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This paper presents the first robotic system featuring audio–visual (AV) sensor fusion with
neuromorphic sensors. We combine a pair of silicon cochleae and a silicon retina on a
robotic platform to allow the robot to learn sound localization through self motion and
visual feedback, using an adaptive ITD-based sound localization algorithm. After training,
the robot can localize sound sources (white or pink noise) in a reverberant environment
with an RMS error of 4–5˚ in azimuth. We also investigate the AV source binding problem
and an experiment is conducted to test the effectiveness of matching an audio event with a
corresponding visual event based on their onset time. Despite the simplicity of this method
and a large number of false visual events in the background, a correct match can be made
75% of the time during the experiment.
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INTRODUCTION
Neuromorphic engineering, introduced by Carver Mead in the
late 1980s, is a multidisciplinary approach to artificial intelligence,
building bio-inspired sensory and processing systems by combin-
ing neuroscience, signal processing, and analog VLSI (Mead, 1989;
Mead, 1990). Learning from biology and observing the principles
employed, neuromorphic engineers seek to replicate many of the
sensory–motor tasks that biology excels at and seemingly performs
with ease.

Neuromorphic engineering follows several design paradigms
taken from biology and these are: (1) pre-processing at the sensor
front-end to increase dynamic range; (2) adaptation over time to
learn and minimize systematic errors; (3) efficient use of transis-
tors for low precision computation; (4) parallel processing; and
(5) signal representation by discrete events (spikes) for efficient
and robust communication. Further, by-products of implementa-
tion in analog VLSI include low power consumption and real time
operation.

Although there are many examples of neuromorphic sensors
being incorporated into sensory systems and robots, to date, how-
ever, most neuromorphic systems are limited to the use of only one
type of sensor (Gomez-Rodriguez et al., 2007; Linares-Barranco
et al., 2007; Jimenez-Fernandez et al., 2008). Systems that com-
bine multiple sensors exist but the sensors are still restricted to
one modality, for example, vision (Becanovic et al., 2004). While
audio–visual (AV) sensor fusion has been studied for a long time
in the field of robotics, with examples such as (Bothe et al., 1999;
Wong et al., 2008), to our knowledge, there are no neuromorphic
systems which combine sensors of different modalities.

By combining different sensory modalities, a sensory system
can operate in a wider range of environments by taking advantage
of the different senses. This applies to both traditional and neuro-
morphic systems alike. In situations when one sense is absent, the
system can continue to operate by relying on the other senses. On

the other hand, in situations when multiple senses are available,
accuracy can be improved by combining the information from the
different senses. In addition, it is possible to derive information
not obtainable from one sense alone. A good example would be to
determine the distance of an AV source based on the difference in
arrival times of light and sound due to their difference in speed.
An additional benefit of studying sensor fusion in the context of
neuromorphic engineering is that it allows us to test the principles
learnt from biology and gives us better insights into how fusion is
performed by the brain.

In this paper, we combine a pair of silicon cochleae and a sili-
con retina in a neuromorphic system to allow a robot to learn to
localize audio and visual sources, as a first step toward multi-modal
neuromorphic sensor fusion. The cochlea chip contains a matched
pair of silicon cochleae with 32 channels each and outputs spikes
using the address-event protocol, while the retina chip is a 40-by-
40 pixels vision sensor capable of detecting multiple onset events
and it also uses the address-event protocol to communicate the
positions of these events. Source localization is an important area
to start with because the detection of an object in the surrounding
environment is prerequisite to interacting with it, whether it is a
person, an animal, a vehicle, or another robot.

In a previous paper in this journal, we introduced and tested an
adaptive ITD-based1 sound localization algorithm that employs a
pair of silicon cochleae, the AER EAR, and supports online learn-
ing (Chan et al., 2010). We continue the work here by combining
the sound localization system with a transient vision sensor (Chan
et al., 2007a) to develop a neuromorphic AV source localization
system on a robotic platform. In a first experiment, we investi-
gate the possibility of using self motion and visual feedback to
train a robot to accurately localize a sound source in a reverberant

1 ITD stands for interaural time difference.
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environment and turn toward it. In a second experiment, we look
at the binding problem in the event of multiple visual sources.
We test the effectiveness of matching an audio source with the
corresponding visual source by comparing their onsets. In Section
“Materials and Methods,”we will introduce our methods including
the robotic platform, the experimental setup and the training pro-
cedure. The results will be presented in Section “Results,” while
Section “Conclusion” will discuss the results and conclude the
paper.

MATERIALS AND METHODS
ROBOTIC PLATFORM
We chose the Koala robot made by K-Team (2008) as our robotic
platform. Being a medium-size robot, measuring about 30 cm in
length and width, it provided sufficient space for the mounting
of the sensors and the circuit boards. It was driven by six wheels
with three on each side and the wheels on either side could be con-
trolled independently. This allowed the robot to rotate on the spot
by driving the wheels in opposite directions. The position of each
wheel was monitored by an onboard controller to precisely control
the robot’s movement. Since the only movement required in the
experiments described here was rotation, the robot was tied to an
anchor point on the floor to prevent it from drifting throughout
the course of the experiment.

A pair of microphones were mounted on opposite sides of
a foam sphere (15 cm in diameter), with the sphere itself fixed
atop the Koala (Figures 1A,B). The microphone signals were
amplified and fed into the cochlea board located beneath the
sphere. The silicon cochlea chip with AER interface has been
described in detail in (van Schaik and Liu, 2005; Chan et al.,
2007b), and was setup almost exactly the same as described in
(Chan et al., 2010). The cochlea channels were tuned to cover the
frequency range from 200- to 10-kHz logarithmically, and each
channel generated, on average, 6000 spikes/s when the stimulus
was played from a loudspeaker. The higher frequency channels
(>3 kHz) were not used for localization because ITD is ambigu-
ous at those frequencies. The only difference in the auditory setup
from (Chan et al., 2010) was the lack of simulated automatic gain
control because the stimuli were no longer synthesized on a PC
and fed to the cochleae directly, as was the case in (Chan et al.,
2010).

The transient vision sensor (Chan et al., 2007a) was fit to the
front of the Koala with an ultra-wide angle lens providing a fish-
eye view (Figure 1A). The lens itself could provide 180˚ field of
view (FOV) but the actual FOV was limited to 50˚ by the relatively
small size of our sensor array (1.8 mm × 1.8 mm). Nevertheless,
this FOV was sufficient for our experiment. The vision sensor con-
tained 40 × 40 pixels and returned the x–y coordinates of detected
transient events.

Both the AER EAR and the transient sensor used the multi-
sender AER protocol (Deiss, 1994; Deiss et al., 1998) for commu-
nication, allowing their outputs to be merged onto a common bus
by an external arbiter circuit built from logic gates and latches.
These events were then collected by a PCI digital data acquisition
(DAQ) card on a PC. All subsequent processing was performed
in MATLAB. This PC also controlled the robot’s movement via a
serial connection.

ACOUSTIC ENVIRONMENT AND AUDIO–VISUAL STIMULUS
The experiments were conducted in an office environment. The
stimuli were played in the presence of background noises generated
by computers, air-conditioning, and human activities. There were
also reverberations from the walls, the floor, and the surrounding
furniture.

The audio stimulus used was pink noise with a spectrum from
200- to 3-kHz. Pink noise was chosen because of its 1/f power
spectrum, providing equal amount of energy to the cochlea chan-
nels which were logarithmically spaced. This allowed the channels
to contribute equally to the localization and enabled learning to
take place at all frequency bands simultaneously. The stimulus was
played from a loudspeaker (Tannoy System 600A), placed at a dis-
tance of 2.5 m from the robot. In all the experiments, the sound
level of the stimulus is approximately 70 dB SPL measured at the
robot. The Tannoy loudspeaker featured concentric bass driver
and tweeter unit to provide a single point source for all audio
frequencies, and had a flat spectrum from 44- to 20-kHz.

In our first experiment, an LED flashing at 35-Hz was mounted
on the loudspeaker (Figure 1C) to allow the robot to locate it
visually when it came into the FOV. This unique frequency was
chosen to easily differentiate it from the other objects, including
false detections caused by the fluorescence lighting, which flickers
at 100-Hz.

Although this method of identifying the AV source was very
reliable, it is impractical for most applications because it requires
prior knowledge about the source. In situations where no such
information is available, it is possible to extract the AV source
from a number of visual objects in the background by assuming
some correlations between the audio and visual stimuli. In the sec-
ond experiment, we tested the effectiveness of binding the audio
source with the corresponding visual source based on their onsets.
There were three primary visual sources in the experiment, plus
some objects in the background caused by the fluorescent lighting
which flickered at 100-Hz. The first source was the LED flashing
at 35-Hz, used in the first experiment to locate the speaker. The
second source was an LED flashing at a lower frequency of 15-Hz,
while the third source was a third LED which was in sync with
the audio stimulus (Figure 2). All three LEDs were placed in front
of the robot. The robot was only allowed to rotate within a small
range so that the LEDs were always in its FOV. The objective was
to identify the third LED from the other visual objects.

SOUND LOCALIZATION LEARNING ALGORITHM FOR EXPERIMENT 1
An adaptive ITD-based sound localization algorithm was previ-
ously proposed, which supports online learning, making it ideally
suited for learning with feedback (Chan et al., 2010). A brief
description is given here. Audio signals from the left and right
microphones are first processed by the left and the right cochleae,
which divide them into different frequency bands and convert
the signals into spike trains. At each frequency band, after cross-
correlation of the left and right spike trains and application of
soft-WTA2, the resulting vector, S, is multiplied by a weight matrix,

2 WTA stands for winner-takes-all, a type of feedback network where only the node
with the strongest input will generate an output. A soft-WTA relaxes this condition,
allowing other nodes with inputs of comparable strength to have non-zero outputs.
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FIGURE 1 | (A) The Koala robot with the foam sphere mounted on top
to emulate a head. The signals received by a pair of microphones,
mounted on opposite sides of the sphere, were fed to the cochlea
board located beneath the sphere. The vision sensor fitted with an
ultra-wide angle lens was mounted at the front of the robot. The AER

outputs from the cochlea and the vision sensor were then combined
and collected by a PCI DAQ card via the cable at the back of the robot.
(B) Top view of the robot. (C) The AV source consisting of a loudspeaker
with a flashing LED at the top. The LED allowed the robot to locate the
source using the vision sensor.

W, to produce a vector G.

G = W S (1)

G represents auditory activity at different azimuths (−90˚ to 90˚
with 3˚ step) and is expected to be maximum at the position cor-
responding to the direction of the sound source. The resulting
G’s from all the frequency bands are then summed and a WTA is
used to produce a global estimate by selecting the azimuth with
the highest overall activity. By adjusting the weight matrices, the
system can adapt and learn to localize sound. The weight update

rule is

Wnew = Wold − ε (T − G) ST (2)

where ε is the learning rate, ST is the transpose of S, and T is
the target auditory activity function, which is a Gaussian function
centered at the target’s azimuth position with a SD of 25˚. This
target function was chosen because the Gaussian function is a nat-
ural spreading function and some initial testing indicates a 25˚ SD
works well.

The Koala was trained to localize sound through iterations of
sensing and motion, similar to the work published by Nakashima
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FIGURE 2 |The AER outputs from the cochlea and the vision sensor,

over a period of 300 ms. Many of the cochlea channels had a background
firing rate. All cochlea channels generated spikes at a much higher rate as
soon as the pink noise stimulus was played at 100 ms. At the vision

sensor, three major light sources were shown. The first two were periodic
with frequencies of 35- and 15-Hz. The third visual source was in sync with
the audio stimulus. The vertical dotted lines indicate the start and end of
the stimuli.

and Hornstein (Nakashima et al., 2002; Hornstein et al., 2006),
with our neuromorphic sound localization algorithm incorpo-
rated. The procedure consisted of the following steps:

1. Turn the Koala to the frontal position with the source straight
ahead, using the vision sensor to zero-in on the source.

2. Select a random azimuth, θ, from the range [−90˚, 90˚] with
10˚ step.

3. Turn the Koala by −θ, such that the source is now at θ azimuth
relative to the robot.

4. Play pink noise stimulus and record the spikes from the AER
cochlea simultaneously for 200 ms.

5. The spike trains are processed with the sound localization
algorithm to produce an estimate, θ̂.

6. Turn the Koala to the estimated direction.
7. Use the vision sensor to locate the position of the source rela-

tive to the robot by identifying the flashing LED. This gives the
localization error θe. True position of the source can then be
determined from θ̂ + θe and the weight matrices are updated
according to Eq. (2).

8. If the source is not in view (i.e., localization error > 25˚), then
no update will be performed on the weights3. However, the

3 Although it is possible to update the weights here because we know the actual
position of the source, this is not possible when the robot is in the field because the
true location of the source must be determined by the robot visually.

localization error can still be calculated from the source’s true
position (θ) and its estimate (θe). This error is used only to
monitor the progress in the Koala’s learning.

Steps 1–8 were repeated for each azimuth (19 positions in total)
during each epoch. The average RMS error was calculated after
each epoch.

Figure 3 shows a block diagram of the complete system. All pro-
cessing after the AER EAR and the vision sensor was performed
in MATLAB. In the visual processing stream, the “Identify Source”
step identified the flashing LED in the event of multiple visual
objects. It involved matching the spike train from each object with
the predetermined frequency of our LED (35-Hz) and returning
the address of the object of best match.

SOURCE BINDING ALGORITHM FOR EXPERIMENT 2
Figure 4 shows the implementation of source binding based on
the onset times. For simplicity, we assumed a single sound source.
Therefore, the onset time of the sound could be determined by
summing the spikes from all the channels and using an onset
detector to look for a sudden increase in the overall spike rate.
The onset detector consisted of a first-order low-pass filter (LPF),
a differentiator and a comparator. The LPF removed fluctuation
in spike rates to minimize false detection. The differentiator com-
puted the rate of change and caused the comparator to go high
if the rate of increase was above a threshold. For a step input, the
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FIGURE 3 | Block diagram of the complete audio–visual system. L and
R were the audio signals from the microphones. Y L and Y R were the
spikes generated by the AER EAR. R(τ) and S(τ) were the cross-correlation
results and soft-WTA results, respectively. G(θ) is the product of S(τ) and
the weight matrices W, and it represents the auditory activities. After a
sound was presented, the robot would turn toward θ̂, the direction

estimated by the localization algorithm. The true position of the source
was then found by mapping the vision sensor output (x, y ) to θe and
updates could be made to W, during the learning process. The thick arrows
in the auditory processing path indicate signals in multiple frequency
bands. In the vision module, the thick arrow represents the multiple
objects detected by the vision sensor.

onset detector would output a pulse, with the pulse width deter-
mined by the size of the step, the cut-off frequency of the LPF,
and the threshold. For this experiment, we have set the cut-off
frequency to 20-Hz. A low cut-off frequency was used because we
were only interested in the envelope of the stimulus, not its fine
temporal structure. It also resulted in a longer pulse at the output
for more reliable operation. Figure 5 showed the onset detector
picking up the onset from the outputs of the AER cochlea.

Onset detection was also applied to each visual object detected
by the sensor. A delay was then added to account for the systematic

delay introduced by the cochlea, as well as the delay due to the dif-
ference in arrival time of light and sound due to their difference
in speed. This delay was a function of the source’s distance and is
set to 10 ms in this experiment. Figure 6 showed the delayed onset
detector outputs for several visual objects. There was a good match
between the onset detected from the audio stimulus and that from
the third LED.

As shown in Figure 4, a logical AND operation was performed
with the onset detector output from the audio stimulus and the
delayed onset detector outputs from each of the visual objects,
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FIGURE 4 | A block diagram of the source binding algorithm based on

onset time. See text for details.

followed by an integration step, producing a value that was propor-
tional to the amount of overlap between the onset detector output
from the audio stimulus and those from the visual objects. The
visual object with the best match in onset time would result in the
largest overlap and would be selected by the winner-take-all. For
simplicity, the entire source binding algorithm was implemented
in software.

CALIBRATION OF ROBOT MOVEMENT AND VISION SENSOR
Turning of the Koala was accomplished by driving the wheels on
either side in opposite directions. The relationship between the
wheel position and the direction of the robot was linear, allow-
ing us to easily control the turning. However, it was found that
after repeated turning, the robot would slowly drift to one side
due to wheel slipping. This drift was minimized during the exper-
iment by returning the robot to the frontal position (0˚) before
the presentation of every stimulus. After calibration, turning was
accurate to within 1–2˚ over the [−90˚, 90˚] range.

FIGURE 5 |The figure shows the result of summing the spikes across

all cochlea channels (solid line) and the output of the onset detector

(dotted line). There was a small delay due to the LPF at the onset detector.
The delay, however, would not affect the final result because the same
delay was also present in the visual processing.

When the vision sensor detected a transient object, it returned
an address of the form (x, y), which was a function of (θ, ϕ), the
azimuth and elevation of the object relative to the robot. The exact
relationship depended on the optics in the lens and any misalign-
ment when the lens and the sensor were mounted on the robot. In
our experiments, since the elevation was fixed, the mapping was
simplified to θ = f(x). This mapping was determined by recording
the x addresses when the target was at different azimuths and fit-
ting a third-order polynomial to the data. The azimuth of visual
objects could be determined to within 1˚ over the entire FOV, with
the accuracy primarily limited by the resolution of the sensor,
which contained only 40 pixels horizontally.

RESULTS
EXPERIMENT 1
We tested the Koala with the pink noise stimulus over the range
of azimuth from −90˚ to 90˚, with 5˚ steps. Initially, the weights
had not been trained for our experimental setup and the robot sys-
tematically underestimated the direction of the source. The results
over five trials are shown in Figure 7 and it can be seen that the
localization results are poor. Due to length constraint, the inter-
mediate results from the cross-correlator, soft-WTA and weight
multiplication are not shown here, but examples of intermediate
signals can be found in our previous paper (Chan et al., 2010).

The robot was then trained by applying the procedure
described. It learned to localize the source in approximately twenty
epochs and progress can be seen in Figure 8, with the localization
error decreasing with the number of epochs. The improvement
in accuracy was confirmed by Figure 9, showing that the localiza-
tion was within 5˚ of the target at most azimuth positions after 40
epochs of learning. The training was stopped after there was no
further improvement in average RMS error and the localization
test was performed on the Koala once again (pink noise stimuli,
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FIGURE 6 |The delayed onset detector outputs for six visual objects

detected by the vision sensor. Object 1 and 2 were the LEDs flashing at 35-
and 15-Hz, respectively. Object 3 was the LED synchronized with the audio

stimulus, which we were attempting to identify. Object 4–6 were simply
background objects due to the fluorescent lighting. The onset detected from
the audio stimulus was also shown in dotted line.

FIGURE 7 | Initial localization results.

five trials at each azimuth, 5˚ step). The results were presented in
Figure 10. Overall RMS error was 5˚ and the source could be local-
ized reliably up to ±80˚. We also tested it with white noise stimuli,
with very similar results (Figure 11).

The average RMS errors from both localization tests were calcu-
lated and presented in Table 1. Surprisingly, the average error was
lower for white noise, even though pink noise was used in training.
More importantly, this demonstrated that the system was robust
and could localize sound that was different from that encountered
during training. The improved performance with white noise is
likely due to an improved signal to noise ratio in the higher fre-
quency channels compared to the pink noise stimulus given the
background noise in the office environment.

FIGURE 8 | Average RMS error at the end of each epoch, shown for two

different learning rates (Eq. 2). A learning rate of 10% generally produces
lower error compared to that of the 5% rate at the same epoch, even
though the learning progress is not twice as fast.

For comparison, we have included the localization results in a
quiet, almost anechoic room from the previous paper (Chan et al.,
2010) in Table 1. It could be seen that they were almost identi-
cal, even though the acoustic environments were quite different.
Despite the presence of noise and reverberation, our system was
able to adapt and overcome these non-idealities, localizing sound
as well as in the quiet, almost anechoic room.

EXPERIMENT 2
The test results from 100 trials are presented in Table 2. The target
was correctly identified 75% of the time. The algorithm was not
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FIGURE 9 |The robot’s progress in localization during training. Initial
localization was poor. After 40 epochs of training, its localization ability had
greatly improved and accuracy was within 5˚ at most positions.

FIGURE 10 | Results of the localization test with a pink noise stimulus,

showing the average estimate and RMS error at each position over

five trials.

perfect because the onset detector outputs from the audio stim-
ulus and LED 3 were not exactly synchronous (Figure 6) and it
was possibly for LED 2 to obtain a better match if it turned on
at the right time. These results show that a single onset can be
quite ambiguous as the two flashing distractor LEDs alone were
generating 50 events per second so that the probability of hav-
ing “almost simultaneous” onsets was very high. These confusions
can be reduced by detecting both the sound onset and the sound
offset and correlating these with the onset and offset of the LED.
We have not performed this experiment because the vision sen-
sor used (Chan et al., 2007a), which was developed for a different

FIGURE 11 | Localization Results for the white noise stimulus. The
results were very similar to those for pink noise.

Table 1 | Average RMS errors for the two types of stimuli and

comparison with previous results.

Stimulus type 0˚–45˚ 50˚–90˚ Entire range

Pink noise (200- to 3-kHz spectrum) 3.3 6.4 5.0

White noise (3 kHz bandwidth) 3.1 5.5 4.4

White noise (previous results) 2.7 5.5 4.4

Table 2 | Results from 100 trials, showing the percentage that each

source is selected.

Source Percentage

LED 1 0

LED 2 23

LED 3 (target) 75

Others 2

application, was designed to detect onsets only. Changes to the
setup of the AER EAR would also be required because the silicon
cochlea is currently tuned to give selective band-pass responses,
which is optimal for our localization algorithm but not very effec-
tive in the detection of sound offset. This can be seen in Figure 2,
where the offset time cannot be easily identified from the spike
trains.

CONCLUSION
In this paper, we have demonstrated the training of a robot to
localize sound through self motion and visual feedback, by com-
bining an adaptive ITD sound localization system with a transient
vision sensor. After training, the robot was able to locate a sound
source quite accurately even in the presence of background noise
and reverberations. The average RMS error over the [−90˚, 90˚]
range was only 5˚ for pink noise and 4.4˚ for white noise. More
significantly, the results from the white noise stimuli were almost
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identical to those from our previous paper, which was conducted
in an almost anechoic environment. This demonstrated the impor-
tance of learning and adaptation to optimize the performance of
a sensory system in the presence of noise and other non-idealities.

In a second experiment, we explored the idea of AV binding
and investigated the feasibility of matching audio and visual events
based on their onset time. Successful implementation of AV bind-
ing can allow a robotic system to adapt and learn based on AV
events in the field, without supervision. Our initial experiment
showed promising results, with 75% accuracy in the presence of

a large number of background events. This indicates matching
onset time alone might be sufficient in certain situations where
background events occur infrequently. In more complicated envi-
ronments, however, matching onset time alone is most likely not
effective enough to train sound localization using feedback from
the visual sensor, which, in the case of our experimental setup,
would be systematically wrong 25% of the time. Detecting both
the onset and offset of the sound and the LED would likely result
in a much lower error rate and allow the unsupervised training to
take place.
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