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Brain-Computer Interfaces (BCIs) transfer human brain activities into computer

commands and enable a communication channel without requiring movement. Among

other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have

the potential to become accurate, assistive technologies for persons with severe

disabilities. Those systems require customization of different kinds of parameters (e.g.,

stimulation frequencies). Calibration usually requires selecting predefined parameters by

experienced/trained personnel, though in real-life scenarios an interface allowing people

with no experience in programming to set up the BCI would be desirable. Another

occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency).

Many articles reported that BCI control could not be achieved by a non-negligible

number of users. In order to bypass those problems we developed a SSVEP-BCI wizard,

a system that automatically determines user-dependent key-parameters to customize

SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy

subjects. All subjects were asked to spell the phrase “RHINE WAAL UNIVERSITY” with

a spelling application after key parameters were determined by the wizard. Results show

that all subjects were able to control the spelling application. A mean (SD) accuracy

of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25

subjects even reached 100% accuracy).

Keywords: brain-computer interface, brain-machine interface, steady-state visual evoked potential, SSVEP,

speller, BCI illiteracy, BCI deficiency, BCI inefficiency

1. INTRODUCTION

Brain-Computer Interfaces (BCIs) transfer electroencephalographic (EEG) brain signals collected
by non-invasive electrodes and elicited by the user into computer commands, without using
the brain’s normal output pathways of peripheral nerves and muscles (Wolpaw et al., 2002).
There are different control paradigms for such BCIs. Among the most common approaches
are the steady-state visual evoked potential (SSVEP)-paradigm (Müller-Putz et al., 2005; Bin
et al., 2009; Gao et al., 2014), the event-related desynchronization/synchronization (ERD/ERS)-
paradigm (Blankertz et al., 2007), and the P300 event-related potential (ERP)-paradigm (Townsend
et al., 2010). Usability challenges have impeded BCI usage in everyday scenarios for a long time.
Recently this issue has been addressed by various research groups. Millán et al. (2010) predicted in
their review that the time is ripe for developing practical BCI prototypes that will have a real impact
in improving life quality of disabled people. Since then more effort has been made to conduct

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00474
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00474&domain=pdf&date_stamp=2015-12-22
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ivan.volosyak@hochschule-rhein-waal.de
mailto:ivan.volosyak@hochschule-rhein-waal.de
http://dx.doi.org/10.3389/fnins.2015.00474
http://journal.frontiersin.org/article/10.3389/fnins.2015.00474/abstract
http://loop.frontiersin.org/people/244011/overview
http://loop.frontiersin.org/people/199152/overview
http://loop.frontiersin.org/people/262363/overview


Gembler et al. Novel Wizard for SSVEP-based BCIs

studies with the target population (Sellers et al., 2010; Holz et al.,
2013; Kaufmann et al., 2013; Riccio et al., 2013; Daly et al., 2015;
Kübler et al., 2015). For example, Sellers et al. (2010) tested a
BCI used by a 51-year-old ALS-patient at his home. The system
was used successfully for over 2.5 years and restored the user’s
independence in social interactions. Recalibration was performed
remotely (via the internet). Holz et al. (2013) also installed a BCI
controlled application at a locked-in ALS-patient’s home. Their
study demonstrated expert-independent home-use of BCI but it
also reported varying performance and technical problems and
stresses the importance of regular calibration.

BCIs are seeing considerable research interest, as there
has been consistent growth in papers mentioning BCI from
2001 to 2012 (Thompson et al., 2014). PubMed search results
with the search term “Brain-Computer Interface/Brain-Machine
Interface” provide over 4200 results for articles in the last decade,
and with the additional search term “SSVEP” there are still
185 results. The focus on this paper lies exclusively on SSVEP-
based BCIs, which have become quite common in the meantime
and represent a standard BCI paradigm. Visual stimuli (e.g.,
a set of boxes flickering at different constant frequencies) can
be displayed simultaneously and independently on a computer
monitor. By gazing at a particular box the user can select a
desired command. Through, looking at a stimulus, brain signals
are modulated with the corresponding frequency. Measured by
an EEG the brain signals can then be classified in real time.
Therefore, various applications like spelling interfaces (Volosyak
et al., 2011a) and control applications for a prosthesis (Müller-
Putz and Pfurtscheller, 2008) or for navigation (Martinez et al.,
2007) can be implemented with the SSVEP approach. As SSVEP-
based BCI depends on gaze shifting, these systems may not
work for severely disabled people. However, SSVEP-based BCIs
have also been tested with handicapped users (see Volosyak
et al., 2009a; Müller et al., 2015). A SSVEP BCI system relies
on a variety of different parameters which influence the BCI
performance, such as stimulation frequencies and classification
thresholds. For example, it has been observed that stimulation
with lower stimulation frequencies, yields larger amplitudes (Gao
et al., 2003; Zhu et al., 2010; Inkaew et al., 2015) and that the
SSVEP response is maximum at 15Hz (Pastor et al., 2003).
Those need to be adjusted precisely. Therefore, automatized
calibration methods are an essential step for BCIs to progress
from laboratory demonstrators to real live applications, as the
precise parameter set up cannot be expected from users or
caretakers and caregivers.

Calibration methods have already become the standard for
ERP-based BCIs . Typically, in a supervised classifier, data is
collected during a calibration phase in which the user is asked
to perform specific tasks. The collected data of brain signals
is then analyzed and decoded to customize control parameters.
Many research articles concentrate on shortening or omitting
the calibration periods and on the development of so called
Zero Training BCIs (Krauledat et al., 2008; Grizou et al., 2013;
Kindermans and Schrauwen, 2013; Kindermans et al., 2014).
Also Kaufmann et al. (2012) developed a user-centered ERP-BCI
application that adjusts classifier weights and control parameters
individually in the background and demonstrated feasibility of

auto-calibrating ERP-BCI use. A wizard that handles important
parameters especially for the SSVEP-paradigm was suggested
by Volosyak et al. (2010b). Punsawad and Wongsawat (2012)
proposed a SSVEP-based BCI system that requires less assistance
from the caretaker, as it could be enabled or disabled by alpha
band EEG, but to our best knowledge an automated calibration
process for SSVEP-based BCIs has yet not been developed. The
calibration software presented here was tested and evaluated with
61 subjects. We further explored BCI demographics based on the
data of this large number of subjects. Previous BCI field-studies
have been made with other non-invasive BCI approaches like the
P300 paradigm (e.g., Guger et al., 2009) and the motor imagery
paradigm (e.g., Guger et al., 2003). But except for Guger et al.
(2012) the field-studies focusing on the SSVEP paradigm report
subjects that were not able to gain satisfactory control over the
BCI (e.g., Allison et al., 2010; Volosyak et al., 2011b).

Subjects are referred to as BCI-illiterates, it the BCI software
cannot detect their intentions accurately, more precisely, if the
classification accuracy cannot surpass a certain threshold (see
e.g., Dornhege, 2007; Blankertz et al., 2010; Brunner et al., 2010;
Fernandez-Vargas et al., 2013); e.g., the value of 70% is often used
in the literature (Perelmouter and Birbaumer, 2000; Brunner
et al., 2010). Therefore, we define the BCI literacy rate as the
percentage of users who are able to achieve control over the
BCI and the BCI illiteracy rate analogously. It should be noted
that those terms (e.g., both BCI illiteracy and synonymously
used BCI deficiency) have been criticized for being pejorative;
those terms imply that it is the BCI end-user’s “fault” that he or
she cannot control the BCI. Yet, one could argue that it is not
the fault of the user but of the BCI software that has not been
able to perform proper classifications. Therefore, some authors
prefer the use of the term “lack of BCI efficiency” instead (e.g.,
Vidaurre et al., 2011). However, the term BCI efficiency has
already been defined in a different manner as the proportion of
minimum number of compulsory commands to the total number
of detected commands (Volosyak et al., 2009b). Therefore, we
decided to use the regular historically established term “BCI
illiteracy.” Though, some improvements in the BCI software
algorithms are clearly visible over the years, the “BCI illiteracy”
phenomenon remains a reoccurring problem in SSVEP-BCI
field-studies. Allison et al. (2010) reported a BCI illiteracy rate of
24.52%, Volosyak et al. (2009b) mentioned 13.51% and Volosyak
et al. (2011b) an illiteracy rate of 2.33%.

The overall aim of this research was

• to investigate optimal stimuli selection for SSVEP-based BCIs
through analysis of the wizard outputs,

• to show that the vast majority, if not all BCI users are able to
control a SSVEP-based BCI application, and

• to prove that generally higher classification accuracies can be
achieved (through autonomous parameter adaption by the
wizard and changes in the signal classification algorithms).

The used classification methods are based on the algorithms
developed in our previous studies (e.g., Volosyak et al., 2009b,
2011b; Allison et al., 2010). In these studies the topic of inter-
subject variability has been addressed as well. In order to compare
the BCI performance, we further analyzedwhether factors such as
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gender and sleep influence performance. For the analysis of such
demographic factors all participants of the study went through
the same questionnaires as in the mentioned publications.

2. METHODS AND MATERIALS

2.1. Hardware
The subjects were seated in front of a LCD screen (BenQ
XL2420T, resolution: 1920 × 1080 pixels, vertical refresh rate:
120 Hz) at a distance of about 60 cm. The computer system
used operated on Microsoft Windows 7 Enterprise and was
based on an Intel processor (Intel Core i7, 3.40 GHz). Standard
Ag/AgCl electrodes were used to acquire the signals from the
surface of the scalp. The ground electrode was placed over AFZ ,
the reference electrode over CZ , and the eight signal electrodes
were placed at predefined locations on the EEG-cap marked
with PZ, PO3, PO4,O1,O2,OZ,O9, and O10 according to the
international system of EEG electrode placement (Oostenveld
and Praamstra, 2001). Standard abrasive electrolytic electrode gel
was applied between the electrodes and the scalp to help bring
impedances below 5 k�. An EEG amplifier g.USBamp (Guger
Technologies, Graz, Austria) was used. The sampling frequency
was set to 128 Hz. During the EEG signal acquisition, an analog
band pass filter between 2 and 30 Hz and a notch filter around 50
Hz were applied directly in the amplifier.

2.2. Wizard
The wizard ran the user through three phases in order to
provide subject-specific stimulation frequencies (phase 1 and 2),
classification thresholds, and time segment lengths (phase 3). The
techniques used in each step were derived from several previous
findings. The so called multi-target technique for the selection of

individual subject-dependent stimulation frequencies, presented
by Volosyak et al. (2010c), was based on the dual stimulation
technique suggested by Mukesh et al. (2006) that used frequency
combinations in order to increase the number of SSVEP targets.
Figure 1 illustrates the entire calibration procedure for one
subject.

The first task of the wizard was to select four optimal stimulus
frequencies. One of the reasons for choosing a low-frequency
band for SSVEP visual stimulation, were larger amplitudes (Gao
et al., 2003; Zhu et al., 2010; Inkaew et al., 2015). Because of this,
the wizard took only frequencies between 6.32 and 20 Hz into
consideration. Furthermore, the number of suitable frequencies
on the LCD monitor is limited due to the vertical refresh rate
of 120 Hz. The stimulating frequencies have to be the sub-
frequencies of the monitor refresh rate (Volosyak et al., 2009a;
Chen et al., 2014; Nakanishi et al., 2014). Therefore, the optimal
frequencies were drawn from the set of fourteen possible target
frequencies 6.32, 6.67, 7.06, 7.50, 8.00, 8.57, 9.23, 10.00, 10.91,
12.00, 13.33, 15.00, 17.14, and 20.00 Hz (obtained with dividers
between 6 and 24, see Table 1).

2.2.1. Classification Method
For SSVEP signal classification we used a minimum energy
combination method (MEC) introduced by Friman et al. (2007),
as modified by Volosyak (2011). To detect a frequency in the
spatially filtered signals the SSVEP power estimations for all Nf

frequencies were normalized into probabilities

pi =
P̂i

∑Nf

j=1 P̂j

with

Nf
∑

i=1

pi = 1, (1)

where P̂i is the ith power estimation, 1 ≤ i ≤ Nf .
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FIGURE 1 | Illustration of the calibration procedure for one subject. After EEG-data were recorded (subject’s eyes closed) 10.61Hz had the strongest SSVEP

response and was determined as alpha wave frequency. As this frequency did not belong to the set of possible target frequencies no frequency was filtered out. In

phase 2 (multi-target stimulation) EEG-data were recorded while the subject faced two circles in sequence (each for 10 s). The first circle presented the target

frequencies 6.32, 7.50, 8.00, 10.00, 10.91, 13.33, and 17.14Hz. The second circle presented 6.67, 7.06, 8.57, 9.23, 12.00, 15.00, and 20.00 Hz. Results from the

EEG recordings are displayed in the diagrams. In phase three, frequencies with the highest SSVEP-responses from both recordings were presented in series, and

corresponding SSVEP key parameters were calculated.
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TABLE 1 | Overview of the potential target stimuli (dividers of the monitor refresh rate 120Hz).

Divider 19 18 17 16 15 14 13 12 11 10 9 8 7 6

Frequencies 6.32 6.67 7.06 7.50 8.00 8.57 9.23 10.00 10.91 12.00 13.33 15.00 17.14 20.00

TABLE 2 | Overview of the used time segment lengths.

Segment-length Time (ms) Blocks of EEG data

(one block = 13 samples)

T1 812.5 8 Blocks

T2 1015.625 10 Blocks

T3 1523.4375 15 Blocks

T4 2031.25 20 Blocks

T5 3046.875 30 Blocks

T6 4062.50 40 Blocks

T7 5078.125 50 Blocks

T8 6093.75 60 Blocks

T9 7109.375 70 Blocks

T10 8125 80 Blocks

Ten segment lengths Ts, between 812.5 and 8125ms were used.

To increase robustness in the four target spelling application
we considered three additional frequencies, selected as means
between two target frequencies (see also Volosyak et al., 2010a).

The classifier outputOwas the index of the ith frequency if the
following conditions held: (1) the ith frequency had the highest
probability p′i, (2) p

′
i exceeded certain predefined thresholds βi,

and (3) the detected frequency belonged to one of the stimulating
frequencies. So for a BCI system with four targets the output was
defined as

O =











argmaxi(p
′
i)

p′i ≥ βi

i ≤ 4,

(2)

where 1 ≤ i ≤ Nf . If no frequency probability exceeded the
corresponding threshold βi or if one of the additional frequencies
had highest probability the output O was set to zero. The choice
of the βi depended on the corresponding stimulation frequency
(generally lower stimulation frequencies produce higher SSVEP-
response, therefore thresholds can be higher) but also on user
factors (the quality of the SSVEP-signal differs between subjects).
The values for the βi were determined in a calibration session
with the here presented wizard. IfOwas classified as an additional
frequency (i > 4), then the classification would be rejected as
the detected frequency did not belong to the set of stimulation
frequencies.

EEG-data were processed by the computer in blocks of 13
samples (101.5625 ms with the used sampling rate of 128 Hz).
Therefore, the time segment lengths displayed in Table 2 were
used. The classification was performed with the sliding window
of Ts after receiving the new EEG data block.

2.2.2. Phase 1 (Alpha-Test)
Whether high alpha wave activity occurred, was tested in the
first phase of the wizard, as the low frequency band overlaps
with the alpha band (8–13Hz Zhu et al., 2010), which can cause
false classifications (Zhu et al., 2010; Cao et al., 2014). Therefore,
the frequencies from the set of possible target frequencies (see
Table 1), which belonged to the alpha band, were checked for
interference with each subject’s alpha wave. Therefore, in the first
phase of the wizard it was tested whether high alpha wave activity
occurred.

When the wizard program was started, the user was instructed
by an audio instruction and a text message displayed on the
screen to close his or her eyes. After 10 s a second audio
command told the user to open his or her eyes again. During the
closed eye period EEG data were recorded. The five stimulation
frequencies fst = 8.57, 9.23, 10.00, 10.91, 12.00Hz (possible
target frequencies on the LCD monitor belonging to the alpha
band) and ten neighboring frequencies fst±0.3Hz were tested for
SSVEP response. If after 10 s one of the possible target frequencies
had the highest averaged probability and surpassed a certain
threshold, it would be neglected further on. After this procedure,
all of the remaining frequencies differed from the alpha wave by
0.15Hz or more.

In all phases, signal-to-noise ratio (SNR) distributions for
10 different time segment lengths were calculated online. The
criterion for frequency selection in phase 1 and phase 2 was based
on the calculation of the integral value of SNR distribution of the
different segment lengths over time.

Values for p′i were calculated for all used time segment lengths
and for all frequencies, so after 812.5ms (eight blocks), a value for
p′i,812.5ms was calculated. As we recorded 100 blocks of EEG-data,
93 values (100 − 8 + 1 blocks) were calculated for p′i,T1 . After

10 s, those 93 values were summed and an average value p̂′i,T1
was calculated. This was done for all time segment lengths, so
after 10 s we had averaged probabilities p̂′i,Ts for all ten used time

segment lengths. Then the average over all p̂′i,Ts was calculated

p̂′i =
p̂′i,T1 + p̂′i,T2 + . . . + p̂′i,T10

10
. (3)

In phase 1 we considered 15 possible alpha frequencies (Nf =

15). The criteria for classifying the ith frequency as alpha
frequency were (1) the ith frequency had the highest averaged
probability p̂i

′
and (2) p̂i

′
> 0.1.

2.2.3. Phase 2 (Multi-Target Stimulation)
In phase 2, multi-target stimulation was used to find optimal
stimulation frequencies (frequencies with the strongest SSVEP
response). The user faced a circle (radius 245 pixels) divided
into 147 segments (seven rings, each containing 21 segments)
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representing seven stimulating frequencies at once. Each of the
seven stimulating frequencies was presented by 21 segments
which were scattered randomly around the circle.

When subjects were instructed (by an audio message) to
focus their gaze on the circle, the flickering started and EEG
data were collected. After 10 s (100 blocks of EEG-data), the
flickering paused for 2 s. Thereafter, the user faced a second circle,
identical to the first one, but now it flickered with seven different
frequencies. EEG data were recorded for another 10 s. Each circle
contained higher and lower frequencies and, in order to avoid
mutual influences between stimulating frequencies, each group of
seven simultaneously flickering segments followed the additional
restrictions rules (as e.g., in Volosyak et al., 2010c):

fi 6= [fj + fk]/2, fi 6= 2fj − fk, fi 6= 2fk − fj. (4)

The stimulation frequencies for the first circle were 6.32, 7.50,
8.00, 10.00, 10.91, 13.33, and 17.14Hz. For the second, they were
6.67, 7.06, 8.57, 9.23, 12.00, 15.00, and 12.00Hz. If one of the
14 possible target frequencies interfered with the users alpha
wave, this frequency would be neglected and one of the circles
would contain only six frequencies. The probabilities Equation
(3) of seven stimulation frequencies (Nf = 7) for each circle
were calculated after data had been recorded. After this, the 14
possible target frequencies were sorted from highest averaged
probability to lowest and the top four frequencies were selected
as optimal target frequencies. However, the restriction rules
Equation (4) were checked for each frequency from the set of
those four selected frequencies in descending order and if they
were violated, the corresponding frequency would be replaced
with the frequency which had the highest averaged probability of
the remaining frequencies. For example, if 6Hz had the highest
and 12Hz the second highest averaged probability, the latter
was replaced, because otherwise the restriction rules would be
violated, as 12Hz is a harmonic of 6Hz.

2.2.4. Phase 3 (Sequential Stimulation)
In order to find optimal thresholds for the SSVEP-classification a
white circle (radius 150 pixels), flickering at the frequency which
had the highest SSVEP response in phase 2, was displayed. It
was necessary to simulate noise caused by peripheral vision when
concentrating on the target object. Therefore, the white circle (the
target object) was surrounded by a green ring (outer diameter 500
pixels, inner diameter 300 pixels), containing 144 segments. Each
of the remaining three frequencies from the optimal frequency
set was presented by 48 flickering segments which were scattered
randomly around this ring. The user was instructed by an audio
command to gaze at the white circle.

The circle and the ring flickered for 10 s while EEG data
were recorded. The flickering then paused for 2 s so that further
recordings would not be influenced by the SSVEP-responses that
occurred during the first recording. Thereafter, the white circle
flickered with the second highest frequency from phase two,
while the ring flickered with the remaining three frequencies.
This procedure was repeated until data for all four optimal
frequencies were collected, so the total recording time for phase
three was 40 s. Table 3 shows the blinking sequence of the four
optimal frequencies during phase 3.

TABLE 3 | Blinking sequence during phase 3 (assuming that f1, f2, f3, f4
are the four optimal frequencies).

Target frequency Frequencies contained Flickering

(white circle) in the “noise ring” duration (s)

f1 f2, f3, f4 10

f2 f1, f3, f4 10

f3 f1, f2, f4 10

f4 f1, f2, f3 10

After this, the classifier outputs O (see Equation 2) were
analyzed. Let β = [β1, β2, β3, β4] be the vector of all four
classification thresholds. Classification thresholds were chosen
equal for all four frequencies (βi = βj for i, j = 1, 2, 3, 4).
Classifier outputs Oi,Ts,β were determined for all p′i,Ts and for all
thresholds β , with βj = 0.15, 0.16, . . . , 0.99 for j = 1, . . . , 4. The
output was then categorized into three classes:

• If the output Oi,Ts,β was equal to the index of the stimulation
frequency, the output was classified as “correct classification.”

• If Oi,Ts,β was equal to the index of one of the remaining three
stimulation frequencies, the output was classified as “wrong
classification.”

• IfOi,Ts,β was equal to zero (no frequency probability exceeded
the thresholds βi or an additional frequency had highest
probability) the output was categorized as “zero classification.”

Note that there were only four stimulation frequencies in
each circle but three additional frequencies were considered
(Nf = 7). Then the distributions of correct classifications,
pcorrect(i, β,Ts), false classifications, pfalse(i, β,Ts) and zero
classifications, pzero(i, β,Ts) for each of the four stimulation
frequencies (i = 1, 2, 3, 4) was calculated.

The thresholds and minimal time segment lengths were
selected in an iterative process: First all Oi,Ts,β for the i − th
frequency were analyzed for the smallest time segment length
Ts = 812.15 ms. The largest value βj = 0.30, 0.31, . . . , 0.70 ,
β = [βj, βj, βj, βj] which satisfied the conditions

pcorrect(i, β,Ts) ≥ 40 and pfalse(i, β,Ts) = 0 (5)

was determined and, if such value existed, the threshold βi

corresponding to the ith frequency was set to this value.
This was carried out for each frequency individually. If βj

satisfying Equation (5) were found for all four stimulation
frequencies, the minimal segment lengths T0 was set to Ts and
the thresholds βi were chosen as classification thresholds. If
such βj did not exist for at least one of the four stimulation
frequencies, Ts was set to the next higher segment length
and the conditions Equation (5) were checked again. This
procedure was repeated until such βj satisfying Equation (5) were
found. Table 4 shows an example of the threshold determination
process.
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2.3. Three-Step Spelling Application
The Three-step spelling application (Gembler et al., 2014)
resembles an earlier developed graphical user interface (GUI)
layout (Volosyak et al., 2011a; Kick and Volosyak, 2014).
The initial screen is displayed in Figure 2A. Four commands
were represented on the computer screen by flickering boxes
of default sizes (125 × 125 pixels). The size of the boxes
varied during the experiment as described by Volosyak (2011).
After selecting a desired box, the position of the three boxes
containing the alphabet changed from upper horizontal to
left-hand vertical according to the first selection made (see
Gembler et al., 2014). After the second selection the positions
changed once more from left vertical to horizontal bottom
position. Also, each box now contained a single letter. In the
second and the third step, the far right box (“Del” in the
first step) would contain the command “back,” giving the user
the option to switch to the previous view. An overview of
the three steps necessary to choose a single letter is shown in
Figure 2B.

TABLE 4 | Distributions of classifier outputs pcorrect, pzero, and pfalse for a

fixed frequency i and a fixed time segment length Ts.

βj [%] pcorrect [%] pzero [%] pfalse [%]

30 97,53 0 2,47

31 96,30 0 3,70

.

.

.
.
.
.

.

.

.
.
.
.

50 44,44 0 55,56

51 43,21 0 56,79

52 39,51 0 60,49

.

.

.
.
.
.

.

.

.
.
.
.

69 23,46 0 76,54

70 20,99 0 79,01

In this example the threshold for the corresponding frequency was set to 51 (bold), as it

was the largest threshold βj that satisfied equation (5). For all βj > 51 (light gray) Equation

(5) was not satisfied.

Every command classification was followed by an audio
feedback in order to reduce the information load on the visual
channel.

The SSVEP classification was performed on the basis
of the adaptive time segment length of the acquired EEG
data (Volosyak, 2011). If no classification could be made and the
actual time t allowed the extension of Ts to the next predefined
value, this new value was used instead (see Figure 3). The fixed
starting segment length was determined by the wizard software.
We further included a segment length of 160 blocks ( 16 s, see
also Gembler et al., 2015).

2.4. Subjects
All subjects (healthy adult volunteers) gave written informed
consent in accordance with the Declaration of Helsinki. This
research was carried out in accordance to best practice
guidelines; ethical principles were taken into consideration
during conducting of all BCI experiments. Information needed
for the analysis of the experiments was stored anonymously
during the experiment; results cannot be traced back to the
participant. Sixty-one subjects participated, with a mean (SD)
age of 22.8 (3.89) years (range 17–49); 17 of the subjects were
female. All subjects were students or employees of the Rhine-
Waal University of Applied Sciences. The EEG recording took
place in a standard laboratory room with low background noise
and luminance. None of the subjects had neurological or visual
disorders. Spectacles were worn when appropriate. Subjects did
not receive any financial reward for participating in this study.

2.5. Procedure
After completing the consent form, each subject completed
a brief pre-questionnaire, where questions regarding gender,
the need for vision correction, tiredness, and BCI experience
were answered. Thereafter, subjects were prepared for the EEG
recording. At first subjects went through the steps of the
Wizard software and key parameters for BCI performance were
determined. Once started by the experimenters, subjects were
guided by audio and text feedback through the phases and used
the wizard independently. The key parameters found by the
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FIGURE 2 | GUI of the Three-step spelling application. Initial screen containing the alphabet in three flickering boxes (A). An overview of the three steps

necessary to choose a single letter (B).
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FIGURE 3 | Changes in the time segment length in case no distinct classification can be made at the moment and the actual time t allows the

extension of the classification time-window to the next pre-defined value (e.g., 1015.625ms after 812.5ms). After each classification (gray), additional time

for gaze shifting was included (black) and the classifier output was rejected for nine blocks.

wizard were transferred automatically to the Three-step spelling
applicationwhich was then started by the experimenters. Subjects
participated in a familiarization run spelling the word “BRAIN”
and a word of choice (e.g., the own first name). Next, each subject
used the GUI to spell the phrase “RHINEWAALUNIVERSITY.”
The spelling phase ended automatically when the phrase was
spelled correctly. The experiment would have been stopped
manually in case a subject had not been able to execute a desired
classification within a certain time frame, had wished to end
the experiment, or if unintentional repeated misclassifications
had occurred. However, every subject was able to complete the
spelling task. Spelling errors were corrected via the implemented
delete button. Information needed for the analysis of the test was
stored anonymously during the experiment. After the spelling
phase the subjects completed a post-questionnaire, answering
questions regarding tiredness and their subjective opinion about
the BCI system.

2.6. ITR calculation
The information transfer rate (ITR) represented the amount of
information communicated per unit time and was calculated
based on the following formula (Wolpaw et al., 2002):

B = log2 N + P log2 P + (1− P) log2

[

1− P

N − 1

]

. (6)

In the formula above, B represents the number of bits per trial.
The Accuracy Pwas calculated as the ratio between the number of
correct selections and the total number of classified commands.
The number of possible choices was the number of flickering
boxes available (N = 4). To obtain ITR in bits per minute,
B is multiplied by the number of command classifications per
minute. ITR and accuracy were calculated on-line and displayed

at the lower right corner of the GUI of the Three-step spelling
application during the spelling task (see Figure 2A).

3. RESULTS

3.1. Spelling Performance
All 61 subjects were able to complete the spelling task; no subject
reported any pain or discomfort during the experiment. Table 5
shows the overall spelling performance for the spelling task from
61 subjects.

The analysis of the spelling performance reveals an overall
mean (SD) ITR of 21.92 (7.63) bpm and a mean (SD) accuracy
of 97.14 (3.73)%. All Subjects reached 85–100% accuracy; 24 of
the 61 subjects even completed the spelling task without errors,
achieving an accuracy of 100%.

3.2. Wizard
The SNR distributions for the stimulation in two groups of seven
frequencies (multi-target stimulation) were analyzed with the
Minimum Energy Combination algorithm (Section 2.2.1) to find
the best four stimulation frequencies. Figure 4A shows for how
many subjects each frequency was selected (wizard phase 2).
The data were analyzed with the Minimum Energy Combination
algorithm to find the best four stimulation frequencies.

The optimal time segment for each user was selected in a
similar way. In phase two, selected stimuli were presented in
sequence and again the SNR distributions were analyzed with
the Minimum Energy Combination algorithm and were used to
calculate the accuracy for each segment length and classification
border simultaneously. Based on these values, a minimal time
segment length was chosen. Figure 4B shows how often each
time segment length was chosen.
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TABLE 5 | Results of spelling the phrase “RHINE WAAL UNIVERSITY.”

Subject Time (s) Acc (%) ITR (bpm) Subject Time (s) Acc (%) ITR (bpm)

1 262.95 98.51 28.48 34 253.81 98.46 28.81

2 351.71 97.01 20.07 35 481.71 88.00 11.89

3 537.86 95.65 12.85 36 831.39 89.39 9.66

4 505.07 98.51 14.83 37 359.02 87.95 17.64

5 633.34 97.01 11.15 38 256.55 100.00 29.47

6 422.50 91.01 17.90 39 311.39 98.46 23.28

7 559.31 92.00 11.79 40 321.95 95.89 22.91

8 307.94 98.51 24.32 41 242.73 100.00 31.15

9 264.47 100.00 28.59 42 249.44 100.00 30.30

10 916.40 100.00 8.25 43 558.59 95.65 12.37

11 346.73 100.00 21.80 44 595.97 95.71 11.79

12 204.14 100.00 37.03 45 260.51 100.00 29.02

13 277.98 100.00 27.20 46 222.22 100.00 34.02

14 425.55 97.01 16.59 47 484.35 94.67 14.97

15 395.18 100.00 19.13 48 261.63 97.01 26.98

16 857.70 94.67 8.45 49 294.73 100.00 25.65

17 364.51 98.46 19.89 50 312.71 100.00 24.18

18 230.75 100.00 32.76 51 299.41 100.00 25.25

19 246.70 100.00 30.65 52 301.03 100.00 25.11

20 427.38 100.00 17.69 53 517.87 85.32 14.65

21 486.08 97.01 14.52 54 221.31 100.00 34.16

22 670.21 98.46 10.82 55 273.00 92.59 26.66

23 297.17 100.00 25.44 56 226.48 100.00 33.38

24 433.77 89.89 16.76 57 240.70 97.01 29.33

25 369.99 97.01 19.08 58 456,83 98,46 15,87

26 202.41 100.00 37.35 59 338.51 97.01 20.85

27 411.94 95.89 17.91 60 409.91 90.91 15.90

28 403.51 98.51 18.56 61 517.56 94.67 14.01

29 299.91 100.00 15.21

30 361.56 92.96 17.86 Min 202.41 85.32 8.25

31 324.09 100.00 23.33 Max 916.40 100.00 37.35

32 403.51 91.36 17.26 Mean 383.65 97.02 21.58

33 424.23 97.10 17.19 SD 155.40 3.71 7.52

All subjects were able to complete the task. Mean values are given at the bottom of the table.

The length of the time-window used for Minimum Energy
Combination method was 10 s for each calibration step of the
wizard. Thus, the wizard returns adequate outcomes from data
sets recorded during 70 s (10 s for phase one, 20 s for phase two,
and 40 s for phase three).

3.3. Questionnaire Results
In the pre-questionnaire subjects answered questions regarding
gender, the need for vision correction, tiredness, and BCI
experience, as displayed in Table 6. Seventeen subjects (27.9%)
were female [22.71 (4.29) years] and 72% were male subjects
[22.83 (5.22) years]. Female subjects performed with an
information transfer rate of 25.35 (6.54) bpm while males
performed with a rate of 20.12 (7.34) bpm. A t-test revealed
a significant difference between the mean ITR of female and
male subjects, t(32) = 2.64, p < 0.05. The results of the
post-questionnaire are given in Table 7.

4. DISCUSSION

The presented wizard for SSVEP-based BCI sets up key
parameters in adequate time and allows inexperienced personnel
to set up the BCI, as only one click is necessary for calibration.
Overall, including pauses between steps, the calibration process
took<2min. However, a calibration that runs in the background,
invisible to the user as already developed for the P300-
paradigm (see e.g., Kaufmann et al., 2012) is desirable for the
SSVEP-paradigm as well. Regarding user friendliness, almost
all subjects stated that they would recommend the system,
though nearly a third of the subjects stated to be annoyed
by the flickering. This is in line with observations from other
studies (see e.g., Müller et al., 2015). In their review Zhu
et al. (2010) also summed up the disadvantages of using
lower frequencies. Subjects tend to be more annoyed by lower
frequencies, visual fatigue occurs more easily, stimuli can
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FIGURE 4 | Distribution of (A) stimulation frequencies and (B) lengths of the starting time window over all subjects determined by the wizard.

TABLE 6 | Results from the pre-questionnaires.

Age Gender Vision correction Level of tiredness Length of sleep last night Experience with BCIs

Years m f Yes No (1) (2) (3) (4) (5) h Yes No

22.8 (5.02), 44 17 22 39 19 25 15 3 0 6.76 (1.19), 6 55

17–49 4–9

The numbers are represented as number of respondents or in form: mean value (SD), range. The level of tiredness was rated on a scale from 1 to 5: (1), not tired; (2), little tired; (3),

moderately tired; (4), tired; and (5), very tired.

TABLE 7 | Results from the post-questionnaires as number of

respondents.

Level of tiredness Flickering Recommend BCI

annoying to others

(1) (2) (3) (4) (5) Yes No Yes No

17 20 20 1 3 20 41 58 3

The level of tiredness was rated on a scale from 1 to 5: (1), not tired; (2), little tired; (3),

moderately tired; (4), tired; and (5), very tired.

provoke epileptic seizures, and the low frequency band covers the
alpha band.

In the presented study, 14 subjects reported slightly increased
tiredness (see Tables 6, 7). However, five subjects reported a
decrease in tiredness. Thus, for the majority of subjects the
calibration and spelling performance with the SSVEP-based BCI
did not produce significant fatigue. As also reported by Volosyak
et al. (2011b), neither the hours of sleep nor the subjective level of
tiredness influenced BCI performance. However, in the presented
study the effect of gender was significant. A trend that female
subjects might perform better with lower frequencies was also
observed in previous works (Allison et al., 2010; Volosyak et al.,
2011b). This observation needs further investigation.

As has been discussed intensively throughout the BCI
literature, a major challenge in SSVEP-based BCIs lies in finding a
compromise between accuracy and speed. The choice of the time-
window dedicated to the SSVEP response detection during EEG
analysis has high impact on the accuracy. While a short time-
window results in classification errors, a longer time-window

slows performance down (Volosyak et al., 2010a; da Cruz et al.,
2015). As the commands corresponding to the stimulating
frequencies are produced only if their probabilities are higher
than certain predefined thresholds, classification thresholds are
another important factor in finding balance between speed and
accuracy. The wizard determined these variables specifically for
each user. Figure 4B shows a wide variety of ideal minimum time
segment lengths among the 61 subjects. The highest minimal
segment length determined was 7109.4ms but in most cases the
shortest possible minimal time segment length of 812.5ms was
selected. Though, a longer minimal time segment length results
in lower ITR, it yields higher accuracies, and for some users a
long time-window at the beginning was necessary to guarantee
control over the BCI system. The system might have been unable
to interpret intentions for those users if fixed segment lengths
were used. For the majority of subjects, lower frequencies were
selected (see Figure 4A). For nine subjects the lowest possible
frequency set 6.32, 6.67, 7.06, and 7.50Hz was determined,
and although the frequencies are separated by <0.5Hz, this set
worked well. This observation is in harmonywith the observation
by Gao et al. (2003), that two flickering targets with a frequency
difference as low as 0.2Hz can be successfully distinguished in
the SSVEP response. This value has recently been updated to
0.1Hz (Hwang et al., 2012). Lower stimulation frequencies can
even be distinguished with a difference of 0.05Hz (Stawicki et al.,
2015). The most frequently selected frequency was 7.5Hz, which
might be explained by the fact that that its second harmonic is
15Hz, which is the stimulation frequency at which the SSVEP
response is maximum according to Pastor et al. (2003). As
lower frequencies overlapping with the alpha band (8–13Hz),
might cause false classifications (Zhu et al., 2010; Cao et al.,

Frontiers in Neuroscience | www.frontiersin.org 9 December 2015 | Volume 9 | Article 474

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Gembler et al. Novel Wizard for SSVEP-based BCIs

TABLE 8 | Comparison of BCI performance (mean accuracies) of different SSVEP-BCI field-studies.

Volosyak et al., 2009b Volosyak et al., 2011a Guger et al., 2012 Presented study

Number of subjects 37 86 57 61

Mean accuracy (%) 92.9 92.3 95.5 97.1

Literacy rate (%) 86.5 97.7 100 100

Number of classes 5 4 4 4

Classification time-window (s) 2 2 3 0.8-8

In the first two studies (2009 and 2011) all BCI illiterate subjects were excluded from further calculation of mean values.

2014). Otherwise, simple closing of the eyes might lead to
false classifications. Therefore, the frequencies were checked for
interference with each subject’s alpha wave in the first phase of
the wizard software.

In our previous SSVEP-based field-studies the BCI literacy
rate could steadily be improved and now, after more than 5 years
of research, 100% has been achieved. Allison et al. (2010) reported
80 out of 106 andVolosyak et al. (2009b) 32 out of 37 subjects that
were able to perform a spelling task. Due to further modifications
BCI illiteracy rate could be reduced to 2.33% (Volosyak et al.,
2011b). Only Guger et al. (2012) showed that their SSVEP-BCI
could provide effective communication for all 53 subjects. One
simple cause for a high literacy rate in SSVEP-based BCIs is a
low number of stimulation targets. Guger et al. (2012) as well as
Volosyak et al. (2011b) also used four simultaneously displayed
stimulation frequencies (see Table 8). It should be noted that
BCI literacy among all participants was achieved in studies using
other BCI approaches as well. Kaufmann et al. (2012) reported
that all 19 subjects were able to complete a spelling task with a
P300 speller with an average accuracy of 91.2% and an ITR of
15.1 bpm and in a study with 99 subjects Guger et al. (2003)
reported a BCI literacy rate of 100% as well. Guger et al. (2009)
also achieved full BCI literacy with 81 subjects using the motor
imagery paradigm.

Further we would like to point out, that generally higher
ITRs than in the presented study can be achieved with BCIs.
For example, Spüler et al. (2012) reported an average ITR of
144 bpm and an accuracy of 96% with a BCI that used code-
modulated, visual evoked, potentials and the detection of error-
related potentials. Although, the ITR of 21.92 (7.63) bpm in
the here presented study is considerably low compared to these
values, the results are promising because of the very high mean
(SD) accuracy of 97.14 (3.73)% which slightly surpasses the
values from previous field-studies using four stimuli classes.
In comparison Volosyak et al. (2011b) reported that subjects
reached an accuracy of 92.26 (7.82)%, but two subjects were
unable to achieve control over the system. LEDs were used
as stimulation source and subject navigated a miniature robot
through a labyrinth. As in the presented study four distinct
commands were used. In a previous smaller sized study, the
same graphical user interface as in the presented study was
tested with six healthy subjects and a mean accuracy of 87.41
(6.74)% was reached (Gembler et al., 2014). Frequencies and
time segment lengths were not selected user dependently.
In comparison the mean (SD) accuracy of 97.14 (3.73)%
achieved in the presented study is significantly larger [t(5) =

3.44, p < 0.05], which supports our hypothesis, that the
amount of misclassifications can be reduced through automated
user-specific parameter selection and larger classification time-
windows. Guger et al. (2012) also used a relatively large
classification time-window and achieved a BCI literacy rate of
100% (see Table 8).

According to Perelmouter and Birbaumer (2000) a typical
patient’s estimation “almost absolutely reliable” is equivalent to
a classification accuracy value between 90 and 95%. Almost
all subjects (93.44%) in this study surpassed 90% classification
accuracy and 77.05% of the subjects achieved accuracies
above 95%.

Limitations
On rare occasions (four subjects) the determined classification
threshold for one of the frequencies was too low and a test
subject performed poorly during the familiarization run. This
could be explained by diminishing concentration of the subject
during the calibration process, or by the fact that the wizard
did not take the spatial arrangement of the boxes into account,
since it always concerned the corresponding box “del,” which
had rather prominent position. In these cases, the calibration
process was repeated. Therefore, further software improvements
are necessary.

It should also be mentioned that for long term use
recalibration might be inevitable and that the here presented
SSVEP-based BCI depends on the user’s vision and control over
the eye movements. The wizard usually selected lower frequency
sets as the determination is based on the SSVEP-response.
However, visual stimulation with low frequencies is known to
cause fatigue.

Furthermore, subjects in this study may not be reflective of
the general population; they tended to be young healthy men,
therefore additional tests with older and physically impaired
people are needed.

5. CONCLUSIONS

A wizard for a SSVEP-based BCI that automatically determines
individual BCI parameters for each user and can be handled by
inexperienced personnel has been tested with 61 healthy subjects.
The presented study confirms that through careful user-specific
choice of SSVEP BCI constants such as stimulation frequencies,
classification thresholds, and segment lengths, high accuracies
can be achieved by a broad population.
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All subjects achieved reliable control over the BCI system,
reaching accuracies above 85%. A comparison with previous
field-studies proves, that the introduced modifications are an
essential step to broaden the literacy rates of BCI systems to all
potential users. Themain causes for the achieved literacy rate and
high accuracies are:

• the number of simultaneously displayed targets is limited to
four,

• subject specific frequency and threshold selection through the
presented wizard, and

• extended classification time-windows (>8 s) for poor
performers.

Further research might also consider other BCI paradigms.
Volosyak et al. (2010b) introduced the BCI wizard as a system
that automatically identifies key parameters to customize the
best BCI paradigm for each user. Tailoring a BCI including
the input signal has also been suggested by Guger et al.

(2012); Kübler et al. (2014). Furthermore, the construction
of the wizard software and its GUI allow an extension,
so that key parameters could also be determined for BCIs
with a higher number of stimuli. Because of the mentioned
disadvantages of lower stimulation frequencies, the wizard could
be modified, so that higher frequencies are also considered.
The methods of the Wizard might be integrated directly in
applications, such as the speller presented, so that spatial
proximity of targets is also taken into account when selecting key
parameters.
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