance. Muchmore work will be
required, but the study highlighted herein is encouraging in this
direction.
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