AUTHOR=Rangel Lara M., Quinn Laleh K., Chiba Andrea A., Gage Fred H., Aimone James B. TITLE=A hypothesis for temporal coding of young and mature granule cells JOURNAL=Frontiers in Neuroscience VOLUME=7 YEAR=2013 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2013.00075 DOI=10.3389/fnins.2013.00075 ISSN=1662-453X ABSTRACT=
While it has been hypothesized that adult neurogenesis (NG) plays a role in the encoding of temporal information at long time-scales, the temporal relationship of immature cells to the highly rhythmic network activity of the hippocampus has been largely unexplored. Here, we present a theory for how the activity of immature adult-born granule cells relates to hippocampal oscillations. Our hypothesis is that theta rhythmic (5–10 Hz) excitatory and inhibitory inputs into the hippocampus could differentially affect young and mature granule cells due to differences in intrinsic physiology and synaptic inhibition between the two cell populations. Consequently, immature cell activity may occur at broader ranges of theta phase than the activity of their mature counterparts. We describe how this differential influence on young and mature granule cells could separate the activity of differently aged neurons in a temporal coding regime. Notably, this process could have considerable implications on how the downstream CA3 region interprets the information conveyed by young and mature granule cells. To begin to investigate the phasic behavior of granule cells, we analyzed