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A major effort in cognitive neuroscience of language is to define the temporal and spatial
characteristics of the core cognitive processes involved in word production. One approach
consists in studying the effects of linguistic and pre-linguistic variables in picture naming
tasks. So far, studies have analyzed event-related potentials (ERPs) during word production
by examining one or two variables with factorial designs. Here we extended this approach
by investigating simultaneously the effects of multiple theoretical relevant predictors in
a picture naming task. High density EEG was recorded on 31 participants during overt
naming of 100 pictures. ERPs were extracted on a trial by trial basis from picture onset to
100 ms before the onset of articulation. Mixed-effects regression models were conducted
to examine which variables affected production latencies and the duration of periods
of stable electrophysiological patterns (topographic maps). Results revealed an effect of
a pre-linguistic variable, visual complexity, on an early period of stable electric field at
scalp, from 140 to 180 ms after picture presentation, a result consistent with the proposal
that this time period is associated with visual object recognition processes. Three other
variables, word Age of Acquisition, Name Agreement, and Image Agreement influenced
response latencies and modulated ERPs from ∼380 ms to the end of the analyzed period.
These results demonstrate that a topographic analysis fitted into the single trial ERPs
and covering the entire processing period allows one to associate the cost generated by
psycholinguistic variables to the duration of specific stable electrophysiological processes
and to pinpoint the precise time-course of multiple word production predictors at once.

Keywords: ERP, topographies, single trial, picture naming, encoding processes

INTRODUCTION
The representations and processes underlying word processing for
speech production have been studied extensively for more than
three decades with various experimental approaches, including
the analysis of speech errors (e.g., Fromkin, 1971; Garrett, 1980;
Dell, 1990), chronometric paradigms (Bock, 1996), eye move-
ments studies (e.g., Griffin, 2001), and event-related potential
(ERP) approaches (Ganushchak et al., 2011). In language pro-
duction research, one of the main endeavors has been to unveil
the properties and time course of the encoding stages involved
in producing a word. Most chronometric studies involve picture
naming tasks where the dependent variable is the time interval
between picture presentation and the onset of articulation (see
Johnson et al., 1996 for a review). In many of these picture nam-
ing experiments, the properties of the words (e.g., frequency, age
of acquisition, length) or of the pictures (e.g., visual complexity)
are manipulated. On the basis of the influence that such proper-
ties exert on picture naming latencies relative to their influence
on response times in other tasks (e.g., word-picture match-
ing, Jescheniak and Levelt, 1994), inferences are drawn on the
organization of words in memory and/or on the processes under-
lying their production. Within the framework of chronometric

approaches, eye movements studies have provided information
on the relation between gaze and the planning and execution of
utterances, allowing to pinpoint the time course of the encod-
ing stages involved in word production (e.g., Meyer et al., 1998;
Griffin, 2001).

More recently, ERP studies have begun to examine which time
periods are modulated by specific psycholinguistic variables, in
order to associate these effects with the time course of underly-
ing encoding processes. Both approaches have specific limitations
due to methodological constraints. On the one hand, behavioral
chronometric methods allow the investigation of several rele-
vant variables simultaneously, but the precise time course of their
effects can only be inferred by summoning the results of different
studies (e.g., Alario et al., 2004). On the other hand, ERP studies
allow insight into the time periods affected by specific variables,
but usually investigated a few variables at a time (e.g., Cheng et al.,
2010; Strijkers et al., 2010).

A more indirect contribution to this debate is provided by
studies associating behavioral techniques and functional mag-
netic resonance imaging (fMRI) with the purpose of mapping the
neural substrates of the processing stages involved in word pro-
duction (e.g., Graves et al., 2007; Wilson et al., 2009). However,
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fMRI technique lacks the precise temporal resolution provided by
EEG and ERPs.

The present research provides a novel and complementary
approach by investigating simultaneously the effects of multiple
theoretically relevant psycholinguistic variables on ERPs covering
the entire word encoding period from picture onset to articula-
tion. We expect that this approach will provide new information
on the temporal characterization of the encoding stages involved
in word production from presentation of the picture to the
articulation of the corresponding word.

In the following section we will briefly review the psycholin-
guistic approaches and ERP studies that have examined the time
course of word encoding, before describing the approach of the
present study.

Models of word production agree on the fact that speakers have
to go through a sequence of three major cognitive processes before
they can articulate the name corresponding to a picture (e.g.,
Glaser, 1992; Levelt et al., 1999), although different claims are
made regarding the dynamics of these encoding processes (Dell,
1986, 1988). The first process involves visual processing and leads
to object recognition. The second process involves the activation
of the corresponding concept. It is only at the third processing
stage that language gets involved, with the encoding of the cor-
responding word. This step, often referred to as the formulation
process (e.g., Levelt et al., 1999) has been extensively detailed
in the psycholinguistic literature and is assumed to entail sev-
eral processing sub-stages: lexical selection, phonological encod-
ing, and phonetic encoding. Lexical selection corresponds to the
retrieval from the mental lexicon of a lemma, i.e., a semanti-
cally and syntactically specified representation (lexical-semantic
processes). The word’s phonological representation or lexeme
is specified during phonological encoding (lexical-phonological
processes); then, on the basis of the abstract phonological codes,
syllable-sized articulatory gestures and their temporal relation-
ships are either computed or retrieved (phonetic encoding) before
articulation can start. The average time needed to start articulat-
ing a word from picture onset is less than a second. More recently,
a major effort has been devoted to characterizing the precise time
course of these processes, that is, their respective order and dura-
tion. As is evident from previous reviews (Indefrey and Levelt,
2004; Indefrey, 2011) this issue is particularly complex and our
current knowledge, which relies on the comparison of disparate
sources of evidence, is still incomplete.

Information about when and how the different encoding pro-
cesses unfold can be extracted from different sources (see Indefrey
and Levelt, 2004 for a comprehensive review). A first way to
obtain such information is to design paradigms that target spe-
cific processes. However, these approaches do not allow estimat-
ing directly the time course of specific processes. For instance,
Jescheniak and Levelt (1994) had participants perform a picture
word matching task and subtracted an approximation of the time
devoted to response preparation and execution from the over-
all response times to conclude that it takes less than 150 ms to
access lexical concepts. Another approach to gain insight into the
time course of word production processes is the use of priming or
interference paradigms where the prime (an auditory or visually
presented word distractor) occurs at different time points relative

to picture presentation (or SOA, for stimulus onset asynchrony
e.g., Glaser and Düngelhoff, 1984). Distractors typically have a
phonological, semantic or sometimes syntactic relationship with
the target word. Depending on the SOA at which a given distrac-
tor type affects responses, conclusions have been drawn on the
temporal relationship between specific encoding processes (e.g.,
Schriefers et al., 1990), while not necessarily on their precise time
course.

A third important source of information on the time course of
cognitive processes comes from EEG or MEG studies with ERPs,
which allow one to track temporal information with a precision at
the millisecond range. Different paradigms have been used so far,
including delayed picture naming tasks (Jescheniak et al., 2003;
Cornelissen et al., 2004; Vihla et al., 2006; Laganaro et al., 2009),
implicit naming or metalinguistic tasks (e.g., Thorpe et al., 1996;
Van Turennout et al., 1998; Schmitt et al., 2000; Jescheniak et al.,
2002; Rodriguez-Fornells et al., 2002; Zhang and Damian, 2009)
and, more recently, overt picture naming (see Ganushchak et al.,
2011; Strijkers and Costa, 2011 for a critical review of EEG/MEG
speech production studies). ERP paradigms using overt picture
naming paradigms are the most relevant as they truly involve an
overt production of the target words. Studies conducted so far
with this task have addressed one single step or sub-step of the
production process each. They have usually involved a manipula-
tion of the experimental conditions (e.g., semantic context, Costa
et al., 2009; Aristei et al., 2011; Blackford et al., 2012) or of the
materials, using factorial or semi-factorial designs, i.e., with two
subsets of items varying in terms of a specific predictor being
compared (e.g., name agreement, Cheng et al., 2010; age of acqui-
sition, Laganaro and Perret, 2011; lexical frequency, Levelt et al.,
1998; Strijkers et al., 2010).

In the present study, we extend this second approach, by con-
sidering most variables described in previous chronometric and
ERP studies at once.

A similar methodological approach involving multiple regres-
sion analyses between ERPs and psycholinguistic factors was first
introduced by Hauk et al. (2006) in a visual word recognition
paradigm. In their study the authors orthogonalized four theoret-
ically relevant psycholinguistic factors in visual word recognition
and investigated their effects on ERP regression coefficients, with
the aim of determining which factors affected neurophysiologi-
cal activity, and to obtain information on the precise time course
of their effects during word processing. Dien et al. (2003) also
introduced a novel ERP approach aimed at avoiding the group-
ing of experimental stimuli in few categories and the potential
subsequent loss of information. This was achieved by averaging
the items across participants, rather than across trials, in order to
investigate correlations between stimulus characteristics and the
neurophysiological activity.

In relation to these previous studies, here the analyses of the
effects of psycholinguistic variables on neurophysiological activity
are carried out on the duration of periods of stable global electro-
physiological activity on the whole word encoding process from
picture onset to articulation. This allows to determine the origin
of the cost generated by these variables on vocal response times
and to assess the effect exerted by psycholinguistic factors on the
different stages of information processing.
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With respect to Dien et al. (2003), the item-averaging approach
was further improved insofar as here ERP trials were not averaged
and template maps issued from the spatio-temporal segmenta-
tion of group-averaged ERPs were backfitted in single trials. Single
trial approaches have proved reliable and effective as they allow
preserving the complete variability of the EEG dataset, which is
usually lost when averaged responses are utilized (e.g., De Lucia
et al., 2007, 2010). Thus, our approach also extends the classical
topographic analysis in fitting the spatio-temporal segmentation
of the group-averaged ERPs back into the single trials rather than
into the subject-averaged ERPs.

This analysis is likely to inform us on two different issues.
Firstly, ERP modulations by variables that can be unambiguously
attributed to given word encoding processes will provide pre-
cise information on the time course of these specific processes.
Secondly, if effects are found for variables whose attribution still
lacks empirical support, our findings, together with existing esti-
mates of the time course of the production process, will allow us
to propose a specific locus for these variables.

Based on the existing literature, the following variables were
included in our analysis: Visual complexity, Concept familiar-
ity, Image agreement, Name agreement, Lexical frequency, Age
of acquisition, Word length, Phonological neighborhood, and
Phonotactic probability. Figure 1 shows these variables and the
processing level with which they have been associated in previous
studies. Further details on each variable are provided below.

Visual complexity, defined as “the amount of detail or intri-
cacy of line in a picture” (Snodgrass and Vanderwart, 1980),
has been associated with object recognition. Empirical evidence
in favor of this insofar intuitive hypothesis has recently been
found by Martinovic et al. (2008). The authors reported that
the visual complexity of line drawings modulated waveforms in
the P1 range, a time window likely associated with visual pro-
cesses and object recognition. Note also that whereas a few studies
found increasing response latencies for more complex pictures
(Attneave, 1957; Alario et al., 2004), other studies failed to find
differences in response latencies between high and low complex-
ity pictures (Paivio et al., 1989; Snodgrass and Yuditsky, 1996;
Barry et al., 1997; Cuetos et al., 1999; Bonin et al., 2002, 2003;
Janssen et al., 2011) or reported the opposite effect, i.e., decreased
production latencies for more complex pictures (Szekely et al.,
2005).

Concept familiarity is defined as “the degree to which partici-
pants come in contact with or think about the concept” (Snodgrass
and Vanderwart, 1980, p. 183). It has been estimated by asking
participants to rate on a five-point scale (from 1. very unfamiliar
to 5. very familiar object), the extent to which the concept associ-
ated with a picture was recurrent in their thoughts or frequently
encountered (Alario and Ferrand, 1999). Concept familiarity has
been hypothesized to affect the links between picture represen-
tations and their semantic representations (Hirsh and Funnell,
1995). To our knowledge, however, this hypothesis has not been
confirmed empirically. As for the previous variable, effects of
concept familiarity on picture naming latencies have not been
reported systematically. A few studies found increasing response
latencies for less familiar pictures (Snodgrass and Yuditsky, 1996;
Ellis and Morrison, 1998), while other studies failed to find

FIGURE 1 | Picture naming model adapted from Alario et al. (2004),

with an indication of the psycholinguistic factors exerting an effect on

each specific encoding substage (according to the literature review).

We have adapted this figure to include more variables and clarify whether
the locus is supported by empirical data or not.

differences in response latencies between items of high and low
familiarity (Barry et al., 1997; Dell’Acqua et al., 2000; Bonin et al.,
2002, 2003; Alario et al., 2004).

Lexical frequency refers to how often the word is used in a lan-
guage. Shorter response latencies for more frequent words have
been reported many times in the psycholinguistic literature (e.g.,
Jescheniak and Levelt, 1994; Barry et al., 1997; Ellis and Morrison,
1998; Griffin and Bock, 1998; Alario et al., 2004). However the
effect of lexical frequency is mostly found in factorial designs
and often disappears when Age of Acquisition is controlled for or
entered in a regression model (Carroll and White, 1973; Morrison
et al., 1992; Barry et al., 1997, 2001; Bonin et al., 2002, but
see Snodgrass and Yuditsky, 1996; Barry et al., 1997; Ellis and
Morrison, 1998). Some authors attribute the effect of lexical fre-
quency to lexical (lemma) selection (Dell, 1990; Alario et al., 2002;
Navarrete et al., 2006) while others attribute it to phonological
encoding (Jescheniak and Levelt, 1994; Levelt et al., 1999). Recent
research suggests an effect of lexical frequency at both process-
ing stages (Kittredge et al., 2008; Knobel et al., 2008). An ERP
study by Strijkers et al. (2010) reported waveform divergences
between high and low frequency words at 180 ms after picture
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presentation. The authors suggested that this time period cor-
responds to the initiation of lexical selection. Further evidence
in favor of a lexical-phonological locus of the word frequency
effect is provided by fMRI overt picture naming studies. Graves
et al. (2007) reported a correlation between lower word fre-
quency and activity in the left posterior superior temporal gyrus,
a region previously associated with lexical-phonological process-
ing in word production (see Price, 2012 for a review). Wilson et al.
(2009) showed activation related to word frequency effect in an
anatomical contiguous region (the left posterior inferior temporal
gyrus).

Image agreement refers to the proximity between a represented
object and its mental image. Participants were asked to rate on
a five-point scale (from low agreement to high agreement) the
agreement between a pictorial stimulus and their own mental
representation of the depicted object (Alario and Ferrand, 1999).
Effects of image agreement on naming latencies have been found
in several studies (Barry et al., 1997, see also Alario et al., 2004).
Snodgrass and Vanderwart (1980) hypothesized that this measure
would affect image recognition. To our knowledge, no empirical
arguments have yet come to back up this view.

Name agreement is a measure of the degree of association
between the picture and the corresponding modal name. It is esti-
mated by examining the number of different names participants
provide for a given picture. It has been shown that when partic-
ipants give many different names for a same picture (low name
agreement), production latencies are longer (Lachman et al.,
1974; Paivio et al., 1989; Vitkovitch and Tyrrell, 1995; Snodgrass
and Yuditsky, 1996; Barry et al., 1997; Alario et al., 2004; Kan and
Thompson-Schill, 2004). Name agreement does not affect object
decision reaction times, suggesting that the effect of this variable
on naming responses occurs during lexical retrieval, and/or dur-
ing phonological encoding (Johnson et al., 1996; Alario et al.,
2004). In line with this hypothesis, Cheng et al. (2010) reported an
effect of Name Agreement on ERPs in a silent picture naming task
at 290 ms from picture onset, a time window usually associated
with phonological encoding processes. Note that these authors
also found an early influence of Name agreement in the P1 time
window (around 120 ms after picture onset). According to the
authors, this early influence could reflect the enhanced recruit-
ment of visual attentional resources for pictures with low relative
to high name agreement.

Age of acquisition (AoA) refers to the age at which a given word
is learnt. Numerous studies have shown that words acquired ear-
lier are named faster, and that different brain activations underlie
the processing of early and late acquired words (see for instance
Hernandez and Fiebach, 2006; for brain correlates of AoA effects
in word reading). The effect appears to be similar with subjec-
tive estimates of AoA (e.g., Morrison and Ellis, 1995; Chalard and
Bonin, 2006) and with objective measures taken from corpora of
child speech (Morrison et al., 1997; Ellis and Morrison, 1998).
Reliable effects have also been found when frequency is con-
trolled for (Barry et al., 2001). Some authors have ascribed AoA
effects to lexical-semantic encoding stages, reporting independent
AoA effects in tasks which did not necessarily involve access to
the word form, but rather lexical-semantic processing, such as
semantic blocking in picture naming and semantic categorization

(Belke et al., 2005; Johnston and Barry, 2005). Other studies con-
verge toward a lexical-phonological locus of AoA. Morrison et al.
(1992) found that AoA was a significant predictor of picture nam-
ing speed but did not affect semantic categorization, suggesting
that the effect originates in the retrieval and articulation of object
names. Morrison and Ellis (1995) reported AoA effects in lexical
decision and in immediate but not delayed picture naming, con-
cluding for its implication in retrieval of the word form. Recent
ERP data (Laganaro and Perret, 2011; Laganaro et al., 2012)
revealed that AoA modulated ERPs recorded during picture nam-
ing in a relatively late time window compatible with retrieval of
the word form.

WORD LENGTH
Studies on the influence of word length on picture naming laten-
cies have reported mixed outcomes (see Cuetos et al., 1999;
Santiago et al., 2000; Roelofs, 2002 for shorter latencies for shorter
words and Snodgrass and Yuditsky, 1996; Bachoud-Lévi et al.,
1998; Dell’Acqua et al., 2000; Damian et al., 2010 for null effects).
As for the attribution of this effect, most models of word produc-
tion assume that longer words should take longer to be named
due to the sequential insertion of phonemes in the metrical struc-
ture during phonological encoding. Hence, if length does have
an effect, we can assume it is located after lexical retrieval, most
likely in late time windows associated with phonological encod-
ing. Graves et al. (2007) reported word length effects in primary
motor regions, suggesting for the involvement of such factor dur-
ing phonetic encoding and implementation of the articulatory
routine.

More recently, other variables such as phonological neighbor-
hood density (Vitevitch, 2002; Vitevitch and Sommers, 2003) and
phonotactic probability (Vitevitch et al., 2004) have been shown
to affect speech production. The precise locus of the effect of these
variables is still controversial. However, as they were not consid-
ered or balanced across conditions in previous studies, they may
have influenced the outcome through their correlation with other
predictors.

Building on previous chronometric and ERP studies, the
present research aims at determining the time course of picture
naming latencies predictors, this time course being instantiated in
specific and experimentally defined periods of electrical stability
(topographic maps or event-related brain potential microstates).
Topographic analysis is a reference-independent measure of elec-
trical potential variations in the brain. The main theoretical
assumption of this approach is that different topographic maps
are generated by different cerebral sources and supposedly differ-
ent cognitive processes (Michel et al., 2009). These analyses do not
only provide an insight into when processes differ but also into
“how they differ in terms of likely underlying neurophysiologic
mechanisms” (Murray et al., 2008, p. 249). Another characteristic
of topographic analysis is that it is not affected by the choice of a
reference electrode (see Michel et al., 2009).

The topographic analysis entails a spatio-temporal segmen-
tation of the ERPs in periods of electrophysiological stability
(topographic maps); crucially for the purposes of this study, topo-
graphic analysis provides information regarding the precise time
course of each stable electric field configuration, with no need
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for a priori focus on specific time windows. The application
of this analysis to stimulus- and response-aligned ERPs adapted
to each individual production latency (following Laganaro and
Perret, 2011), allows us to cover the entire encoding process
from picture onset to articulation and to capture those encod-
ing processes that are truncated when fixed stimulus-aligned ERP
time-windows are analyzed. The standard procedure in topo-
graphic analysis requires a time point by time point computation
of the spatial correlation between the template maps observed in
the group-average ERP in n different experimental conditions and
individual ERP data. This methodology allows one to investigate
for instance the association between template maps and particu-
lar experimental conditions (e.g., Murray et al., 2008) or to look
for differences in the duration of periods of stable electrophysi-
ological stability across experimental conditions (e.g., Laganaro
et al., 2012). This in turn allows one to draw conclusions about
the dynamics of the cognitive processes involved in these different
conditions. In the present study, we will conduct mixed-effects
regression analyses to determine the influence of multiple vari-
ables on picture naming latencies and ERPs. Differently from
the traditional approach in topographic analysis, here the time
point by time point comparison of the template topographic
maps identified in the grand-average ERPs will be conducted on a
trial by trial basis rather than in subject-averaged ERPs. This will
allow a thorough verification at the level of single trial activity—
corresponding to different linguistic stimuli—of the template
maps issued from the spatio-temporal segmentation of the group-
averaged ERP and the analysis of the effects of a set of linguistic
properties related to the words, i.e., to the trials.

This approach has several advantages. Firstly, given that many
variables can be considered at once, it provides information on
the time course of the whole production process rather than on a
single processing step. This is important, as estimates of the time
course of word production can be more precise if extracted from
a single experiment rather than from different studies. Secondly,
the inclusion of many variables also ensures that a given vari-
able is significant over and above the effect of other variables.
Thirdly, this methodological approach enables the use of con-
tinuous variables rather than categorical ones. As underlined by
several researchers (e.g., Balling, 2008; Baayen, 2010), factorial
designs have many disadvantages when compared to regression
designs, including loss of power and influence of confounding
variables.

An example of the application of the trial by trial approach pre-
sented here can be found in Bürki and Laganaro (2014), where it
has been applied as a statistical validation tool for the comparison
of an experimental condition involving multi-word production in
comparison to bare noun production in a picture naming task.

METHODS
PARTICIPANTS
Thirty one undergraduate students (7 men), recruited at the
University of Geneva participated in the study. They were all
native French speakers, aged between 18 and 36 (mean = 24).
They were all right-handed as determined by the Edinburgh
Handedness Scale (Oldfield, 1971). Twenty-one participants per-
formed the picture naming task in the framework of the present

study and 10 subjects were selected among the participants with
the highest rate of uncontaminated EEG epochs from a previous
study using the same material and procedure (Laganaro et al.,
2012).

The participants gave their informed consent—approved by
the local ethics committee—and were paid for their participation.

MATERIAL
The stimuli were 120 words and their corresponding black
and white line drawings from two French databases (Alario
and Ferrand, 1999; Bonin et al., 2003), from which a sub-
set of 100 items was selected. The retained 100 words were
those with the highest rate of correct responses (global accu-
racy: 95.2%) and with a minimum of 20 uncontaminated EEG
epochs (see pre-analyses). The stimuli characteristics are provided
in Supplementary Material.

PROCEDURE
Participants were tested individually in a soundproof dark room.
They sat 60 cm in front of the computer screen. Pictures were pre-
sented in constant size of 9.5 × 9.5 cm (approximately 4.52◦ of
visual angle) on a gray screen. Before the experiment, participants
were familiarized with all the pictures and their corresponding
names on a paper sheet. An experimental trial had the following
structure: a fixation sign was presented for 500 ms followed by the
presentation of a picture on the screen for 2000 ms. Participants
were asked to name the picture as quickly as possible. A 2000 ms
blank screen was displayed before the next trial. Items were pre-
sented in different pseudo-random orders for each participant,
which were controlled to avoid for semantically or phonologically
related items to appear in direct succession. The experiment lasted
about 15 min and started with four warming-up filler trials.

BEHAVIORAL ANALYSES
Each spoken response was first checked for accuracy. No-
responses, wrong responses (i.e., the participant produced a
different name than the one expected), hesitations and/or auto-
corrections during articulation were counted as errors. A total of
50 responses (1.6% of the total) were excluded.

Response times (defined as the time between the onset of
picture presentation and the onset of the verbal response) were
precisely defined on the basis of the spoken responses’ spectro-
gram. We further excluded the 62 responses (2% of the total) with
a response time below 500 ms or above 1500 ms.

EEG RECORDING AND PRE-ANALYSIS
A high density EEG (128 channels covering the scalp) was
recorded, using the Active-Two Biosemi system (Biosemi V.O.F.
Amsterdam, Netherlands). Signals were sampled at 512 Hz and
the band-pass filters were set between 0.16 and 100 Hz. Post-
acquisition analyses were conducted with the Cartool Software
(Brunet et al., 2011). Stimulus-aligned epochs—from pic-
ture onset to 450 ms—and response-aligned epochs—covering
from −550 to 100 ms before the onset of each single verbal
response- were extracted and band-pass filtered between 0.2
and 30 Hz. All epochs with out-of-range amplitudes (±100 μV)
were excluded. The remaining epochs were visually checked for
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undetected artifacts caused by eye blinking or muscular activ-
ity. Contaminated epochs were excluded from the averaging
process. Bad channels were interpolated on each epoch follow-
ing a 3D spline interpolation method. Only epochs for which
both stimulus-aligned and response-aligned ERPs were available
were retained. Stimulus and response-aligned ERPs were merged
together on the basis of each trial’s reaction times and the over-
lapping ERP from the response-aligned signal was removed. This
procedure is designed to obtain an ERP covering the whole time
window of encoding, from picture onset to 100 ms before the ini-
tiation of articulation (see Laganaro and Perret, 2011; Laganaro
et al., 2012 for further applications). It was applied to epochs aver-
aged across subjects (N = 31) and to single epochs (single trials,
N = 2693).

ERP ANALYSIS
A topographic pattern analysis was carried out. Topographic anal-
ysis allows compressing variability of ERPs with a procedure
called “spatio-temporal segmentation” in a series of template
maps, which summarize and explain at best the data (usually the
grand-average). This spatio-temporal segmentation was applied
to the subject-averaged data using a Topographic Atomize &
Agglomerate Hierarchical Clustering (Pascual-Marqui et al., 1995;
Murray et al., 2008). In order to exclude short periods of topo-
graphic instability, a given stable ERP topography had to be
present for at least 20 ms to be retained. A combination of cross-
validation and Krzanovski-Lai criteria was adopted to select the
optimal number of template maps. The Krzanovski-Lai criterion
is based on the analysis of the curvature of the dispersion curve
(W), which represents a quality measure of the segmentation.
The KL value, representing a relative measure of such curva-
ture, usually reaches the peak in correspondence with the optimal
clustering (Murray et al., 2008). We then compared the template
maps obtained in the segmentation of the group-averaged ERPs
with each individual ERP and with the single trial evoked poten-
tials, this procedure is called “fitting.” In the fitting procedure,
each time point of each individual ERP is labeled on the basis
of the spatial correlation it bears with one of the template maps
issued from the segmentation of the grand-average. A set of fitting
time-windows is determined, based on the results of the group-
averaged segmentation; the template maps included in such time
windows are then fitted back in the same time window of each
subject and single trial ERP. The procedure is therefore tempo-
rally constrained and requires at least two template maps to be
included in a particular time window. This procedure provides
information on the presence of each stable topographic config-
uration time point per time point and therefore also on their
duration. Statistical analyses are then carried out on these two
measures.

STATISTICAL ANALYSES AND SELECTION OF INDEPENDENT
VARIABLES
Behavioral and EEG responses were analyzed by means of mixed-
effects regression models (e.g., Goldstein, 1987, 1995; Baayen
et al., 2008). All statistical analyses were conducted with the
statistical software R (R Development Core Team, 2007) and
mixed-effects models were computed with the packages lmerTest

(Kuznetsova et al., 2013) and lme4 (Bates and Sarkar, 2007).
Statistical analyses on behavioral responses aimed at determin-
ing the predictors of picture naming latencies (i.e., time between
onset of picture and onset of articulation) in our dataset.
Statistical analyses on ERPs aimed at determining the predictors
of the duration of the stable topographic maps defined by the
spatio-temporal analysis described above. Mixed effects regres-
sion models were thus run separately for each topographic map,
with the duration of the map as the dependent variable.

In each regression model, participants and items were entered
as crossed random effects. The same set of variables was entered as
fixed effects, always in the same order: the Levensthein phonolog-
ical distance measure [i.e., mean Levensthein distance (LD) from
the stimulus to its 20 closest neighbors, the LD between two words
being defined as the minimum number of insertions, deletions or
substitutions required to generate one word from the other, see
Yarkoni et al., 2008] as a measure of phonological neighborhood
density. Positional segment frequency and Positional diphone fre-
quency (i.e., sum of log frequencies of all words that contain a
given segment or diphone in a given position, divided by the log
frequency of all words with a segment/diphone in this position) as
measures of phonotactic probability (Vitevitch and Luce, 2004);
the logarithm of lexical frequency (LexF), as given for Movies and
Books in the French “Lexique” database (New et al., 2004, 2007);
concept familiarity (CFam); the visual complexity of the pictures
(VCom), Image agreement (IAgr), Name agreement (NAgr, i.e., the
percentage of participants who produced the modal name, and
the H measure, see Snodgrass and Vanderwart, 1980 for details),
and Age of acquisition (AoA). Measures accounting for the five last
variables were taken from either Bonin et al. (2003) or Alario and
Ferrand (1999) databases (these two databases provide similar
measures for different sets of pictures).

For each dependent variable, we also conducted a second
model in which we introduced in addition the number of sylla-
bles as a fixed effect and removed the Levenshtein phonological
distance measure and phonotactic probability. This was done
because number of syllables and the other two measures were
correlated above 0.6. Given that these latter models were always
highly similar to the first and that number of syllables never
reached significance, we only report the statistical values of the
models with the Levenshtein phonological measure distance and
phonotactic probability, without the number of syllables.

When a given predictor could be represented by more than one
measure, we examined the influence of each of these measures in
separate models. For instance, lexical frequency can be measured
by counting the number of occurrence of a given word in a col-
lection of books (written lexical frequency), or in movies subtitles
(spoken lexical frequency). In French, the two measures are avail-
able. We thus conducted two statistical models, one with written
frequency and another with spoken frequency. This was done to
ensure that the absence of an effect for a given variable was not
due to the selection of the wrong measure and favor the use of
measures that best accounted for our dataset.

Items and participants were entered in the model as random
effects. Unless otherwise stated, all the effects we report as signif-
icant stem from models with a random slope allowing for these
effects to differ among participants. Following Baayen (2008)
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each model was fitted twice, the second time without the resid-
uals of the regression model larger than 2.5 times the standard
deviation. Results with and without the residual outliers did not
differ and the results we report stem from models without these
outliers. Alpha was set to 0.05 in the response time analysis; in
the ERP analyses, where five different analyses were conducted,
a Bonferroni correction was applied to adjust for multiple test-
ing (alpha set to 0.01). For each analysis, we further report the
marginal (associated with the fixed effects) and conditional (asso-
ciated with the fixed plus the random effects of the model) R
squares (Nakagawa and Schielzeth, 2013). We also checked that
there was no potentially harmful multicollinearity in our mod-
els (redundancy tests). This was never the case; all models had
tolerance values above 0.5.

RESULTS
BEHAVIORAL RESULTS (PRODUCTION LATENCIES)
The dataset considered in the analyses contained the 2693 data
points for which participants had produced a correct response
and whose epoch was included in the ERP analysis. The mean
production latency was 805 ms (SD = 181 ms).

Results revealed main effects of age of acquisition, name
agreement, and image agreement. Production latencies increased
with age of acquisition (β = 40.61, t = 3.36, p < 0.01) and
decreased with higher name agreement (β = −3.38, t = −4.87,
p < 0.0001) and image agreement (β = −22.24, t = −3.17, p <

0.01) values. None of the other predictors was significant.
Statistical values for all predictors are presented in Table 1. The
marginal and conditional R squares for this model were respec-
tively of 7 and 52%. Note that the statistical model did not
converge until we removed the random slope allowing for the
effect of name agreement to vary amongst participants.

ERPs
The spatio-temporal segmentation of the grand average from
50 ms after picture onset to 100 ms before articulation onset
yielded 5 different topographic patterns, which accounted for
95.88% of the overall variance in the data (see Figure 2). Three
time windows were chosen for the fitting procedure, based on
the result of the segmentation on the group-average and in order
to include at least two map templates in each period: from 50 to
180 ms, from 180 to 460 ms and from 460 to 100 ms before artic-
ulation. The fitting time-windows were set within rather than at

Table 1 | Summary of the mixed effects regression model for the

response latencies.

β t p

Phonological Levenshtein distance −24.24 −1.74 >0.08

Positional segment frequency 12.42 0.056 >0.9

Lexical frequency −2.25 −0.70 >0.4

Familiarity −1.19 0.32 >0.7

Visual complexity −6.14 −0.72 >0.4

Image agreement −22.24 −3.17 <0.01

Name agreement −3.38 −4.87 <0.0001

Age of acquisition 40.61 3.36 <0.01

the end of the time-periods of stable electrophysiological activity
(topographic maps) to account for between subject and trial vari-
ability: map templates crossing the fitting borders were entered in
the two consecutive fitting periods (maps “A” and “B” in the first
fitting period, “B,” “C,” and “D” in the second period, “D” and
“E” in last period). In order to ensure that the five topographic
maps were not driven by random noise in the trial by trial data, we
first performed a topographic consistency test (TCT, Koenig and
Melie-García, 2010) on the trial ERPs from a subset of randomly
selected items. This analysis revealed that periods of consistent
topographic patterns across single trials extended from ∼70 ms
to the end of the analyzed period (100 ms before articulation),
with the exception of a short period of topographic inconsistency
from ∼150 to ∼180 ms in all examined items (see Supplementary
Material).

A computation of Map presence was then performed sepa-
rately in ERP trials and subjects. Information on map presence
is obtained during the fitting procedure. Each time point of each
individual trial or subject-averaged ERP is labeled accordingly to
the template map with which it shares the highest spatial corre-
lation. A measure of map presence can therefore be obtained by
calculating the ratio between the number of trials in which the
map was found and the total number of trials (or sample).

Results are summarized in Figure 2. To ensure that the topo-
graphic template maps issued from the spatio-temporal segmen-
tation of the group-averaged ERP were sufficiently representative
of the single trials ERPs, the Global Explained Variance (GEV)
of each template map was calculated in subjects and single trials.
The GEV is a measure informing on how extensively a given tem-
plate map describes the variance of the considered dataset (e.g.,
Murray et al., 2008). Results of presence and GEV for each map in
the fitting in both subjects and trials are summarized in Figure 2.
The percentage of map presence is similar or higher in the single
trials than in the subjects. The GEV is about 20% lower in the sin-
gle trials with respect to subjects for maps A, C, and D, but it is
higher in the single trials than in the subjects for the last period of
topographic stability (map E).

Crucially for the single trial analysis carried out here, all maps
appeared in at least 89% of the trials. The three variables found to
affect production latencies were entered as fixed predictors in each
regression analysis along with the other psycholinguistic variables
as covariates. This ensured that the effects of some were not by-
products of their correlations with other variables.

Results of the mixed effects regression model for each stable
electrophysiological pattern are summarized in Table 2.

The duration of the second map (map “B”), which lasted from
about 140 to 180 ms after picture onset, decreased with visual
complexity (p < 0.01). Map D, which started around 380 ms after
picture onset and lasted for about 240 ms, decreased with higher
Image Agreement (p < 0.01) and Name agreement (p < 0.0001)
values. There was also a marginally significant effect of the word
Age of Acquisition (p = 0.015). The last stable pattern (map “E”
in Figure 2), which started about 620 ms after picture onset and
lasted until at least 100 ms before the onset of articulation had
a longer duration for late-acquired words (p < 0.01) and words
with low name agreement values (p < 0.0001). The complete sta-
tistical models are reported in Supplementary Material. Note that
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FIGURE 2 | Top: Grand-average ERPs (128 electrodes) from onset to 100 ms
before articulation and temporal distribution of the topographic maps revealed
by the spatio-temporal segmentation, with map templates for the six stable

topographies (positive values in red and negative values in blue with display
of maximal and minimal scalp field potentials). Bottom: Presence and GEV of
each map template in the fitting in the single trials and subject ERPs.

Table 2 | Summary of the mixed-effects regression model for the duration of periods of stable electrophysiological activity (topographic maps).

Map A: Map B: Map C: Map D: Map E:

∼50–140 ms β, t, sign ∼140–180 ms β, t, sign ∼180–380 ms β, t, sign ∼380–620 ms β, t, sign ∼620–articulation β, t, sign

VCom −1.92, t = −2.85, **

CFam

IAgr −8.67, t = −2.75, **

NAgr −1.08, t = −4.17, *** -0.67, t = −4.73, ***

AoA 9.92, t = 2.48, p = 0.015 7.6, t = 3.08, **

**p < 0.01; ***p < 0.001.

VCom, visual complexity; CFam, Concept Familiarity; IAgr, Image Agreement; NAgr, Name Agreement; AoA, Age of Acquisition.

the model for map D did not converge with a random slope for
Name Agreement, and the one for map E did not converge until
the removal of the random slopes allowing for the effects of Name
Agreement and Image agreement to differ among participants.

DISCUSSION
The aim of the present work was to gain insight into the dynam-
ics of word production in picture naming tasks. To this end,
we analyzed the effects of a set of theoretically relevant vari-
ables on response times as well as on an electrophysiological
measure, namely the duration of periods of stable EEG activity
(topographic maps). A multiple regression approach was imple-
mented on trial by trial ERPs covering the entire encoding period
from picture onset to 100 ms before articulation. This approach
allowed us to select the variables that truly influenced response
times in our dataset and to pinpoint the exact time windows at
which these variables exerted their influence.

Three out of the larger set of examined variables had
robust independent effects on production latencies: word age of

acquisition, name agreement, and image agreement. Overall, these
results confirm previous published data on the predictors of
picture naming latencies. Effects of name agreement, age of acqui-
sition, and image agreement have indeed been reported in many
studies (see Alario et al., 2004 for reviews). The five remaining
variables (lexical frequency, visual complexity, familiarity, word
length, phonological neighborhood, and phonotactic probability)
have also been reported to affect production latencies in previ-
ous studies but much less systematically, especially when multiple
regression designs were used (see Alario et al., 2004). Crucially for
our purposes, the three variables that had an effect on RTs also
significantly affected the duration of periods of topographic sta-
bility. The results are summarized in Figure 3. In what follows, we
will discuss these results in the light of previous psycholinguistic
and ERP findings.

The visual complexity of the pictures modulated ERPs but
did not affect RTs. Visual complexity modulated the duration of
the second period of topographic stability (topographic map B,
from ∼140 to ∼180 ms). The shorter duration for more complex
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FIGURE 3 | Summary of the time course of the significant predictors in the ERP analyses. Variables that also affected RTs are in bold.

pictures likely reflects the fact that pictures can be recognized
faster when they contain more details; this is in agreement with
studies reporting shorter production latencies for more complex
pictures (Szekely et al., 2005, but see Alario et al., 2004). The
effect falls within the P1-N1 range, traditionally associated with
visual-conceptual processing (Schendan and Kutas, 2003). Similar
results have been reported by Martinovic et al. (2008, Experiment
2) who compared ERPs of pictures with high vs. low visual com-
plexity in a gender decision task. Visual complexity did not affect
response times, but modulated ERPs in the P1 range with higher
amplitudes and increased evoked gamma-band activity, but also
earlier peak latency for high complexity relative to low complex-
ity pictures. The upper boundary of the visual complexity effect
likely indicates that the limit of pre-linguistic processing in pic-
ture naming lays at approximately 180 ms. This result further
supports the reliability of the trial by trial approach adopted here.
An influence of the predictor Visual Complexity on the dura-
tion of the stable topographic configuration in the first 180 ms is
perfectly consistent with the robust and extensive evidence asso-
ciating this specific time-window with the processing of visual
object information.

Name agreement (NAgr) modulated the duration of two sta-
ble electrophysiological patterns in the time window extending
between approximately 380 after picture onset and 100 ms before
articulation (Maps “D” and “E” in Figure 2). The duration of
these two maps decreased with higher name agreement val-
ues. Name agreement is an objective measure of the degree of
association between the picture and its modal name.

Low agreement values can have two alternative sources: either
the picture is visually ambiguous, or it has several possible names.
The finding that the effect of Name agreement occurs rather
late in the production process suggests that in the present study,
the effect results from the latter and likely takes place during
the word’s phonological encoding. The erroneous responses pro-
vided by the participants in Alario and Ferrand (1999) and Bonin
et al. (2003) to the stimuli with low NA support this hypothe-
sis, as the majority of errors were synonyms of the modal name.
This finding is in line with previous attributions of this effect
to lexical retrieval and/or phonological encoding (Johnson et al.,
1996; Alario et al., 2004, see the Introduction) as well as with
Cheng et al. (2010) who reported an influence of Name agree-
ment around 290 ms after picture onset. As already noted in

the Introduction, Cheng et al. also found an effect of Name
Agreement at around 120 ms after picture onset, i.e., in the P1
range. Possibly, this early effect resulted from visual proper-
ties of the pictures. Given, however, that in the Cheng et al.’s
study the participants performed a covert picture naming task,
comparisons with the present study are not straightforward.

Word age of acquisition (AoA) also modulated the duration of
the last period of stable electrophysiological pattern (map E) and
marginally with our extremely conservative correction criteria
of the duration of map D. The duration of these two topo-
graphic maps increased for late-acquired words. As reviewed in
the Introduction, recent ERP studies converge toward a late locus
of AoA effects (see Perret et al., 2014 for recent evidence and
discussion). The temporal signature of word Age of Acquisition
has been investigated by Laganaro and Perret (2011) and Perret
et al. (2014) in picture naming tasks, with ERP topographic anal-
yses. The authors found that word age of acquisition modulated
ERPs at ∼350–400 ms after picture presentation (for an over-
all response time of ∼750 ms), a time window compatible with
lexical-phonological encoding processes. The present results cor-
roborate these findings. Note that according to Indefrey’s (2011)
estimate, phonological encoding is engaged between 275 and
450 ms after picture onset. Importantly, however, these estimates
were based on mean response latencies of 600 ms. An earlier ERP
investigation on the time course of word production compar-
ing different response latencies indicated that lexical (lemma)
selection can be lengthened in case of slower production speed
(Laganaro et al., 2012), thus delaying phonological encoding
(shifting it to the right on the temporal axis); this also seems to
be the case in the present data, as mean production latencies are
about 800 ms.

Image agreement (IA) modulated the duration of the sta-
ble topographic configuration ranging from approximately 380
to 620 ms after picture onset. Higher image agreement yielded
shorter durations of map D. The concept of Image agreement was
formalized by Snodgrass and Vanderwart (1980). These authors
asked participants to judge the degree to which a picture would
correspond to the mental object of that picture’s name. Barry et al.
(1997, see also Alario et al., 2004) found that the higher these
scores, the shorter the naming latencies. The authors hypoth-
esized that image agreement exerts its influence during object
recognition. Accordingly, it should modulate ERPs in an early

www.frontiersin.org December 2014 | Volume 8 | Article 390 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Valente et al. Word predictors effects on topographies

time-window associated with pre-linguistic processes. This sug-
gestion was rather intuitive, based on the fact that IA should code
the prototypicality of the picture for a given object. Our results
are at odds with this interpretation, since IAgr modulated ERPs
in the same time-window as AoA and NAgr, i.e., in the time win-
dow associated with lexical-phonological processes. This finding
questions the association of Image Agreement with pre-linguistic
processes, and rather suggests that it refers to the link between
the picture and its name. Possibly, IAgr and NAgr reflect the
same underlying predictor but are measured differently (as evi-
dent from the low correlation between the two measures (r = 0.2)
and their independent effects on response times and map dura-
tions). When asked to estimate Image Agreement, participants are
first presented with the name of the picture to rate, and this infor-
mation likely plays a major role on their ratings. Unlike Name
Agreement, however, Image Agreement measures are based on
subjective estimated strengths between the picture and the con-
cept. Raters will thus differentiate, for instance, between pictures
with a single possible noun, pictures with many nouns among
which one is clearly dominant, and pictures with many nouns
without a clear favorite. By contrast, Name Agreement mea-
sures are based on the objective number of responses provided
for a given picture. Consequently, they should not differentiate
between the two first categories. It is also worth noting here that
the effect of Image agreement, unlike that of NAgr and AoA, does
not extend to the following map. This suggests that the mecha-
nisms that are responsible for two consecutive effects for NAgr
and AoA do not have a general character.

Interestingly, the duration of the stable electrophysiological
activity in the time window ranging from about 180 to about
380 ms was not affected by any of the variables considered in our
study. This period of topographic stability covers a time window
which has been previously associated with lexical selection (e.g.,
Strijkers et al., 2010, see also Indefrey, 2011). The only variable
whose influence is thought to originate at least partially during
lexical selection is lexical frequency. In the present study, there
was no effect of this variable on response times or on any of the
periods of topographic stability whatever the lexical frequency
measure (spoken or written) considered. This lack of effect cannot
be due to the correlation of this variable with other predic-
tors, which are quite low (r = −0.366 with image agreement,
r = 0.283 with familiarity and r = −0.260 with AoA, all other
correlations <0.2). Moreover, lexical frequency does not affect
response latencies or the duration of map C, even when entered
as the only predictor in the statistical model. In previous studies
with picture naming tasks, effects of lexical frequency are reported
with factorial designs, where the difference between frequency
conditions is maximized (Strijkers et al., 2010) or with contin-
uous measures of lexical frequency in large sets of items. For
instance, whereas effects of lexical frequency on naming responses
are reported in Alario et al. (2004) with 400 items or in Bonin
et al. (2003) with 300 items (400 words), previous studies with
200 items or less did not find any effect of lexical frequency (Bonin
et al., 2002; Chalard et al., 2003). In the present study, we used
a continuous measure of lexical frequency, with only 100 items
and the lack of frequency effect is thus in line with previous
findings.

The effects of Name Agreement and of AoA on the two
last successive periods of topographic stability raise several cru-
cial points for the architecture of language production models.
Although we cannot rule out that these two observations are inde-
pendent (i.e., Name Agreement and Age of Acquisition may affect
each of these periods of stability), their effect on the last period
may be determined by the previous one, meaning that the last
process started while the previous one was not completed. This
issue is closely related to the question of the dynamics of planning
processes in speech production. The effect of psycholinguistic
variables on two consecutive periods of electrophysiological sta-
bility, likely corresponding to two periods of mental information
processing (Lehmann et al., 1998; Changeux and Michel, 2004),
may be interpreted as cascade activation from one mental process
to the other. Hence, although the interpretation of the time-
course of the sequences of periods of topographic stability was
framed within the framework of serial word production models
(Levelt et al., 1999; Indefrey and Levelt, 2004), the observation
that some psycholinguistic variables affect two consecutive peri-
ods of stable global electric field suggest interaction (at least in
terms of cascading) during these late word planning processes. In
the same vein, effects limited to a single stable period (as the effect
of visual complexity on map B in the present study) may indicate
strictly sequential processes at other planning time-windows. The
present study was not designed to explicitly address this question,
but the rationale exposed here may be implemented in further
investigation to determine if and when interaction is observed in
word production.

In addition to documenting important theoretical issues on
the time course of word production in picture naming, this
research opens up new methodological prospects. So far, previous
research on language production using ERPs relied on facto-
rial designs. As underlined by several authors, factorial designs
have several drawbacks, including lack of systematic control of
potential confounds, and loss of statistical power. By contrast,
the methodology used here does not suffer from these downsides
and, as such, is particularly valuable for language studies, where
the properties of the linguistic materials are salient variables.
Moreover, in classical analyses, ERPs are averaged across subjects.
Consequently, the statistical models do not provide information
about the variance related to the items, and one may question
whether their outcomes can truly be generalized across words
(e.g., Barr et al., 2013). It is worth noting that several observations
in our data suggest that our approach is extremely robust. Firstly,
each topographic map revealed by the spatio-temporal segmen-
tation on the grand-average ERPs was present in at least 89% of
the single trials (up to 100% for some maps). Secondly, the rate
of topographic map presence was comparable or higher in single
trials than in subjects averaged ERPs. Moreover, the TCT analysis
revealed high consistency across trials, except in the short time
period ranging from ∼150 to ∼180 ms after picture onset. As
previously advocated in other cognitive domains (Tzovara et al.,
2012) a high rate of stable electrophysiological map presence
licenses a trial by trial approach.

To conclude, the classical mental chronometry approach in
cognitive psychology holds that any increase in response latency
by a given variable reflects an underlying processing cost. The
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ERP analysis applied here to picture naming data allowed us to
associate the cost generated by psycholinguistic variables to the
duration of stable electrophysiological processes. This approach
identified the time windows at which Visual Complexity, Name
Agreement, Age of Acquisition and Image Agreement exert their
influence and provided novel and precise information on the time
course of word production processes in object picture naming.
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