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It has recently been proposed that the epileptic cortex is fragile in the sense that seizures
manifest through small perturbations in the synaptic connections that render the entire
cortical network unstable. Closed-loop therapy could therefore entail detecting when the
network goes unstable, and then stimulating with an exogenous current to stabilize the
network. In this study, a non-linear stochastic model of a neuronal network was used to
simulate both seizure and non-seizure activity. In particular, synaptic weights between
neurons were chosen such that the network’s fixed point is stable during non-seizure
periods, and a subset of these connections (the most fragile) were perturbed to make the
same fixed point unstable to model seizure events; and, the model randomly transitions
between these two modes. The goal of this study was to measure spike train observations
from this epileptic network and then apply a feedback controller that (i) detects when the
network goes unstable, and then (ii) applies a state-feedback gain control input to the
network to stabilize it. The stability detector is based on a 2-state (stable, unstable) hidden
Markov model (HMM) of the network, and detects the transition from the stable mode to
the unstable mode from using the firing rate of the most fragile node in the network
(which is the output of the HMM). When the unstable mode is detected, a state-feedback
gain is applied to generate a control input to the fragile node bringing the network back
to the stable mode. Finally, when the network is detected as stable again, the feedback
control input is switched off. High performance was achieved for the stability detector, and
feedback control suppressed seizures within 2 s after onset.
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1. INTRODUCTION
Epilepsy is a neurological condition that affects approximately 70
million worldwide. Incidence of this condition is twice as fre-
quent in low and middle income countries than in those with
high income (Ngugi et al., 2011). Approximately 20–30% of the
population with epilepsy suffers from intractable epilepsy and
must consider invasive alternatives such as resective surgery, vagal
nerve stimulation, and deep brain stimulation therapy (Schuele
and Lüders, 2008). Recently, implanted responsive or closed-loop
neurostimulators (RNS, NeuroPace, Mountain View, California)
were FDA approved (Fisher and Velasco, 2014). Such closed-loop
stimulation systems for epilepsy rely on early and accurate detec-
tion of the seizure onset in order to be able to disrupt the seizure
before clinical manifestations occur (Santaniello et al., 2011);
and, reliable detection of seizure onsets require understanding the
electrophysiological dynamics in the cortical epileptic network.

Seizures are characterized by abnormal electrical activity gen-
erated by large neuronal populations (Uhlhaas and Singer, 2006),
electrical brain stimulation for the treatment of epilepsy focuses
on suppressing the abnormal activity (Sohal and Sun, 2011;
Fridley et al., 2012). Single unit recordings show that dur-
ing seizures there exists heterogeneity in neuronal firing pat-
terns, where firing rate may either increase, decrease or vanish

altogether (Truccolo et al., 2011). This heterogeneity at the neu-
ronal level, however, evolves into a highly synchronized behavior
at the network level. The complex network dynamics seen in
seizures have led to several hypotheses for the etiology of epilepsy,
which still remains unclear. Studies have implicated axo-axonic
gap junctions (Traub et al., 2001), loss of inhibitory chandelier
cells in cortex (DeFelipe, 1999), atypical axonal sprouting from
layer V pyramidal cells (Jin et al., 2006), and neurotransmit-
ter imbalance (Bradford, 1995) among others. A shared thread
among proposed etiologies is that coupling within the neuronal
network is altered, resulting in epileptiform spiking. This suggests
that epilepsy could be a network-driven phenomenon in which
the structural connectivity between neurons is altered rendering
unstable pathological functional activity.

Computational modeling is a powerful tool for understand-
ing the underlying mechanisms involved in seizure genesis and
its dynamics, and has proven to be very useful in aiding with the
design of more efficient seizure onset detectors and brain stimu-
lation protocols (Stefanescu et al., 2012). We recently constructed
a neuronal network model of the epileptic cortex that qualita-
tively captures the heterogeneity in neurons observed in patients
during seizure events (Sritharan and Sarma, 2014). In Sritharan
and Sarma (2014), it is posited that the epileptic cortex is on the
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brink of instability and that small perturbations in the synap-
tic connections render the network unstable temporarily. That is,
the epileptic cortex is constantly transitioning (albeit maybe not
so frequently) between a stable state (non-seizure) and an unsta-
ble state (seizure). Therefore, in Sritharan and Sarma (2014), the
neuronal network model used operates in two modes: stable and
unstable, distinguished only by the synaptic weights to a single
fragile node. Nodal fragility is defined as the minimum energy
perturbation in functional connectivity that renders the entire
network unstable.

The goal of this study is to design a feedback control system
that first detects when the network has gone unstable from neu-
ronal spike train measurements, and then applies a gain to the
measured firing rates to generate a control input to the network.
The two-state (seizure mode, non-seizure mode) model described
in Sritharan and Sarma (2014) and Ehrens et al. (2014) is used
to design the feedback controller which applies an exogenous
perturbation (e.g. stimulation) to the most fragile node in the
network in order to return the network to its stable mode. The
controller is then shut off once the network is detected as having
been stabilized.

More specifically, the stability detector in the controller uses
a two-state (stable, unstable) Hidden Markov Model (HMM) to
represent the non-linear neuronal network dynamics. The frag-
ile neuronal network model from Sritharan and Sarma (2014) is
used to simulate firing rate activity of the most fragile node (the
HMM observations) in each mode, and this activity is modeled as
a Gaussian random variable whose mean and variance are deter-
mined through maximum likelihood estimation. Therefore, the
output or emission probabilities of the HMM are each Gaussian,
and the transition probability from the stable mode to the unsta-
ble mode is fixed, rendering a geometric distribution representing
the time until seizure onset.

In order to detect when the network has transitioned from
a stable to an unstable mode, an algorithm we recently devel-
oped based on the HMM (Ehrens et al., 2014) was implemented.
Specifically, the derivative of the cumulative likelihood ratio is
first computed from firing rate measurements generated by the
non-linear network model and the Gaussian distributions of the
HMM, and then when this derivative exceeds a certain threshold,
the transition to unstable mode is detected. Different thresholds
and different scenarios were considered for computing the firing
rate of the fragile node, until a high performing (i.e., minimal
number of false positives and small delays between the seizure
onset and its detection) detector was found. See (Ehrens et al.,
2014) for details.

A feedback controller is activated when the transition to the
unstable mode is detected. The controller consists of a gain that
acts on the measured firing rates of all nodes in the network, and
generates a scalar control input to the most fragile node in the
network. While the control is switch “on,” the stability detector
continues to monitor the firing rate of the fragile node. When
the average firing rate of the fragile node returns to its baseline
rate in the stable mode (i.e. within two standard deviations of this
baseline) and stays there for at least 500 ms, the detector turns the
control input “off,” and continues to monitor the network activity
to detect the transition to the unstable mode again.

Two types of feedback controllers were derived and compared
in their performance. One of the feedback controllers is based
on the nonlinear neuronal model and the other is based on a
linearization of the model. Simulation of the epileptic neuronal
network restated the high performance of our instability detec-
tion algorithm (Ehrens et al., 2014). Similarly, efficiency results
showed that both types of feedback controllers were able to return
the neuronal network to its stable mode in less than 2 s.

The proposed approach assumes that the state of each neu-
ron in the network is available at all times, as well as the synaptic
weights of the network. Also a priori knowledge of which is the
most fragile node in the network is assumed in order to deliver
state feedback to this node. These assumptions and the diffi-
culty of targeting single neurons to deliver electrical stimulations
are limitations for the implementation of the proposed protocol
in real-physiological conditions. Nevertheless, the feedback con-
troller architecture proposed here may be extended to measuring
and stimulating populations of neurons.

2. MATERIALS AND METHODS
This section first describes the non-linear model of epileptic neu-
ronal network (Sritharan and Sarma, 2014), and then describes
the feedback controller architecture which consists of the stabil-
ity detector and a state-feedback gain. Figure 1 shows a diagram
of the control system. The controller is regulated by the stabil-
ity detector. When σ = 1 the detector believes that the network
is unstable and turns the controller “on,” and when σ = 0 the
network is assumed stable and the controller is shut “off.”

2.1. THE NEURONAL NETWORK MODEL
The system to be controlled is the epileptic network and is
modeled by a non-linear stochastic network model as the one pro-
posed in Benayoun et al. (2010). The model consists of a set of N
interconnected nodes, with edge weights that represents synap-
tic strengths between pairs of nodes. See Figure 2. Each node can
represent a single neuron or a population of neurons. However,
in this study, it is assumed that each node is a single neuron.

FIGURE 1 | Diagram for state feedback control of the proposed system.

H is a nonlinear neuronal network that switches between unstable and
stable modes, has external input u and output x which is the state vector of
the network and is used to compute the firing rate of the network. The
controller is composed of a stability detector that governs the activation of
a state-feedback gain.
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FIGURE 2 | Three nodes from a network are shown with weight edges represented by wij and external input hi . The internal activation-inactivation
structure of node 2 is shown as a Markov process where the transition to an active state (1) is given by f (s2) and the transition to inactive state (0) is given by α.

The internal activity of each node depends on its synaptic
inputs and its current firing state. Let node i be a neuron that
at some time t is either active (xi(t) = 1) or quiescent (xi(t) = 0).
Then, the transition between active and inactive states evolves as
a Markov process with rate constants for a small time interval �t.
That is,

Pr {(xi(t + �t) = 0; xi(t) = 1)} = α�t (1)

Pr {(xi(t + �t) = 1; xi(t) = 0)} = f (si(t))�t (2)

A node being active represents an action potential, including its
refractory period. As shown above, neuron i’s propensity to tran-
sition from inactive to active depends on its total synaptic input,
represented by si(t) defined below. The propensity to transition
from active to inactive, however, is constant and thus a neuron on
average is active for a period of α−1. f is a non-linear response
function that represents the firing rate of a node when quiescent.
For simulation purposes, a clamped hyperbolic tangent was used
as in Sritharan and Sarma (2014). From (1) and (2), the proba-
bility of a neuron i being active at any time t evolves according to
the following non-linear rate equation:

ṙi(t) = −αri(t) + f (si(t))[1 − ri(t)] (3)

The network of N nodes is parameterized by the structural con-
nectivity matrix, W = [wij]. Each element in W describes the
effect of node j on node i. Positive values represent excitation, neg-
ative values represent inhibition and a zero value means there is
no connection between nodes j and i. The total synaptic input to
node i, si, depends on the state of the nodes that are connected
to node i, the weight in its connections, and an external input, ui.
The external input ui is given by the sum of hi (fixed value that
represents background activity) and the feedback control input
(discussed later). If node j is active, the synaptic input on node i
is either increased or decreased.

The synaptic input is given by:

si(t) =
N∑

j=1

wijxj(t) + ui (4)

It has been shown that a stable fixed point, r ∈ R
N , exists in

this model (Sritharan and Sarma, 2014). Then r is a steady state
probability that satisfies g(r; W) = 0 and represents the baseline
behavior of the network. It is shown in Sritharan and Sarma
(2014) that r can be computed through a gradient descent algo-
rithm that iterates over candidate solutions to minimize a cost
function.

Note that (3) estimates the functional activity of the network
given some network structure, W. Then, the result of lineariz-
ing Equation (3) around the fixed point, r, is the functional
connectivity matrix, A. Therefore, A has eigenvalues λ1...N ∈
C where R

N {λ1} ≥ ... ≥ R
N {λN}. The functional connectivity

matrix captures how the probability of any node being active
affects the probability of node i being active. Since r is a stable
fixed point, R {λi(A)} < 0∀i.

In Sritharan and Sarma (2014), the minimum energy func-
tional perturbation that destabilizes the network is determined
and then the structural changes that would produce this func-
tional perturbation are derived. The minimum energy pertur-
bation is modeled by adding a perturbation matrix � to A,
where � has only one non-zero row. This represents a change
in the inbound effect of the network on that node. The mini-
mum perturbation takes R

N {λ1(A + �)} = 0 where the system
would be marginally stable. A larger perturbation can make
R

N {λ1(A + �)} > 0 which is still unstable. In Sritharan and
Sarma (2014), it is shown how the minimum energy � can be
computed using least squares.

To build the model of a neuronal epileptic network, the con-
nectivity matrices derived in Sritharan and Sarma (2014) were
used. Three connectivity matrices were used; one functionally
stable structural matrix (Ws) and two functionally unstable struc-
tural matrices (Wu0, Wu200), where R

N {λ1(Wu0)} = 0 ms−1 and
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R
N {λ1(Wu200)} = 200 ms−1. An non-seizure stable mode is sim-

ulated by using Ws in (3), and an unstable seizure mode is
simulated by using either Wu0 or Wu200.

The model simulation follows the Gillespie stochastic algo-
rithm (Gillespie, 1977) with the following steps for a network
with N nodes.:

1. Pick initial conditions for the nodal states, xi(0).
2. Evaluate synaptic inputs using Equation (4).
3. Calculate transition rates using:

tri(t) = αxi(t) + f (si(t))[1 − xi(t)]

4. Determine the network transition rate:

trnet =
N∑

i=1

tri

5. Switch the state of a single node i with probability tri/trnet and
update x(t).

6. Draw timestep �t from an exponential distribution, where
n ∼ N(0, 1) and �t = −log(n)/trnet .

7. Increment time by �t and repeat from step 2.

The network simulated here has 6 nodes, within each node is a
single neuron, and 14 connections. Figure 3 shows the weight
edges and external input for the functionally stable connectivity
matrix (Ws). Also in Figure 3, two different row perturbations
are shown, from these perturbations Wu0 and Wu200 are derived
and used to simulate the unstable seizure mode.

The decay rate, α, is set to 100 Hz, which caps the neuronal
firing rates at that value. Both Wu0 and Wu200 have a row per-
turbation at a DC frequency on node 4, an inhibitory neuron.
Therefore, when the unstable mode of the neuronal network is
simulated, the firing rate of this neuron decreases, thus produc-
ing disinhibition in the network which increases firing activity in
the network. All simulations were done using MATLAB.

2.2. HMM REPRESENTATION OF THE NEURONAL NETWORK
A two-mode HMM is constructed to represent an epileptic neu-
ronal network. Figure 4 shows a schematic of the HMM. The
output observation is pk, which is the firing rate of the most frag-
ile node in the original non-linear network described above, and
it is obtained at discrete time steps k = 0, 1, 2, . . . computed from
the system’s state vector; xk. Note that the actual time step is given
by �t as described above. The network is in one of two modes at
each time step; k a stable non-seizure mode (zk = 1) or an unsta-
ble seizure mode (zk = 2). The initial mode is always assumed
as stable, that is, z0 = 1 and it transitions to the unstable mode
with a fixed probability ρ = 0.0002. The HMM does not include
a transition back to the stable mode. Once the feedback gain is
activated and a stable firing rate is detected then Ws is used to
simulate the stable mode again.

The output density functions q1 and q2 are assumed to be
Gaussian, and the parameters for these functions were computed
using a maximum likelihood estimation from a 100 s simulation
of each mode from the original non-linear model.

FIGURE 3 | The three connectivity matrices used for simulation are

shown. (A) Shows Ws, black arrows represent weight edges (wij ), blue
arrow represent external input (hi ). (B) Shows the computed � to acquire
Wu0 and (C) Shows the computed � to derive Wu200. � is represented by
the red arrows in (B) and (C) respectively.

2.3. FEEDBACK CONTROLLER
The proposed closed-loop control architecture is composed of
the stability detector and the state-feedback gain matrix. When
the system is in the stable mode (zk = 1), σ = 0 and the state-
feedback gain is turned off. The detector takes in firing rate
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FIGURE 4 | HMM schematic with two modes (zk = 1) and (zk = 2) and

observable output pk . qz (pk ) is the probability function of pk in mode
z ∈ {1, 2} and ρ is the probability of transition from mode 1 to mode 2.

measurements from the fragile node in the non-linear network to
detect a transition to the unstable mode (zk = 2). Similarly, when
the system is unstable (zk = 2), σ = 1 and the state-feedback gain
is activated in order to return the firing rate to its baseline. The
detector then takes firing rate measurements from the fragile node
in the non-linear network to detect the transition back to a stable
mode (zk = 1).

2.3.1. Stability detector
When σ = 0, pk is computed every time step, �t, using the spike
train of the fragile node. Specifically, it retrospectively counts the
number of spikes in an immediate fixed time-length window, m,
that shifts with every �t. Then, the number of spikes is divided by
the maximum number of spikes for that window size, to obtain
the firing rate. The maximum number of spikes for each window
length was obtained from a 100 s simulation of the network in
the stable mode. Finally, the firing rate is averaged for n of the
most recent windows. The detector and the chosen set of parame-
ters (m, n) are discussed in more detail in our recently developed
stability detector (Ehrens et al., 2014). In this study, a high perfor-
mance detector with minimum delay was used where the window
size is m = 250 ms, and the firing rate is averaged across the past
n = 25 windows.

The architecture of the detector implemented has two compo-
nents: a cumulative likelihood generator and a threshold classifier.
From measurements of pk and the HMM emission distributions,
the likelihood ratio is computed as follows:

LRk ≡ q2(pk)/q1(pk)

When LRk > 1, pk is more likely to belong to q2 and hence the
network is more likely to be unstable. Once LRk is computed, the
detector computes the LR cumulative as:

grk =
k∑

l=1

LRl

The cumulative sum captures if pk has been more likely to belong
to q2 (LRk >> 1). If this is the case, then grk will significantly
increase.

In order to determine if grk shows a rapid increase, the detec-
tor takes its derivative (�grk/�t), and detects if there is a sudden
change indicating that pk is generated from q2. Detection of a
transition to an unstable mode occurs when the derivative of the
cumulative likelihood ratio exceeds a threshold value. The thresh-
old was obtained from the mean average value of the (�grk/�t)
over a 60 s simulation of both functionally unstable networks;
Wu0 and Wu200. Figure 5 shows a sample detection of a transi-
tion unstable mode and illustrates the behavior of the detector
components.

If a transition to the unstable mode is detected and σ = 1,
the detector then looks for a transition back to the stable mode
produced by the feedback gain control. Stable mode detection
occurs when the firing rate of the most fragile node in the net-
work returns to its stable firing rate mean value and stays there for
500 ms within a range of two standard deviations around the sta-
ble firing rate mean value. When stability is detected, then σ = 0,
and the state-feedback control is deactivated and Ws is used to
simulate the stable mode again, and the transition back to zk = 1
in the HMM is imposed.

2.3.2. State feedback gain (K )
The binary state of all the nodes in the network, x, is being
observed, and thus the probability of each state being active, r,
can be estimated. Recall that by plugging Equation (4) into (3)
the evolution of each element in vector r is described as follows:

ṙi(t) = −αri(t) + f (
N∑

j=1

wijxj(t) + ui)[1 − ri(t)]. (5)

To construct the output probability distributions of the HMM,
we linearize the system of Equation (5) to obtain the following
system of equations

ṙ(t) = Ar(t) + Bu(t), (6)

where r(t) ∈ R
6×1, the input vector u(t) ∈ R

6×1, and the input
matrix B ∈ R

6×6. B is obtained by linearizing Equation (5)
with respect to ui around a stable fixed point that satisfies
g(ṙ, u(t); W) = 0. Since the input ui represents external stimuli
to each node i, the input matrix B only has non-zero values along
its diagonal.

The linearized network model is a continuous-time linear
time-invariant system. The state-space description of the open-
loop system when the controller is not activated and when the
system is stable is given by (6). When the system is in the unstable
seizure mode, the linearized network model from Equation (6)
changes to:

ṙ(t) = (A + �)r(t) + Bu(t). (7)

The closed-loop system, i.e., when the controller is activated, gen-
erates a control input u = σ · Kx + h. As mentioned h has a fixed
value and represents background activity. Then by substituting
u in Equation (7), and taking into account σ = 1, results in the
following closed-loop state-space model of the network:

ṙ(t) = (A + � + BK)r(t) + Bh(t), (8)

www.frontiersin.org March 2015 | Volume 9 | Article 58 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Ehrens et al. Control of a fragile network

FIGURE 5 | Shows a 5 second simulation of the network. The
network is initially in stable mode and at t = 2.5 s it is
perturbed, taking λ1 to 200 ms−1. (A) Raster plots for all nodes in
the network. The black arrow marks when the perturbation was

applied, the red arrow marks when it was detected. (B) Likelihood
ratio of the observation distributions over time. (C) The cumulative
function gr of the likelihood ratio over time. (D) The derivative of
the cumulative function over time.

where K is the gain matrix to be designed. The goal of the feed-
back controller is to return the network back to its original stable
mode. In order to accomplish this, K must satisfy

A = A + � + BK. (9)

Since � is known, then from (9) the state feedback gain is given
by K = −B−1 · �. Since B is a diagonal matrix and the pertur-
bation matrix � ∈ R

6×6 only has non-zero values in the fourth
row, as explained above and in Sritharan and Sarma (2014), then
K ∈ R

6×6, where the only non-zero values in the matrix are in its
fourth row. With this, the system is taken back to its original sta-
ble state before the row perturbation (�) was applied, returning
the firing rate of the most fragile node to its stable mode baseline.

The resulting K attempts to return the perturbed system back
to its stable mode using the linearized model. One can also design
the control input directly from the non-linear model described by
Equation (5). During the unstable mode, i.e., [wij] = [Ws + �]ij,
an input with the same magnitude and inverse sign as the per-
turbation matrix used would take the system back to its original
stable mode, making K = −�, resulting in ui = −�ij · xj(t) +
hi. This cancels out the perturbation made in the functional
connectivity matrix and takes the system back to its stable mode.

Performance of the feedback control based on the linearized
model was compared to that of the feedback control based on
the nonlinear model. Efficiency was evaluated based on the time

it took to detect the stable mode, and the time it took to return
the fragile node’s firing rate to its stable baseline average for the
first time. Both time periods were computed in relation to the
detection of the unstable mode.

3. RESULTS
In this study, it is assumed that access to the spike trains of the
network are available. This is required in order to compute the
parameters of the HMM’s emission densities, q1 and q2, and the
optimal parameters for the detector.

For the detector proposed in this study, two types of delays
were encountered; a detection delay, defined as the time between
the actual transition to the unstable mode and its detection;
and an initial delay due to window averaging when computing
the firing rate of node 4 (i.e., the fragile node in our exam-
ple). This is the amount of time that the detector needs at the
beginning of the simulation before being able to detect a transi-
tion. Both delays depend on the parameters used for the detector,
their effects on the detector’s performance were analyzed in
Ehrens et al. (2014).

After the transition to the unstable mode is detected (zk = 2,
σ = 1), the state feedback controller is activated. This takes the
unstable network back to its stable fixed point. While the state
feedback controller is activated, firing rate of the most fragile
node is measured to detect when it returns to a stable firing rate
and stays there for 500 ms. If the firing rate of the fragile node
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stays at its stable average for at least 500 ms, then it is assumed
that the neuronal network has returned to its stable mode around
a fixed point (zk = 1, σ = 0) and Ws is used again to simulate
spiking activity.

The successful detection and control of the fragile neuronal
network is shown in Figure 6, where the network transitions
to an unstable mode twice, and each transition after being
detected results in the activation of the feedback gain con-
trol. The firing rate of the most fragile node is also shown in
this figure, and it is clear that it decreases when it becomes
unstable and then increases when the feedback gain control is
activated.

The feedback control performance was evaluated based on
the time it took to detect the stable mode (stable mode
delay), and the time it took to return the fragile node’s firing
rate to its stable baseline average for the first time (1st sta-
ble FR), marked in Figure 6 by the magenta and red arrows,
respectively.

Feedback control performance was analyzed by simulating the
epileptic neuronal network model until 100 detections were done
for each unstable matrix (Wu0 and Wu200), to test the robustness
of the controller. All 400 detections to the unstable mode were
true positives, with a mean average value of 406.9 ± 204.91 ms for
the detection delays. The results for the controller performance
are shown in Table 1, where we show the detection delays and the

two time periods used for evaluating the efficiency of the feedback
controllers.

From Table 1, it is clear that when feedback control is applied
to the non-linear model the controller has a significantly smaller
stable mode delay which is to be expected since the linearization
of the model is an approximation that is not entirely accurate.
However, the 1st stable FR period is smaller when applying feed-
back control to the linear model. The simulation results showed
that both feedback controllers take back the neuronal network to
its stable mode in less than 2 s.

4. DISCUSSION
This study presents the design of a feedback control system
applied to a recently developed model of a fragile epileptic net-
work (Sritharan and Sarma, 2014). The behavior of the imple-
mented non-linear stochastic neuronal network was manipulated
by modifying the synaptic weights between neurons. The model

Table 1 | Feedback Controller Performance.

Controller type Stable mode delay[s] 1st Stable FR[ms]

Linear model 1.81 ± 1.268 197 ± 68.48

Non-linear model 1.05 ± 0.49 307.2 ± 166.94

FIGURE 6 | Shows a simulation for 10 s, Wu200 was used for unstable

simulation. (A) Raster plot for all nodes in the network. Color-coded arrows
show mode transition and detection; black represents the transition to
unstable mode, red marks the detection of the unstable mode and blue
marks the detection of stability in the network. (B) The derivative of the
cumulative function (�grk/�t) over time, the black horizontal line marks the
threshold for detection. (C) The feedback gain over time; input to the

system’s most fragile node, given by u. (D) The black trace shows the firing
rate of node 4 over time. The red horizontal line shows the mean average
value of stable mode firing rate, the green horizontal lines encompass the
stable firing rate range with a value of twice the standard deviation above and
below the mean average for stable mode firing rate. The magenta arrow
marks when the fragile node returns to its baseline firing rate for the first
time, other arrows are color-coded as in (A).
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assumes that epilepsy is a neuronal network condition, with ran-
dom transitions between a stable (non-seizure) mode, and an
unstable (seizure) mode, arising due to a perturbation to the most
fragile node in the epileptogenic network.

The proposed control architecture measures the spike train
observations from the epileptic network to detect when the neu-
ronal network has transitioned from a stable to an unstable
mode, marking the seizure onset, to then apply feedback con-
trol to the network to take it back to its original stable mode.
The detector implemented is based on a recently developed 2-
state HMM (Ehrens et al., 2014) that minimizes detection delay
and maximizes the detection performance. In this study, the high
performance of this detector was confirmed, since all detections
(400) to the unstable mode were true positives, with a mean
average value of 406.9 ± 204.91 ms for the detection delay. A
limitation to the detection algorithm used in this study is that it
requires obtaining the firing rates in each state a priori.

Two feedback control architectures were proposed, both able
to return the neuronal network back to a stable mode after the
neuronal network was perturbed. Performance of the feedback
control was evaluated based on the time it took the controller
to take back the neuronal network to a stable mode. Feedback
control over the non-linear model was analyzed and compared
against feedback control over the linearized model. As expected
feedback control over the non-linear model was more efficient
on taking the neuronal network back to its stable mode by 0.76 s
over 200 simulations. This was to be expected since the linearized
model is an approximation. However, both modes of feedback
control returned the neuronal network back to a stable behav-
ior in less than 1.81 s. An interesting finding was that feedback
control over the linearized model returned the firing rate of the
most fragile node for the first time to its stable baseline faster
than when applying feedback control over the non-linear model.
This could be due to the fact that the transitory response from
the most fragile node to the feedback control is more abrupt
with a higher overpass of the stable baseline, making it harder to
stabilize.

Recent efforts to design and implement closed-loop control
of epileptic networks have focused on the site and stimulation
parameters (Stefanescu et al., 2012; Fisher and Velasco, 2014).
Ideally, electrical stimulation should be done solely on the epilep-
togenic network, and with accurate seizure foci localization tech-
niques (Burns et al., 2012, 2014), it may be possible to implement
micro electrode arrays at the epileptogenic brain site and measure
spike trains as required by our controller scheme. However, these
arrays may not be stable (i.e., stay in the same place) if chronically
implanted.

Another limitation of the proposed closed-loop control design
is that the stability detector input is the firing rate of the most
fragile node of the network, to which feedback control is then
applied. In more realistic conditions the localization of the epilep-
togenic source to this microscopic level is highly challenging. In
this study it is assumed that the perturbation applied is known
as well as the current state of all the nodes in the network. In
more realistic conditions, both of these values would be unknown
which represents a challenge in the design of closed-loop control
for more realistic conditions.
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