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We present the biologically inspired Ripple Pond Network (RPN), a simply connected
spiking neural network which performs a transformation converting two dimensional
images to one dimensional temporal patterns (TP) suitable for recognition by temporal
coding learning and memory networks. The RPN has been developed as a hardware
solution linking previously implemented neuromorphic vision and memory structures
such as frameless vision sensors and neuromorphic temporal coding spiking neural
networks. Working together such systems are potentially capable of delivering end-to-end
high-speed, low-power and low-resolution recognition for mobile and autonomous
applications where slow, highly sophisticated and power hungry signal processing
solutions are ineffective. Key aspects in the proposed approach include utilizing the spatial
properties of physically embedded neural networks and propagating waves of activity
therein for information processing, using dimensional collapse of imagery information into
amenable TP and the use of asynchronous frames for information binding.
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INTRODUCTION
How did the earliest predators achieve the ability to recognize
their prey regardless of their relative position and orientation?
What minimal neural networks could possibly achieve the task
of real-time view invariant recognition, which is so ubiquitous
in animals, even those with miniscule nervous systems (Van
der Velden et al., 2008; Avargués-Weber et al., 2010; Tricarico
et al., 2011; Gherardi et al., 2012; Neri, 2012), as evidenced by
mimetic species (Figure 1). yet so difficult for artificial systems?
(Pinto et al., 2008). If realized such a minimal solution would be
ideal for today’s autonomous imaging sensor networks, wireless
phones, and other embedded vision systems which are coming up
against the same constraints of limited size, power and real-time
operation as the earliest sighted predators.

In this paper we present an element of such a simple net-
work. We call this subsystem the Ripple Pond Network (RPN).
The name Ripple Pond alludes to the network’s fluid-like rip-
pling operation. The RPN is a feed-forward time-delay spiking
neural network with static unidirectional connectivity. The net-
work is responsible for the transform of centered input images
received from an upstream salience detector into spatio-temporal
spike patterns that can be learnt and recognized by a downstream
temporal coding memory network.

THE VIEW INVARIANCE PROBLEM
In the 2005 book, “23 Problems in Systems Neuroscience” (van
Hemmen and Sejnowski, 2005), the 16th problem in systems neu-
roscience, as posed by Laurenz Wiskott, is the view invariance
problem. The problem arises from the fact that any real world 3D
object can produce an infinite set of possible projections on to the
2D retina. Leaving aside factors such as partial images, occlusions,

shadows, and lighting variations, the problem comes down to the
shift, rotation, scale, and skew variations. How then, with no cen-
tral control could a network like the brain learn, store, classify
and recognize in real time the multitude of relevant objects in its
environment?

Generally most biologically based object recognition solu-
tions have been based on vertebrate vision, in particular mam-
malian vision, and have used either statistical methods (Sountsov
et al., 2011; Gong et al., 2012), signal processing techniques
(such as log-polar filters) (Cavanagh, 1978; Reitboeck and
Altmann, 1984), artificial neural networks (i.e., non-spiking neu-
ral networks) (Nakamura et al., 2002; Norouzi et al., 2009;
Iftekharuddin, 2011), and more recently, spiking neural networks
(Serre et al., 2005; Rasche, 2007; Serrano-Gotarredona et al., 2009;
Meng et al., 2011).

Since many of the approaches above are based on mammalian
vision and strive to achieve the accuracy and resolution of mam-
malian vision, they are very complex and can only be truly
implemented on computers (Nakamura et al., 2002; Serre et al.,
2005; Jhuang et al., 2007; Norouzi et al., 2009; Iftekharuddin,
2011; Meng et al., 2011; Gong et al., 2012), sometimes with very
slow computation times. Other implementations that have been
demonstrated on hardware (Rasche, 2007; Serrano-Gotarredona
et al., 2009; Folowosele et al., 2011) have been successful in prov-
ing that vision can be achieved for small, low-power robots, UAVs,
and remote sensing applications.

The few models of invertebrate visual recognition have had an
explanatory focus (Horridge, 2009; Huerta and Nowotny, 2009)
and, not being developed for the purposes of hardware imple-
mentability, assume highly connected networks not suitable for
hardware.
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CMOS implementations of bio-inspired radial image sensors
are most closely related to the RPN however when it comes to
recognition, these sensors ultimately interface with conventional
processors (Pardo et al., 1998; Traver and Bernardino, 2010)
rather than spiking neural networks as is the case with the RPN.

BEGINNING AT THE END: 2D RATE CODING MEMORY vs. 1D TEMPORAL
CODING MEMORY
In all the previously listed approaches to the view invariance prob-
lem the learning and memory system of network responsible for
recognition has had a 2D structure. This approach is intuitive.
A memory system that matches the input channel (the retina)
in dimension makes sense from an engineering perspective. A
2D signal should interface with a 2D memory system. However,
from a biological perspective there is no evidence for the exis-
tence of such a 2D or grid structured memory system in any
organism. Furthermore and more critically from a computational

FIGURE 1 | Batesian mimicry: The highly poisonous pufferfish,

Canthigaster valentine (top) and its edible mimic Paraluteres prionurus

(bottom). The remarkable degree of precision in the deception reveals the
sophisticated recognition capabilities of the neural networks of local
predatory reef fish (Caley and Schluter, 2003). These networks despite
being orders of magnitude smaller than those of primates seem capable of
matching human vision in performance and motivate the investigation of
very simple solutions to the problem of visual recognition. (Note: the
dorsal, anal and pectoral fins are virtually invisible in the animals’ natural
environment).

perspective, the standard 2D memory approach necessitates the
precise alignment of perceived objects to a stored canonical 2D
template in terms of their scale, position and angle, a computa-
tionally centralized and biologically implausible operation. The
mechanisms by which this matching of a 2D image to a 2D tem-
plate is accomplished makes up a significant portion of the field of
machine vision. This 2D model of visual memory sits in contrast
to the more general model of memory as used by computational
neuroscientists not focused on vision, and in particular those
specializing in memory systems.

Among the later group, temporal coding networks have been
proposed in the last two decades as biologically plausible and
computationally useful models (Jaeger, 2001; Maass et al., 2002;
Izhikevich, 2006; Tapson et al., 2013). A temporal coding mem-
ory network is a type of spiking neural network which uses
spatio-temporal patterns of spikes to represent information asyn-
chronously whereas classic artificial neural networks discard
timing information by modeling neuron firing rates sampled
synchronously by a central clock. This additional use of asyn-
chronous temporal information results in greater energy effi-
ciency and speed (Levy and Baxter, 1996; Van Rullen and Thorpe,
2001) motivating realization of the model in hardware (Wang,
2010; Wang et al., 2011; Hussain et al., 2012).

In this model a neuron can be seen as a memory unit which
learns and stores via its dendritic weights and delays a particular
spatio-temporal pattern.

This temporal coding memory model is a content address-
able, distributed network comprising of many spiking neurons
connected to each other via multiple pathways. The network,
through dynamic adaptation of synaptic weights (W1, W2, W3

in Figure 2) and decaying synaptic kernels such as alpha func-
tions with time constants (τ1τ2τ3 in Figure 2), makes particular
neurons exclusively responsible for particular inter-spiking inter-
vals. It achieves this by continuously adapting its parameters to
maximize recognition at its output in response to the statistics
of its input. A longer spatio-temporal pattern can be stored in
such a network of neurons by the addition of cascading neurons
and in turn learning these weights and time constants (Paugam-
Moisy et al., 2008; Ranhel, 2012). Subsequently the network’s
“output” can be measured as the relative activation of certain
neurons which individually or in concert indicate the recognition
of a certain pattern.

FIGURE 2 | (A) Typical model of a single element in a distributed
temporal coding memory network with synaptic alpha functions used as
decaying synaptic kernels producing a decaying memory of recent
spikes. (B) Biological representation of the same element. Through

adaptation of synaptic weights and kernels a specific spatio-temporal
pattern is learnt by the neuron. (C) Flipping the pattern as would
happen if a 2D image were rotated by 180 degrees results in the
pattern not being recognized.
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However just as with rate coding models, temporal coding
memory systems tasked with recognition also cannot directly
interface with the retina since they also expect their learnt patterns
to appear via the same channels every time (see Figure 2).

Motivated by and working backwards from this time-based
model of memory we propose the RPN system which instead of
attempting to align a 2D image to a 2D template, converts the
2D image to a 1D Temporal Pattern (TP) suitable for temporal
coding memory networks. We then extend the system by using
multiple RPNs in parallel each sensitive to particular features.
These parallel RPNs convert the 2D image to an M-dimensional
spatio-temporal pattern. Thus the proposed RPN system can
be viewed as a simple neuronal transformation which connects
the 2D retinotopically mapped inputs to a biologically plausible
temporal coding memory model.

MATERIALS AND METHODS
THE RPN NETWORK
A central aim of the hardware oriented RPN approach is to obtain
the most functionality from a minimally connected network. The
limiting factor of connectivity, though far less significant in biol-
ogy, frequently constrains hardware implementations and yet is
not often considered in the development of artificial neural net-
work algorithms. Approaches which consider such limitations
at the designs stage facilitate efficient hardware implementation
(Sivilotti, 1991; Hall et al., 2004; Furber et al., 2012).

AN UPSTREAM SHIFT INVARIANT SALIENCE NETWORK
As shown in Figure 3, the RPN receives an image as the spatio-
temporal, high-pass filtered activation pattern of neurons on
a conceptual 2D sheet representing the field of attention that
has been produced by an upstream salience detection system.
By using a sliding window of attention and focusing it onto a
single salient object at a time the salience detector effectively
allows the overall network to operate in a shift invariant man-
ner. The field of computational and biologically-based salience
detection is extensive with a wide range of models, techniques,
and approaches (Itti and Koch, 2001; Vogelstein et al., 2007;
Gao and Vasconcelos, 2009; Drazen et al., 2011). The proposed
RPN system does not require any specific salience model having
a centered input image as its only requirement. For simplic-
ity, however, we may assume the upstream salience network
to consist of only a motion detector, which physically fixes
the creature’s gaze onto a moving object. In fact, this sim-
plified system is not far off the mark in the case of many
organisms (Dill et al., 1993; Land, 1999) and may serve in
robotics applications where energy and hardware are also limiting
factors.

INPUT IMAGES RIPPLE INWARDS ON THE RPN DISC
After centering by the salience network, the incoming image stim-
ulates the neurons distributed on a disc. The disc consists of �

arms and N neurons per arm as shown in Figure 3.

FIGURE 3 | The spiral RPN System Diagram: raw image to TP. (A)

Pre-processing stage, from the raw image feature(s) extracted and input to a
salience network which detects the most salient region and translates it to
the RPN aperture. (B) The image is then projected on to the RPN disc with
the RPN taking in one frame at a time via its inhibitory feedback neuron (inh).
(C) The projected image is then processed via its unidirectional inwardly

pointing disc arms. The image collapses inward toward the center along the
arms where it is summed by the Summing Neuron. (D) The output of the
summing neuron is an integer valued temporal pattern which can be
processed by memory. For visual clarity the disc illustrated comprises of only
of thirty arms (� = 30) and ten neurons per each arm n = 0 . . . 9 with n = 0
being the central neuron.
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Functionally these neurons represent simple binary relays with
fixed unit delays between them. More complex neuron models
could also be used but this would incur an increased hardware
cost (Indiveri et al., 2011). The neurons have one outbound con-
nection to the next neuron on their arm. This connectivity is
unidirectional pointing inwards toward the center of the disc and
each neuron an−1,ϕ can be activated at time (t) if its upstream
neuron (on the same spiral arm but further away from the disc
center), an,ϕ transmits a pulse to its input at (t − −�t). Thus,
starting from the disc edge (n = N − 1), the neuronal connec-
tions radiate inward to the central neurons on the disc (n = 1).
This inward connectivity creates a rippling effect and since the
neurons act as relays with a small delay, stimulation of a few neu-
rons at the edge of the disc produces a small wave of activation
which travels inward along the disc arms stimulating succeeding
neurons in turn and ending at the disc center [see equation (1)].

For n = 1 . . . N − 1 For ϕ = 1 . . . �

a(n−1),ϕ(t) = an,ϕ(t − �t) (1)

where an,ϕ (t) is the activity on the nth neuron on arm ϕ at time t.

A SUMMING NEURON OUTPUTS A TEMPORAL PATTERN
The inner most ring of neurons (n = 1) as well the single central
neuron (n = 0) all connect to a common Summing Neuron (red
sigma in Figure 3) that outputs an integer-valued TP that can be
represented as an N element vector [Equation (2)].

TPsum (t) =
�∑

ϕ=1

a0,ϕ (t − �t) + a1,ϕ (t − 2�t) (2)

where:
TPsum(t) is the TP output of the summing neuron,
� is the total number of neurons on the disc,
a1,ϕ (t) is the activity of the inner most ring of neurons (n = 1)

on arm ϕ at time t.
a0,ϕ (t) is the activity of the central neuron (n = 0).

The summing neuron sums the activity of the disc’s central neu-
rons (n = 1 and n = 0). Where the activity of the RPN neurons
are digital, as is the case here, the summing neuron outputs an
integer valued spike at every time step generating the TP that is
the RPN’s output. From the geometry of the disc it is clear that

this output TP is rotationally invariant. More subtly, as the neu-
ron distribution on the disc is uniform, the TP resulting from
a scaled object is a rescaled (in time and in magnitude) version
of the TP produced from the original object. This dimensional
collapse of the object’s rotational and scale variance into a TP
greatly simplifies the task of recognition by downstream memory
systems.

AN INHIBITORY NEURON ACTS AS AN ASYNCHRONOUS SHUTTER
Recalling that in addition to receiving inputs from their outer
neighbor, all neurons are also sensitive to an incoming image.
Here the neurons function as radially distributed, inwardly con-
nected pixels on a circular retina such that any pixel/neuron could
be activated either via its outer neighbor or from its correspond-
ing sensor. This double activation path means that if there is con-
tinuous input from the incoming image, say via an asynchronous
frameless vision sensor or an actual biological retina, the infor-
mation carried on the disc during the processing phase will be
corrupted and the generation of unique TPs made impossible.

In order to prevent the corruption of the RPN’s rippling oper-
ation by new input images some form of shuttering is required.
One way to control the projection of new image frames onto the
disc is via a periodic enable signal which enables image projection
at �t × N time intervals ensuring that the activation due to the
last frame has cleared the disc shown in Figure 4A. The drawback
of this approach, however, is that if the projected object size is
smaller than the disc (which is almost always the case), significant
time is wasted in processing the empty outer regions of the disc,
during which time new incoming information could potentially
be lost.

A more efficient approach is the use of an asynchronous shut-
ter. To this end, in addition to being sensitive to an incoming
image and synapsing onto their inner neighbors along the disc
arm, all neurons on the disc also connect via a third path to
an inhibitory neuron (green neuron labeled inh in Figure 4B)
such that the inhibitory neuron carries information about the net
activity of all neurons on the disc. In a hardware context this sig-
nal may simply correspond to the net power consumption of the
disc.

Inh (t) =
�∑

ϕ = 1

N − 1∑

n = 0

an,ϕ (t) (3)

FIGURE 4 | Two frame generation approaches: (A) A periodic enable

signal projects new frames on to the RPN, (B) the inhibitive neuron is

connected to all neurons on the disc. As the disc activation collapses
inward along the arms and leaves the disc via the summing neuron, the
total activation reaching the inhibitive neuron also falls. Once the disc
activation reaches zero, the path of the input image is unblocked allowing

the next frame to be projected. As the target object moves away and the
incident image becomes smaller it takes less time for the activation to
clear the disc disabling the inhibitory neuron sooner and projecting the
frame. In this way the RPN frame rate varies dynamically to maximize TP
generation. Note that in the RPN disc shown, � = 8 (arms) and N = 4
(neurons per arm).
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where:
Inh(t) is the output of the inhibitory neuron.

The output of the inhibitory neuron feeds back inhibitively onto
the visual pathway carrying the image to the disc. The Inhibitory
neuron blocks this pathway preventing further transmission of
the image. In this way the neuron ensures that as long as any
activity remains on the disc (i.e., while RPN is processing the
image) no new image will be projected onto it, see Figure 4B.
The drawback of both these solutions is that their sharp sam-
pling operations are not biologically plausible. A more nuanced
solution involves the use of laterally inhibitive pathways to bunch
neural signals into frame-like wavefronts (Brunel, 2000; Hamilton
and Tapson, 2011; Afshar et al., 2012; McDonnell et al., 2012) we
consider this solution in the later discussion section.

NEURON PLACEMENT ALGORITHM: UNIFORM DISTRIBUTION vs.
LOG-POLAR/SPACE VARIANT DISTRIBUTIONS
It may be apparent by inspection that the RPN is invariant to rota-
tion due to the radial symmetry of the disc in a fashion similar
to log-polar sensor placement schemes. However, in contrast to
log-polar and other space variant schemes, the density of neu-
rons on the RPN disc remains approximately uniform as we move
away from the center. This symmetric but uniform distribution
was achieved by placing the nth neuron on each arm at a dis-
tance rn = √

n from the center and spiraling the arms at each step
n by an offset angle βn. A search algorithm was used to deter-
mine βn for each new ring of neurons. Random angular offsets
were tried (1000 trials/n) and the minimum distance to previously
placed neurons calculated. The trial with the largest minimum
distance was selected for each n. The resulting neuron distribu-
tions from this randomized algorithm display, highly structured
spiral forms.

Such spiral structural symmetry as well as the spreading of
wave-like activation has been observed in the visual pathways of a
range of animals from the retina to the higher layers of the visual
cortex (see Figure 5B) suggesting possible utility in visual pro-
cessing (Dahlem and Müller, 1997; Huang et al., 2004; Wu et al.,
2008; Dahlem and Hadjikhani, 2009). In the context of artificial
systems the use of wave-like dynamics for computation and recog-
nition has only recently begun (Adamatzky et al., 2002; Fernando
and Sojakka, 2003; Maass, 2007; Izhikevich and Hoppensteadt,
2009).

In contrast log-polar approaches to vision have developed over
several decades (Cavanagh, 1978; Reitboeck and Altmann, 1984).
Yet these approaches have had the critical flaw of being particu-
larly sensitive to centering, a problem demonstratively absent in
biology. The problem with the log-polar solution is it represents a
local minima in the solution space. Its space variant distribution
provides a useful automatic scale invariance but critically closes
the path to extension with respect to translation invariance since
the non-uniform distribution cements the non-uniform behavior
of the system in response to a translated image. Furthermore in
the context of biological plausibility, the central assumption used
by advocates, that the retino-cortical mapping of the mammalian
visual system represents a mathematical log-polar transformation
(Traver and Bernardino, 2010), is subject to controversy in the
neuroscience community (van Hemmen and Sejnowski, 2005),

FIGURE 5 | (A) Generating uniform global and local neuron density in a
radially symmetric distribution via an adaptive algorithm that varies the
angular of new neurons βn such distance to the nearest neighbor is
maximized results in a spiral structured disc. The disc is shown with (� = 8,
N = 4). (B) Spiral propagating waves of neural activity on the chicken retina
due to excitation. Image from (Yu et al., 2012). (C) The spiral structure at
larger scales RPN disc with (� = 8, N = 128).

as it fails to explain both off-center recognition or the fact that
the fovea, which represents the central 2◦ of the visual field and
is primarily responsible for object recognition, has a uniform
retino-cortical mapping (Gattass et al., 2005).

The use of a uniform distribution on the other hand not only
represents a more efficient use of available sensor/neuron space
(a critical factor both in hardware and in biology), and a more
accurate representation of the part of the visual system actually
responsible for recognition, but most importantly keeps open the
path toward a general solution that is invariant to all sources of
variance including translation.

TIME WARP INVARIANCE IN MEMORY ENABLING SCALE INVARIANCE
IN VISION
One of the important capabilities of temporal coding memory
systems is the recognition of the same pattern when presented at
different speeds and magnitudes (Kohonen, 1982; Paugam-Moisy
et al., 2008; Gütig and Sompolinsky, 2009; Carandini and Heeger,
2012; Tapson and van Schaik, 2013). Such systems can use tempo-
ral cues embedded in the input signal or a separate signal carrying
normalization information to modify the internal parameters of
their dynamic systems such as the time constants of synaptic ker-
nels, to slow down or speed up the system to the signal calibrating
their speed of operation to achieve invariance to signal speed,
Figures 6A,B. This scheme, often described as shunting inhibition
(Koch et al., 1983; Volman et al., 2010), is a fundamental ele-
ment in neuro-computation present in many neural systems and
responsible for tasks such as enhancement of signal to noise ratio,
control of signal propagation speeds and control of the dynamic
range of neural signals (Wills, 2004; Carandini and Heeger, 2012).

One of the consequences of the uniform distribution of neu-
rons on the RPN disc is that rescaled input images produce TPs
which are rescaled temporally and in magnitude as shown in
Figures 6C,D. This is because relative to a larger image a smaller
image activates fewer numbers of neurons on the disc and the
neurons activated are correspondingly closer to the center than
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FIGURE 6 | Time Warp invariant memory network and the RPN’s scale

invariance: (A) the memory network learns a particular spatiotemporal

pattern (B) The memory network recognizes a time warped version of

the learnt pattern (C) The RPN system generates a spatio-temporal

pattern from the projected image of reef fish via simple color based

feature extractors. The magnitude m of the initial activation of the inhibitive
neuron carries total activity due to the image greatly simplifying the
normalization operation of the memory network. (D) A smaller version of the
image takes less time to collapse and leave the disc generating a time
warped version of the original TP.

for a larger image and so the wavefront of activity arrives sooner at
the summing neuron than for the larger image. Thus the resulting
TP is a time and magnitude scaled version of the original which
can be recognized by a time-warp invariant temporal coding
memory network.

In this context the RPN approach is particularly useful since
it provides a ready normalization signal via the initial activation
level of the inhibitory neuron, m in Figures 6C,D, which corre-
sponds to the initial activation of every neuron on the RPN discs.
The rising edge of the inhibitory neuron not only signals the exact
start time of the TPs but its initial magnitude m representing the
size of the image can be used by the time-warp memory to achieve
normalization via an inverse relationship to the memory system’s
time constant (Gütig and Sompolinsky, 2009). Furthermore since
the inhibitory signal arrives immediately after image projection it
can be sent directly to memory before the first segments of the TPs
arrive.

It is worth noting that in contrast to the uniform distribution
scheme described, an RPN disc with a log-polar neuron distribu-
tion would, given an image at two different scales, generate the
same TP, enabling the system to interface with temporal coding
memory networks that are not time-warp invariant. This advan-
tage however, as detailed earlier, is outweighed by the unsuitability
of the log-polar scheme for extension to a more general transla-
tion invariant solution.

MULTIPLE PARALLEL HETEROGENEOUS DISCS RESULT IN HIGHER
SPECIFICITY
A drawback of the collapse of a feature rich 2D image into a TP is
that information can be lost. To counteract this loss of informa-
tion, the simple RPN system can be extended such that instead of
using a single disc, the input image can be projected onto multiple
discs operating in parallel each of which extracts different feature
maps from the raw image. The simplest features can be extracted

at the sensor level these include color, motion, and intensity. More
complex features must be extracted from the spatial properties
of the simpler feature maps. Discs with heterogeneous connec-
tivities, densities and dynamics can generate multiple complex
feature maps such that the incident image can be processed into
an array of independent TPs the combination of which are unique
for every object. Some examples include introduction of cross talk
or coupling between the discs’ neurons to effectively produce fil-
ters of different spatial frequencies, the use of discs with different
neuron densities and use of hardware implemented gabor filters
[analogous to orientation sensitive hypercolumns in the visual
cortex (Bressloff et al., 2002; Dahlem and Chronicle, 2004)] to
create orientation sensitive feature maps (Choi et al., 2005; Shi
et al., 2006; Chicca et al., 2007). Below we describe in more detail
the last two examples and how they may be useful.

Orientation sensitive features represent a special case for the
RPN. To function, the RPN and all pre-processing systems pre-
ceding it must be rotationally invariant, yet orientation sensitive
feature extractors such as Gabor filters, which are a critical ele-
ment of any recognition system providing salient cues that in
combination are unique for different objects and operate on
Cartesian coordinates. If Gabor filters that use Cartesian coor-
dinates preceded the RPN, the resulting feature maps would be
sensitive to rotation as shown in Figure 7A. A simple solution to
this problem is to first transform the image into polar coordinates
and then perform Cartesian Gabor filtering. This is the stan-
dard approach used in log-polar based solutions, however, this
transformation and the subsequent filtering operations involves a
central processor which is not biologically plausible. An alterna-
tive solution is the use of radial Gabor filters which group features
based on their orientation relative to the disc center as shown in
Figure 7 and equation (4).

β = atan2
(
y, x

) + α, θ = α + β (4)
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FIGURE 7 | Standard orientation sensitive feature extractors cannot

precede the RPN: (A) Feature extraction via Cartesian Gabor

filters, G(α), group features into feature maps based on their

orientation relative to the Cartesian coordinate system. The
feature maps are input to the RPN, however, the rotational

variance of the feature maps eliminates the RPN’s rotation
invariance. (B) In contrast, radial Gabor Filters, g(α), group features
into feature maps based on their orientation relative to polar
coordinates. These feature maps do not exhibit rotational variance
and can interface with the RPN.

where,
α is the radial orientation of the radial Gabor function,
β is the angle of the position of the center of the Gabor kernel

relative to the center of the disc (as shown in Figure 5),
θ is the orientation of the standard Cartesian Gabor function.

This approach has the benefit of merging the two steps into
one, potentially delivering a significant speed advantage while
avoiding the biologically implausible Cartesian to polar coordi-
nate transform and, most importantly, leaves open the option
of extending the RPN in a distributed manner where informa-
tion about a dynamic center of attention can be used locally to
generate rotationally invariant, yet information preserving feature
maps.

Another potentially useful multi-disc RPN scheme would
involve the use of discs with different neuron densities along their
arms, which produce higher speed TPs that can reach the memory
system more rapidly. These parallel high speed TPs could not only
provide early information for signal normalization but can also be
used to narrow the range of possible objects the image could rep-
resent such that more general categories e.g., bird vs. fish can be
more rapidly determined than trout vs. carp. Recalling that pat-
terns are represented in a temporal coding memory network as a
set of signal propagation pathways, signals from the sparsely pop-
ulated discs can readily be used to deactivate the vast majority
of the network’s pathways which do not match the early low res-
olution TP, thus saving most of the energy required to check a
high resolution TP against every known pattern. This ensures a
highly energy efficient system which rapidly narrows the number
of possible object candidates with successively greater certainty.

As an illustration of such a fan-out feature extraction scheme,
Figure 8 shows separation of an incident image via parallel, radial
Gabor filters into multiple feature maps which deliver a higher
dimension spatio-temporal pattern to the memory network,
enabling greater selectivity. As examples, radial Gabor filters with
0, 45, and 90◦ orientation relative to the center are shown. Also
illustrated are outputs of discs with N (full), N/2, and N/4 neu-
rons on each arm, demonstrating the relative temporal order of
the multi-resolution, spatio-temporal patterns generated.

The simplicity of such a parallelized, multi-scale system, the
biological evidence for multi-scale visual receptive fields (Itti
et al., 1998; Riesenhuber and Poggio, 1999), the presence of mul-
tispeed pathways in the visual cortex (Loxley et al., 2011) and
the potential impact on energy consumption, the primary lim-
iting factor for all biological systems, argues in favor of further
investigation of such multi-scale, multispeed schemes.

RESULTS
To better illustrate the pertinent characteristics of the RPN we
focus only on the simple one disc case without the added multi-
disc extensions. Although these extensions can bring the systems
performance arbitrarily close to ideal, conceptually they are rep-
etitions of the simple case and merely make the memory system
more effective by delivering more information in parallel.

VARIANCE OF RPN OUTPUT DUE TO IMAGE TRANSFORMATIONS
The RPN is robust to rotation and scale. Figure 9 (left) shows
the output TPs resulting from a 200 × 200 pixel image and its
rotated equivalent. The similarity of the resulting 200 point time
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FIGURE 8 | RPN producing a spatiotemporal pattern using parallel

radial Gabor filters and discs with varying neuron densities. The
incident image is processed by a filter bank of radial Gabor filters
generating multiple feature maps (3 shown) each of these is then projected
onto three discs with N (full), N/2 (half), and N/4 (quarter) density. The
lower density discs simply generate an earlier low resolution version of the
full TP which can be used by the memory for normalization or early
categorization. The nine TPs shown illustrate the multiplicative effect of
feature extractors when combined in a fan-out fashion.

series was calculated via Cosine Similarity (cosθ) and Spearman’s
Rank Correlation Coefficient (Spear’ρ). As expected the similarity
metrics were high for rotational transformation. Figure 9 (right)
shows variance due to scale. The generated TPs were normalized
and resampled to fill the time series vector and compared emulat-
ing the operation of the time warp invariant memory network.

To measure the RPN performance as a function of image rota-
tion scale and shift, a mixed set of 300 different 200 by 200 pixel
test images consisting of letters, numbers, words, shapes, faces,
and fish were used in approximately equal numbers samples are
shown in Figure 10A. All images were high-pass filtered using
a difference of Gaussians kernel and processed by an RPN disc
with 200 spiral arms each with 200 neurons. The similarity met-
rics of Spearman-ρ and cosine similarity were measured for each
image across a range of rotation, translation and scale transforms
with respect to the original image with the mean values shown in
Figure 10B. Variance as a function of rotation is shown in the left
panel, where the spiral distribution of the disc’s 200 arms resulted
in a high level of similarity. The pattern shown from 0 to π/100
radians is repeated as expected due to the disc’s 200 arms.

FIGURE 9 | Temporal patterns (TPs) from the RPN illustrating

rotational invariance (left) and scale invariance (right). Images were
projected on to the disc at t = 0 and all time scales were normalized to 200
by resampling the TPs and aligning them together. Measures of similarity
between the TPs are given in the form of the Cosine Similarity (cos θ) and
Spearman’s Rank Correlation Coefficient (Spear’ρ). Both of these measures
show high degrees of similarity between the images. Images where
projected onto a disc with � = 200 arms and N = 200 neurons per arm.

FIGURE 10 | (A) A few of the sample images used to test the RPN’s
variance as a function of rotation, scale and translation. (B) Output TP
variance as a function of image rotation, the illustrated pattern is repeated
every π/100, note the small scale on the y axis. (C) Output TP variance as a
function of image rescaling (via nearest neighbor resizing algorithm). (D)

Output TP variance as a function of image translation demonstrating the
high level of sensitivity.

Figure 10C shows variance with respect to scaling. The sys-
tem shows robustness to rescaling down to low scales where the
nearest neighbor image resizing operation performed to produce
the downscaled images significantly reduced information content.
Figure 10D shows variance due to shift or translational trans-
form. As would be expected for a global polar transform, RPN is
sensitive to non-centered images where a 10% shift of a 200 × 200
image (20 pixels) results in a drop of 0.17 and 0.25 on the cosine
and Spearman similarity metrics respectively.
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SPEED OF OPERATION
As a biologically inspired decentralized processor with potential
use in real-world environments, the RPN’s speed of operation is
an important design consideration. In the context of speed the
worst case for the RPN would involve two objects which fully span
the RPN disc and are identical but for a distinguishing feature
which is located at the disc edge (since activation at the disc edge
takes the longest time to reach summing neuron), the TP from a
multi-disc RPN system whose densest discs contained N neurons
on each arm would be delivered to memory in:

Trecognize ≤ Tproject + �trpnN + TmemN (5)

where Trecognize is the total time needed for image recognition,
Tproject is the time needed for the image from the retina/sensor to
be projected onto the RPN disc. In the multi-disc case this term
would consist of the time required to generate the most time con-
suming feature maps such as hardware implemented Gabor filters
resulting in Tproject ≈ 240 ns (Chicca et al., 2007). �trpn is the
time needed for the activation pattern to propagate one step in
from the original activation point on the disc along its spiral arm.
Assuming implementation via a digital relay �trpn, which is in
the order of nanoseconds or smaller with N, the number of neu-
rons per arm on the RPN, often around 500, gives N × �trpn as
the total amount of time for image data to be processed on the
disc,. Tmem is the shortest time needed by the temporal coding
memory network to process one point in the input time series
and can loosely be interpreted as the temporal resolution of the
memory network as its response times increase linearly with the
duration of the input signal. Thus given Tmem and the length of
a TP N, and assuming a linear relationship between the length
of the input signal and time to recognition, the response time of
the memory network can be estimated. With Tmem being on the
order of 10 ns in current first generation hardware implementa-
tions (Wang et al., 2013), and with the same high N, we obtain an
approximate Trecognize on the order of 5 microseconds.

Since temporal coding memory networks are able to process
spatio-temporal patterns as they are being generated by RPN the
�trpn term is effectively eliminated due to the temporal overlap.
Which results in:

Trecognize ≤ Tproject + TmemN (6)

Signal processing programs running on sequential von Neumann
machines require computation times on the order of several mil-
liseconds just to convert Cartesian images into log-polar images
while consuming significant computational resources (Chessa
et al., 2011). Hardware implemented log-polar solutions provide
significantly higher speed than mapping techniques (Traver and
Bernardino, 2010), however, unlike the RPN’s rippling operation
which generate processed TPs to memory, the log-polar foveated
systems operate essentially as simple sensor grids and must inter-
face with conventional sequential processors, introducing bottle-
necks that distributed memory systems avoid. Other hardware
implementations can partially bypass this bottleneck by using
processor per pixel architecture or convolution networks result-
ing in very high speeds (Dudek, 2005; Perez-Carrasco et al., 2013)

that would rival the proposed RPN solution and its extensions in
speed, however, the drawback with these implementations is their
lack of full view invariance.

DISCUSSION
THE RPN APPROACH CAN BE EXTENDED TO THREE DIMENSIONS
All the features of the RPN work equally well in three dimensions,
and can just as easily recognize reconstructed 3D “images.” In this
context the disc is replaced by a sphere with the three dimensional
image being mapped into the sphere, rippling inwards and being
integrated at the center. Here the sphere does not necessarily refer
to the physical shape of the network but to the conceptual struc-
ture of the connectivity, with a highly connected sphere center and
radiating connectivity out to an integrating layer of neurons on
the sphere surface. Given a 3D projection of an object within the
sphere, skew invariant recognition could also be realized, which is
among the most difficult challenges in image recognition (Pinto
et al., 2008).

The reconstruction of 3D images in artificial systems is a
well-developed field (Faugeras, 1993). In contrast, the underlying
mechanisms performing this 3D information representation task
in humans is still an area of active research (Bülthoff et al., 1995;
Fang and Grossberg, 2009), where the evidence points to complex
interactions between multiple mechanisms.

FRAME BASED VISUAL RECOGNITION IN A BIOLOGICAL CONTEXT
As detailed earlier the RPN’s conversion of 2D (or 3D) data into
1D TPs requires that the incident image be presented to the RPN
disc in the form of near simultaneous wave fronts of neuronal
activity, or frames such that new incoming sensory information
does not corrupt processing being done on the current image.
Here will follow explanation of frames. It should be noted that
a frames are here defined as the coalescing of temporally dis-
tant information across a multi-channel pathway into narrower
repeating temporal windows as illustrated in Figure 11. No state-
ment is made about precise periodicity or precise synchrony as
“framed spike” output of the neural phase lock system block in
Figure 11 illustrates.

This frame-based operation of the RPN makes it more use-
ful from a hardware implementation context, but appears to
detract from its biological plausibility prompting a search for a
frameless solution. Yet despite attempts to eliminate the framing
requirement, to date every proposed and implemented recogni-
tion system, including those with the express goal of performing
frameless event-based visual processing, such as those based
on frameless vision sensors, has had to introduce some vari-
ant of a frame-based approach when attempting recognition and
although the approach tends to acquire different names along the
way, the final result presented to the downstream memory system
is the convergence of temporally distant information by the par-
tial slowing or arresting of the leading segments of the incoming
signal (Zelnik-Manor and Irani, 2001; Lazar and Pnevmatikakis,
2011; Farabet et al., 2012; Wiesmann et al., 2012; Perez-Carrasco
et al., 2013).

However, this failure may speak more to the inherent nature of
the visual recognition problem than any lack of human ingenu-
ity. Increasing evidence from neuroscience points to functional
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FIGURE 11 | A simplified illustration of a decentralized frame producing

system without a sample and hold operation. (A) A 2D image is
projected onto the retina. (B) A 1D slice of the retina is illustrated. (C) The
sensors on the retina produce spikes in an asynchronous, stochastic
fashion. Each spike channel represents the path of a single “pixel” from the
2D retina through the visual system. (D) The asynchronous activations
travel through a neural phase lock mechanism that bunches temporal
patterns into frame like wave fronts of activity around Local Field Potentials
(LFPs) (Martinez, 2005). (E) The resulting image “frames” are projected on
to the RPN as described earlier. (F) The resulting output TPs are generated
for recognition by the memory system. Note the unequal inter-frame times
that would be produced due to the unclocked nature of a biological system.

synchronicity being present in the visual cortex in the form of
synchronized gamma waves where one might hypothesize an
RPN or other recognition system to exist. The function of this
synchronicity has been attributed to the unification of related
elements in the visual field, an effect especially pronounced
with attention (Meador et al., 2002; Van Rullen et al., 2007;
Buschman and Miller, 2009; Fries, 2009; Gregoriou et al., 2009;
Dehaene and Changeux, 2011). Furthermore the mechanisms
proposed to explain such observed waves corresponds to a more
distributed analog of the RPN’s inhibitory neuron (Martinez,
2005), namely the inhibitory lateral and feedback connections
that clump related, but spatially distant information into compact
wavefronts separated by periods of inactivity. This convergence
from separate fields may be pointing to the usefulness of tempo-
ral synchrony for visual inputs in the context of recognition (Seth
et al., 2004).

THE SHORTCOMINGS OF THE RPN MOTIVATES A MORE GENERAL
SOLUTION
A significant drawback of the RPN and the one it shares with
log-polar and other approaches is the need for precise centering
of a salient object by an unexplained salience detection system.
This system not only needs to detect objects of interest but more
challengingly it must shift the image onto the RPN disc. Within
the framework of centralized processing systems, the problem
of shifting an image by an arbitrary value is trivial, however, in
the context of distributed networks with no central control, the
task is particularly challenging. A proposed solution is the use of
dynamic routing systems (Olshausen et al., 1993; Postma et al.,
1997) where a series of route controlling units transport the input
image to a hypothetical central recognition aperture like that of
the RPN disc. However, decades of neuroscientific research on
the visual system has failed to find any evidence for such an aper-
ture. Furthermore the switching speeds required to operate such
control systems are far too high to be biologically achievable yet

humans and animals are manifestly capable of rapid recognition
of objects that are not centered on their field of view making the
naïve centralized solution unlikely (van Hemmen and Sejnowski,
2005). This motivates investigation of a distributed solution to
the salience detection/image centering black box. The RPN unlike
previous approaches using 2D memory can easily be extended
from a global image-to-TP transform to a localized operator that
converts local images to local TPs such that the RPN disc can
be constructed dynamically anywhere in the field of view from
the gradient of the salience map enabling rapid, view invariant,
multi-object recognition.

CONCLUSION
In this paper we have introduced the RPN system, a simple bio-
logically inspired view invariant transformation that is hardware
implementable, and capable of converting 2D images to spatio-
temporal patterns suitable for recognition by temporal coding
memory networks. We described a few of the ways in which RPN
can be utilized, its relationship to biological systems as well as
detailing its shortcomings. With these as motivation we outlined
the requirements that a more general solution would need to
meet in order to be biologically plausible and useful in real world
environments.
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