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A critical advance for brain–machine interfaces is the establishment of bi-directional 
communications between the nervous system and external devices. However, the signals 
generated by a population of neurons are expected to depend in a complex way upon poorly 
understood neural dynamics. We report a new technique for the identifi cation of the dynamics 
of a neural population engaged in a bi-directional interaction with an external device. We placed 
in vitro preparations from the lamprey brainstem in a closed-loop interaction with simulated 
dynamical devices having different numbers of degrees of freedom. We used the observed 
behaviors of this composite system to assess how many independent parameters − or state 
variables − determine at each instant the output of the neural system. This information, known as 
the dynamical dimension of a system, allows predicting future behaviors based on the present 
state and the future inputs. A relevant novelty in this approach is the possibility to assess a 
computational property – the dynamical dimension of a neuronal population – through a simple 
experimental technique based on the bi-directional interaction with simulated dynamical devices. 
We present a set of results that demonstrate the possibility of obtaining stable and reliable 
measures of the dynamical dimension of a neural preparation.
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is called a closed-loop confi guration (Bakkum et al., 2008; Chao 
et al., 2008; Novellino et al., 2007), as the sensory consequences 
of the control signals are fed-back to the control system to gener-
ate new commands. From a mathematical standpoint, when the 
external input is maintained constant, such a closed-loop system 
approximates an “autonomous system” whose dynamics are entirely 
self-contained and do not depend explicitly upon time. Of course, 
this is only an approximation, as external infl uences, such as the 
fl uctuation of temperature in the room, are most likely to affect 
the system’s behavior.

In this experimental setting, as in any BMI, the dynamics of 
the neural component are of critical importance in governing the 
motions of the external system. These dynamics determine whether 
the output of the neural preparation depends only on the cur-
rent sensory or artifi cially delivered input or also on some inter-
nal process within the central nervous system itself. The question 
addressed by this study is how many independent parameters − or 
state variables − determine at each instant the output of the neural 
system. This information is known as the “dynamical dimension” 
(Janjarasjitt et al., 2008; Shen et al., 2003; Theiler and Rapp, 1996) 
and is related to the capacity of a neural population to generate 
complex patterns of activity, which may be used as control signals 
for external devices.

The most critical and innovative feature of the proposed method 
is the use of an external device with programmable dynamical prop-
erties as a research tool for studying the dynamical properties of 

INTRODUCTION
We report a new approach to identifying the dynamical properties 
of neural tissue engaged in a bi-directional interaction with an 
external device. We developed a brain–machine interface (BMI) 
system, where the dissected brain of lamprey larvae was connected 
bi-directionally with an external dynamical system (EDS). While 
BMIs are mostly applied to clinical conditions, such as complete 
paralysis or loss of some senses, here we consider an application 
to the study of the computational properties of neural systems. 
One can distinguish between (i) motor BMIs, where a direct com-
munication pathway is established from the nervous system to an 
external device (Donoghue, 2008; Hochberg et al., 2006); (ii) sen-
sory BMIs, where a direct communication pathway is established 
from an external device, e.g. an artifi cial retina, to the nervous 
system (Counter, 2008; Dowling, 2005; Mokwa, 2007); and (iii) bi-
directional BMIs, where a bi-directional direct communication is 
established between the nervous system and an external device 
(Bakkum et al., 2007; Karniel et al., 2005; Martinoia et al., 2004). 
The setup describe in this paper is an example of a bi-directional 
BMI.

The sensory information about the current state of the exter-
nal system was conveyed to the neural preparation by means of 
electrical pulse trains of variable frequencies, delivered by tung-
sten electrode. Population spike trains extracted in real time from 
extracellular multiunit recording were transformed into a control 
signal used to drive the external system. In engineering terms, this 
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the neural preparation. The closed-loop interaction with the device 
facilitates the identifi cation of specifi c computational features, such 
as the dynamical dimension, through the creation of a BMI system 
capable of generating autonomous behaviors. These are behaviors 
that do not require the application of external inputs, whose design 
involves a signifi cant amount of complexity and arbitrariness in 
more traditional system identifi cation methods.

MATERIALS AND METHODS
GENERAL PARADIGM
We consider the bi-directional signal exchange between a neu-
ral system and an external device as a means to get at the neural 
preparation’s dynamical dimension. We measured the dynamical 
dimension of the preparation embedded within the closed-loop 
BMI system shown schematically in Figure 1. The term “neural 
preparation” refers to the part of the nervous system that affects 
the recorded signal. In general mathematical terms, the external 
system is described by the state and output equations:
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Here, x is the state of the external device, u is a control signal, 
y is the read-out signal, h and p are arbitrary functions, and the 
subscripts refer to discrete sampling time.

One can describe in the same way the neural preparation as a 
dynamical system. The main assumption of our study is that there 
exists a state representation (s) of the neural preparation such that 
the changes of state are completely determined by the state itself and 
by the input to the neural preparation:
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Here, i and o refer to the input and output of the neural prepara-
tion. Both s and x are vectors. In principle, there may be infi nitely 

many equally valid representations for s. However, its dimension 
(the dynamical dimension), that is the number of independent com-
ponents in any numerical representation of s, is a well-defi ned 
property of the preparation, which we seek to determine.

The neural preparation and the external device are intercon-
nected in a closed-loop through two instantaneous mappings:
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By combining these relations with the dynamics of both the 
external system and the neural preparation (Eqs 1–3) one obtains 
a single equation:

q m qt t+ = ( )1 ,  (4)

where q = [x, s]T is the state of the composite system and is a com-
position of the states of the two sub-systems, the external device 
and the neural preparation, and:
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Accordingly,

dim(q) = dim(x) + dim(s) (6)

This equation does not hold true in the general case. It can be 
violated due to degeneration of the composite system into lower 
order. The assessment of the dynamical dimension of the neural 
component can also be adversely affected by (i) signifi cant differ-
ence between natural frequencies of the neural component and the 
external system, and (ii) by input signals driving the neural compo-
nent into saturation. We have analyzed each of these possible causes 
and investigate how to avoid each of them. An extensive discussion 
of this issue can be found in the Supplementary Material.

By construction, the behavior of the composite system does 
not depend on any external input, but only on its current state: 
this is the defi ning property of an “autonomous system.” In any 
practical case, autonomy must be understood as an approximation, 
because uncontrolled external inputs cannot be entirely discounted. 
We assessed the dynamical dimension of the composite system, 
dim(q), by collecting multiple trajectories of the external device. 
Then, we computed the dynamical dimension of the neural prepa-
ration, dim(s), from Eq. 6, by subtracting the known dimension 
of the external system, dim(x), from the estimated dimension of 
the combined system:

dim(s) = dim(q) − dim(x) (7)

The main element of novelty with this approach consists in the 
possibility of using external systems with different dimensions. 
Then, it is possible to use the known difference between the dimensions 
of the external systems as condition to validate the estimate of the 
dimension of the neural preparation. This provides us with a critical 
tool, as the estimate of a system’s dimension is typically affected by 
noise and by arbitrariness in some data-processing parameters.

THE NEURAL PREPARATION AND THE EXPERIMENTAL SETUP
The whole brain of the Sea Lamprey was dissected and maintained 
in continuously superfused Ringer’s solution (see details in Alford 
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FIGURE 1 | Experimental paradigm. The box representing the neural tissue 
has two incoming arrows: one is a recurrent arrow and represents the state s, 
the other represents the input signal i, which is conveyed using frequency 
encoding. The signal recorded by the extracellular electrode contains 
information about the state s in the form of population spike train. The spike 
train is converted into a sequence of estimated spike rates, which serve as an 
output signal o from the tissue. The box representing the external device has 
two incoming arrows, like the neural tissue box. The change in state of the 
external device, x, depends only upon the current state and the control signal 
u (Eq. 1).
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et al., 1995; Karniel et al., 2005). The dissected neural tissue was 
maintained alive for up to several days. Figure 2 shows the prepara-
tion in the recording chamber.

The stimulating electrode was placed among the axons of the 
vestibulo-reticular pathway, which originates from one of the pos-
terior octavomotor nuclei (nOMP). This nucleus receives inputs 
from the vestibular capsule and its axons form synapses with the 
contralateral rhombencephalic neurons.

The recording electrode was placed extracellularly among the 
axons of the (contralateral) reticulo-spinal pathway, originating 
from the posterior rhombencephalic reticular nucleus (PRRN). This 
nucleus received monosynaptic projections from the  contralateral 
nOMP. In behaving animals, the PRRN conveys sensory  information 
of different nature (visual, vestibular, tactile) and  central  commands 
to the motor centers of the spinal cord (Rovainen, 1979a,b). This 
placement of the stimulation and recording electrodes induces pre-
dominantly excitatory responses (Alford et al., 1995).

The recorded signals were acquired at 10 kHz by a data acquisi-
tion board (National Instruments PCI-MIO-16E4) on a Pentium 

III 2GHz computer (Dell Computer Corporation). The recording/
stimulating paths from the workstation to the tissue followed the 
subsequent scheme. The recording electrode (a glass micropipette 
fi lled with 1 M NaCl, impedance range 1–10 MΩ) was connected 
to a pre-amplifi er within a Faraday cage which was in turn con-
nected to an external amplifi er. The stimulator (Programmable 
Master 8 system by A.M.P.I.) delivered the stimulus pattern to the 
neural tissue through an isolator unit (Iso-Flex). In our experiments 
the stimulation was delivered through a tungsten microelectrode 
(impedance range of 1–2 MΩ) in the form of monophasic pulses 
of 200 µs duration and magnitude of 60 µA. The timing and fre-
quency of the pulses depended on the information coming from 
the external device (see explanation below).

SPIKE DETECTION AND ARTIFACT CANCELLATION
Figure 3 shows a sample segment of the raw signal acquired by the 
recording electrode at the rate of 10 kHz during the closed-loop 
experiments.

The procedure used for online spike detection during the closed-
loop experiments is described in Table 1. The minimal spike mag-
nitude and the maximal spike duration values used for different 
experiments session are shown in Table 2. To avoid confusion 
between the stimulation artifacts and spikes, the acquired raw sig-
nal immediately following each stimulation pulse was discarded. 
The duration of discarded signal (the artifact cancellation period) 
was set to 3 ms for all experiments. The spike detection procedure 
in Table 1 skipped segments of the raw signal during the artifact 
cancellation periods.

THE EXTERNAL DYNAMICAL SYSTEMS
We used two different external systems with dynamical dimensions 
of two and four referred to as the 2D and the 4D system. These sys-
tems are real-time simulations of, respectively, a single point-mass 
and two masses connected by a spring. Both masses move along a 
line. For both systems, the control signal u determines the external 
force acting on mass m

1
, and the position of mass m

1
 determines the 

read-out signal y. The point-masses move within a potential force 

FIGURE 3 | Spike detection. Sample segment of the raw recorded signal (blue line) and the detected spikes (red marks). Units on the vertical axis are mV. Notice 
the stimulation artifacts in the form of large negative pulses. The artifact cancellation periods are shown by light blue horizontal brackets.

FIGURE 2 | The lamprey. The neural element of the BMI system is the 
dissected brain of Sea Lamprey maintained alive within the recording 
chamber.
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chosen because it is a monotonic and mildly non-linear function. 
The same expression was used in earlier studies where the neural tis-
sue was connected to a small mobile robot (Fleming et al., 2000).

The output interface was only used for normalization purposes. 
Different neural preparations provide different ranges of popu-
lation spiking rate. The output interface normalized the spiking 
rate, so that the maximal observed value was mapped into 1; and 
converted the output signal, o, into a control signal for the external 
component, u, (see Figure 1):

u o C
o

o
B= = ⋅ +

⎛
⎝⎜

⎞
⎠⎟

β( )
max

 (10)

The bias, B, and the gain, C, are set to −0.2 and 10 respectively. 
The maximal observed output value, o

max
, was estimated for each 

experimental session in a set of preliminary runs, which are not 
used to collect data. Particular values of o

max
 used in the experiments 

are shown in Table 2.

THE EXPERIMENTAL PROTOCOL
Each experiment consisted of a sequence of episodes, in which the 
BMI system operated for 20 s.

The two external systems were used in alternating episodes. A 
total of 20 episodes were run in each session. For each episode, the 
initial confi guration of the corresponding external system (posi-
tions and velocities of the point-masses) was drawn at random. The 
episodes were interleaved by periods of rest of 40–100 s. We found 
empirically that periods of this duration were suffi cient to insure 
stable neural responses across the experiment. We assume that dif-
ferent preparations might require different resting periods.

To reconstruct the dynamical dimension of the composite sys-
tem we used the trajectories of the external device and not the 
neural activity, because the latter, being a sequence of spike counts 
in short-time intervals, is quite noisy, bearing the entire dimension 
assessment impossible. In the described setup, the external device 
functions as a fi lter smoothing out the noisy neural behavior. Since 

Table 1

loop on a segment of the recorded signal, r(ti), starting from t0

 fi nd the next local maximum, r(ti), such that r(ti) > r(ti − 1), r(ti) > r(ti+1) 

 Find the next local minimum, r(tj), such that j > i, r(tj) > r(tj − 1), r(tj) > r(tj+1) 

 if r(ti) − r(tj) > min spike magnitude and tj − ti < max spike duration

 Assign spike at time ti

end loop

Table 2

Preparation session 1 2  3

   1 2 3

Maximal spike duration (Table 1), ms 1 1 1 2 2

Minimal spike magnitude (Table 1), mV 1.1 1.5 1.1 1.1 1.1

Max stimulation frequency (fmax, Eq. 11), Hz 20 30 10 30 30

Max estimated spike frequency (omax, Eq. 10), Hz 140 120 220 160 160

Recovery time between episodes, s 40 100 40 100 100

Number of episodes in session 20 20 20 40 40

Relative session start time, h:min   0 6:20 11:46

Lag (2D) 10 10 10 11 10

Lag (4D) 9 8 10 18 8

Number of (δ,ε) combinations (n, Eq. 15) 250 250 250 150 150

ε̂d Threshold (h, Eq. 17) 0.06 0.06 0.16 0.16 0.16

d*(2D) 7 7 5 5 5

d*(4D) 9 9 7 7 7

dim(s) 5 5 3 3 3

fi eld, and there is a damping element between each point-mass and 
the ground. These dynamical features were established to induce the 
combined system to explore a suffi ciently wide variety of behaviors. 
The Supplementary Material provides a detailed description of the 
two simulated dynamical systems.

THE INTERFACES
The neural tissue was connected to an EDS, thus forming a closed-
loop composite system. The composite system had two signal path-
ways: (i) a stimulating electrode conveyed the read-out signal of the 
EDS to the neural tissue; (ii) the signal recorded from the neural 
tissue determined a control signal for the EDS. The read-out signal, 
y, of the external system (refer to Eq. 1) was:

y x= 1  (8)

The input interface implemented a non-linear mapping from 
the external system’s read-out signal, y, into the input signal, i 
(Figure 4):

i y
a

a

y

= = −
−

+

α( )
1

2

1

1
 (9)

The position of the simulated point-mass, x
1
, and hence the read-

out signal, y = x
1
, was constrained to stay within the interval [−1, 1]. 

Accordingly, the input signal, i, remained within [0, 1]. The “shape” 
parameter, a, regulated how “curved” was the function (Eq. 9); we 
used a = 5.This particular form of the input interface mapping was 



Kositsky et al. Dynamical dimension of a BMI

Frontiers in Neurorobotics www.frontiersin.org March 2009 | Volume 3 | Article 1 | 5

we are estimating the dynamical dimension of the entire system, it 
is reasonable to analyze the external device trajectories instead of 
applying another, additional fi lter to the neural activity. We would 
like to mention in this regard that the musculo-skeletal system in 
general (not only of Sea Lamprey) functions as a fi lter that smoothes 

out noisy neural activity making the entire system feasible and eas-
ily controllable. This could be a factor that determines the fi ltering 
properties of muscle tissue.

The temporal structure of the closed-loop system implementa-
tion is shown schematically in Figure 5. A data acquisition card 
sampled continuously the signal from the recording electrode at 
10 kHz rate. The rest of the processing took place in a periodic man-
ner; the experiment loop was repeated once every fi xed time period, 
Δt = 50 ms. The CPU of the computer performed the following 
operations, without interrupting the data acquisition card:

1. Detect spikes from the 10 kHz signal.
2. Estimate spike rate, o by counting the number of spikes in the 

interval Δt.
3. Compute the output interface mapping, u(o) (Eq. 10).
4. Simulate one time-step of the EDS, i.e. compute (x

1
, x

2
, 

x
3
, x

4
)

t + Δt
 = h(x

t
, �xt, u) (see Eq. 24 of the Supplementary 

Material).
5. Compute the input interface mapping, i(y) (Eq. 9).
6. Draw the binary stimulation signal (BSS) using the input 

magnitude, i. Drawing the BSS means choosing BSS equal to 0 
or 1 according to the target probability defi ned as follows. The 
BSS is a binary signal that determines if the pulse is emitted at 
the current sweep of the loop. When BSS is equal to 1, the pulse 
is emitted; otherwise, the pulse is not emitted. The probability 
of emitting a pulse is therefore:

P i f t[ ] min ,maxBSS  = = ⋅ ⋅[ ]1 1Δ  (11)

FIGURE 4 | Input interface mapping (Eq. 9). This particular shape of the 
input interface mapping was chosen to represent the light intensity 
signal as a function of robot orientation in the experiments that use the same 
brain–machine interface setup with a mobile robot as the external device 
(Fleming et al., 2000).
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FIGURE 5 | Temporal structure of the experiment. EDS stands for external dynamical system, BSS stands for binary stimulation signal.
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The input signal, i, determined the current target frequency up 
to the maximal stimulation frequency, f

max
, achieved when i = 1. 

Particular values used in the experiments for f
max

 are shown in 
Table 2.

7.  If the drawn BSS is equal to 1, a command is sent to the stimu-
lation hardware to emit one pulse.

When the elapsed time of the current sweep exceeds Δt, a new 
sweep is started, a new portion of data is loaded from the data acqui-
sition card, and all the steps described above are repeated again.

COMPUTING THE DYNAMICAL DIMENSION
The state trajectories of an autonomous system do not intersect 
themselves or each other (Arnold, 1978). In contrast, the trajectories 
observed in our experiments exhibit multiple self-intersections. 
This may be attributed to the fact that they are one-dimensional 
projections from a higher dimensional state space. To reconstruct 
the dimension of the composite system, we unfold the observed 
trajectories into spaces of increasing dimensions and check for the 
presence of intersections (Kaplan, 1994). The lowest dimension 
where the trajectories do not intersect is judged to be the ade-
quate dynamical dimension of the composite system (Abarbanel, 
1996; Kaplan, 1993). To unfold trajectories into a space of a given 
dimension d, we used the delayed coordinates space embedding 
(Mane, 1981; Takens, 1981), consisting of d consecutive values of 
the original trajectory:

v y y yk k k k d= ( )+ + − ⋅, , , ,( )τ τ… 1  (12)

where k enumerates the state-points along the embedded state tra-
jectory and τ is the integer lag parameter.

To select a proper lag τ, we employed an approach that uses 
the fi rst (corresponding to the smallest τ) local minimum of 
the mutual information between samples (Abarbanel, 1996), as 
described in the Supplementary Material. An alternative approach 
for selecting the lag is to set it equal to the fi rst zero crossing of the 
autocorrelation of the analyzed signal. However, this only makes 
sense if the underlying dynamics is linear. The mutual informa-
tion criterion does not have this limitation, so we used it for the 
data analysis.

Checking for intersections of the trajectories is a complicated 
task, which has engendered some controversy (Ruelle, 1990). Since 
the sampled trajectories are sets of measure 0 within the embedding 
space, one can – in principle – never observe an actual intersection 
(of course for a digitized signal with limited numerical resolution 
a probability of observing two overlapping samples is non-zero 
but negligibly small). In spaces of dimension >2, it is only pos-
sible to determine that two trajectory segments are close to each 
other. Most of the existing methods for dimension reconstruction 
address this diffi culty (Kaplan and Glass, 1992; Kennel et al., 1992). 
We propose to take advantage of a priori knowledge about the 
external device connected to the neural element to remove some 
of the uncertainties. We used the “delta-epsilon method” developed 
by Kaplan (Kaplan, 1994). For each dimension d, the trajectories 
were unfolded in d-dimensional space and pairs of consecutive 
points along the unfolded trajectories were analyzed. For two pairs 
(v

i
, v

i + 1
) and (v

j
, v

j + 1
), the distance between the fi rst points of each 

pair is denoted by δ:

δ = −v vi j ,  (13)

and the distance between the second points of each pair is denoted 
by ε:

ε = −+ +v vi j1 1  (14)

Delta-epsilon combinations with small deltas (approaching the 
limit δ→0) and large epsilons are interpreted as intersections of the 
trajectories due to projection from a higher dimensional state space 
onto a space of insuffi cient dimension. If small deltas always bear 
small epsilons, it is interpreted as an indication that δ→0 implies 
ε→0 that corresponds to the elimination of all intersections of the 
trajectories. In this case, the corresponding dimension is deemed to 
be an adequate estimate for the dimension of the state space.

We unfolded the observed trajectories sequentially into progres-
sively higher dimensions using delayed coordinates space embed-
ding (Eq. 12). For each dimension, we computed the delta-epsilon 
combinations and considered n combinations with the smallest 
deltas. To assess robustness of the method, we have varied n. To test 
for trajectory intersections in a given dimension d, we compared 
the magnitudes:

ε ε
δ εd

Zn

=
∈

max ,
( , )

 (15)

for different d’s (see upper panels in Figure 8 in Section “Results”). 
Here, Z

n
 is the set of n delta-epsilon combinations with smallest 

deltas. As the dimension d increased, the corresponding magnitudes 
ε

d
 decreased almost monotonically until they reached a plateau. 

This saturation points to the dynamical dimension of the composite 
system. To determine this transition in different preparations, we 
normalized ε

d
:

ˆ
min

max min
.ε

ε ε

ε εd

d
d

d

d
d

d
d

=
−

−
 (16)

The normalization was set so that for each system ε̂d spanned 
magnitudes between 0 and 1 (see lower panels in Figure 8 in the 
Section “Results”). The assessed dynamical dimension d* was estab-
lished by setting a threshold h and determining the fi rst threshold 
crossing in the function ε̂d  vs. d:

{ d∗ = min {d | ε̂d
 < h} (17)

SURROGATE DATA ANALYSIS
To address the noise issue in the dimension analysis (see 
Abarbanel, 1996 for a general discussion), surrogate trajectories 
were  generated using randomized phases. They do not refl ect any 
implicit  dependencies and are used as examples of “pure noise.” Any 
dimension analysis applied to these trajectories should produce the 
estimated dimension equal to infi nity.

To generate the surrogate trajectories, a Fourier image was com-
puted for each original trajectory. This was done after sub-sampling 
the trajectory with the time lag τ derived from the average mutual 
information measure as described above. The phases of the Fourier 
components were then replaced by random numbers drawn uni-
formly from [−π, π], while the absolute magnitudes of the Fourier 
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components were preserved. The inverse Fourier transform of the 
new surrogate image was then computed. This served as the sur-
rogate trajectory. Note that a virtually unlimited number of the 
surrogate trajectories can be computed for each original trajectory, 
thus making the outcome of the delta-epsilon dimension analysis 
much more clear.

ROBUSTNESS ANALYSIS
As it is common in this type of procedure, the outcome depends on 
arbitrary parameters, such as the threshold, h, and the number of 
delta-epsilon combinations, n (Eqs 15 and 17). More defi nite and 
robust dimension estimates can be obtained by using two alterna-
tive external systems interconnected with the same neural prepara-
tion. We tested multiple values for h and n. For each  preparation, we 
computed the dimension of the composite system. The correspond-
ing differences between the estimates for the two external systems 
were computed for all parameter combinations (see Figure 9 in 
the Section “Results”). The known difference between the external 
systems’ dimensions (two) was used to eliminate the parameter 
combinations that produced inconsistent results. Then, the param-
eter combinations were s elected that produced the most robust 
estimates, i.e. the largest number of equal entries in the tables.

RESULTS
To assess the dynamical dimension of the composite system, we 
used the read-out signal y

t
 of the external system. For both the 2D 

and the 4D external systems, the read-out signal is the position 
of the fi rst point-mass, y = x

1
 (see Eq. 8). Trajectories y

t
 collected 

during the experiments and used for the subsequent analysis are 
shown in Figure 6. For each experimentation session, 10 trajectories 
were obtained with each of the two EDS (the 2D system and the 
4D system). The duration of each trajectory was 20 s.

The dynamical dimension was assessed on the trajectories 
sampled with lag τ computed individually for each set of trajec-
tories using the mutual information measure described in the 
Supplementary Material. Each set of trajectories consists of all 
trajectories collected for one preparation using one particular 
external system. The average mutual information as a function of 
the lag τ for the trajectories obtained using three different prepa-
rations combined with two alternative EDS is shown in Figure 7. 
The smallest τ where the mutual information function reached a 
local minimum was used as the time lag for the dimension analysis. 
The corresponding lag is marked as τ

0
 in each panel in Figure 7. 

The lags determined using this method lie between 8 and 10. Lags 
computed using the fi rst zero crossing of the autocorrelation of the 
analyzed signal lie between 2 and 4 for most trajectories.

To assess the dynamical dimension of the composite system, we 
have computed all delta-epsilon pairs (see Eqs 13 and 14) for each 
set of trajectories for each dimension from 1 to 20.

To compute the dynamical dimension from the delta-epsilon 
pairs, we have analyzed ε

d
 (Eq. 15) and ε̂d (Eq. 16) as functions of 

dimension d. These dependencies are shown in Figure 8. The two 
upper panels in Figures 8A–C show ε

d
 (Eq. 15) for different d’s for 

the two external systems.
To address the noise issue in the dimension analysis, we have 

computed a surrogate trajectory for each original one. The results 
of the delta-epsilon analysis on the surrogate trajectories are shown 

in Figure 8 by red plots in upper panels in A, B, and C. These 
plots stand in perfect agreement with the assumption that noise 
has infi nite dynamical dimension. They serve as a good baseline 
to compare the ε

d
 plots of the original trajectories to judge their 

decay and saturation.
The two lower panels in Figures 8A–C show the normalized ver-

sion of ε
d
, ε̂d (Eq. 16), for different d’s for the two external systems. 

For each preparation and for any EDS, ε̂d spans the interval between 
0 and 1. The dotted line in each lower panel in Figures 8A–C shows 
the threshold level, h, used to compute the dynamical dimension 
d* (Eq. 17). The latter is marked in each of the lower panels in 
Figures 8A–C as well.

As mentioned above in Section “Materials and Methods,” we 
must address the arbitrariness in the parameter choice, which might 

FIGURE 6 | Trajectories of the external dynamical systems obtained 

during the experiments. (A–C) Show the trajectories for the three 
preparations respectively. The upper panels show the trajectories obtained 
using the 2D system, the lower panels show the trajectories obtained using 
the 4D system. Different colors show different trajectories merely for easier 
distinction. Note that different trajectories start from different initial positions 
and velocities.
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affect the results; in particular, the threshold, h, and the number of 
delta-epsilon combinations, n (Eqs 15 and 17). The results of the 
robustness analysis with respect to the parameters in question are 
shown in Figure 9. The dynamical dimension for each preparation 
was assessed using two factors. First, the  consistency between the 
results for the 2D and the 4D external systems (Figures 9A–C, left 
and the middle panels), which requires that the difference between 
the corresponding entries should be equal to 2. And, second, the 
general robustness with respect to parameters’ values (Figures 9A-C, 
right panels), i.e. the largest number of equal entries in the tables 
(refer to Section “Robustness Analysis”). The results of this proce-
dure are reported in the last line of Table 2. The robustness analysis 
shows that (i) the dynamical dimension assessment is only mildly 
affected by parameter selection, and that (ii) there are large areas 
of parameters combinations where the assessments using the two 
different external systems are mutually consistent.

FIGURE 8 | ε
d
 and ε̂d as a function of d (Eqs 15 and 16). For each 

preparation, the left panels show the data collected using the 2D external 
dynamical system, the right panels show the data collected using the 4D 
external dynamical system. The red plot in the upper panels show εd 
computed for surrogate trajectories obtained by randomizing phases of the 
original trajectories. The dotted line in the lower panels shows the threshold h 
used to assess the dynamical dimension d*.

To investigate stability of the assessed dynamical dimension 
over time, we have conducted two additional experimental sessions 
with one of the preparations (preparation 3). These additional 
sessions took place after a signifi cant time delay following the 
fi rst session (see details in Table 2). Figure 10 shows ε

d
 and ε̂d 

(Eqs 15 and 16) as functions of d for all three sessions conducted 
using preparation 3. Figure 11 shows the results of the robustness 
analysis with respect to the parameters n and h (Eqs 15 and 17) for 

FIGURE 7 | The average mutual information as a function of time lag 

between points along the observed trajectories. The τ axis units are the 
steps of the underlying time discretization. (A–C) Show the mutual 
information for the three preparations respectively. Left panels show the 
average mutual information computed for the trajectories obtained using the 
2D system, rights panels show the data for the 4D system. The time lag, for 
which the fi rst local minimum of the mutual information is reached, is marked 
in each panel by τ0.
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all three sessions conducted using preparation 3. Figures 10 and 
11 use the same representations as Figures 8 and 9 respectively. 
Note that Figure 10A shows the same data as Figure 8C: data 
from preparation 3 session 1. The same is true regarding Figures 

11A and 9C. The results of all these assessments are summarized 
in Table 2. The dynamical dimensions estimated from the three 
sessions are the same. This type of analysis is needed to insure (i) 
that the dynamical dimension is a fi xed and well-defi ned property 
of a particular preparation, and (ii) that the dynamical dimension 
is not altered by the process used to assess it. These statements 
refer to long-time changes that take place (or rather do not take 
place) in the order of magnitude of hours; this is typical duration 
of one experimental session for the dynamical dimension assess-
ment. Short-time changes caused by the probing itself cannot be 

FIGURE 9 | Robustness analysis for the assessed dynamical dimension. 

In each panel, the columns correspond to different magnitudes of the 
threshold h (Eq. 17), and the rows correspond to different magnitudes of n 
(Eq. 15). The three panels in the left column show the assessed 
dimension, d*, for the data collected using the 2D external system. The 
three panels in the middle column show the assessed dimension for the 
data collected using the 4D external system. The three panels in the right 
column show the difference between the two assessments for each 
parameter combination. The three panels in each row show the results for a 
particular preparation, as marked on the left.
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detected by this technique and they might or might not alter the 
assessed dynamical dimension.

DISCUSSION
This paper describes a methodology for applying dynamical systems 
theory to the study of properties of neural tissue. We have dem-
onstrated the feasibility of a method for estimating the dynamical 
dimension of a neural component in a composite neuro-robotic 
system. We have tested this approach in vitro, using lamprey’s brain 

stem interconnected with a dynamical system simulated by a com-
puter. These experiments reveal critical issues and bottlenecks of the 
proposed methods, as well as their weak points and limitations.

The general paradigm used in this work does not try to reveal 
the dynamics of the neuronal network that exist independently 
of the external system. This work presents an approach of how to 
estimate the neuronal network dynamics in the context of closed-
loop interactions.

Our fi ndings depends on several contingent factors, including 
the neural population under study, the electrode placement and 
the selected parameter settings, such as magnitude, duration, and 
frequency range of the stimulation pulses. The neural preparation 
might involve only one neuronal population projecting monosyn-
aptically onto another. Or, it might include multiple synaptic inter-
actions, taking place between stimulation and recording electrodes. 
Furthermore, the dynamical properties of the neural preparation 
may be accounted for by changing concentrations of particular 
ions or substances at different locations along the axons that were 
stimulated or recorded from, or by various cellular mechanisms, 
such as channel and autoreceptor dynamics (Schwartz and Alford, 
2000). One would expect to observe different dynamical properties 
under these different situations.

A specifi c conclusion regarding the experimental examples 
provided here is that the estimated neural dynamics may depend 
quite critically on the placement of the stimulating and recording 
electrodes. Small variations in electrode position caused a change 
in the observed dynamical dimension. This may happen due to any 
of the above-mentioned factors that affect the observed dynamics. 
For example, the dynamical dimension of preparations 1 and 2 was 
estimated to be 5, while the dynamical dimension of preparation 3 
was estimated to be 3. The dependence of population signals upon 
the placement of the recording electrodes is a general challenge for 
BMI systems, and this one is no exception. This is to a large extent 
an unavoidable problem because the electrode placement – in our 
case both for stimulation and for recording – defi nes the biological 
network under consideration. Nevertheless, once a stable electrode 
placement has been attained in a BMI system, we can envision the 
use of this or similar techniques for determining the dynamical 
properties of the neural tissue that is assigned the control of an 
external device. While at this time this study has a limited value, we 
expect that the probing of neural behavior through the interaction 
with dynamical modules with specifi c properties – such as damp-
ing, inertia, bandwidth, etc.-will provide neural engineers with a 
simple way for fi ne tuning the properties of the interface based on 
solid and easily implementable engineering principles.

The methodology presented in this paper provides a means for 
assessing the dynamical dimension based only on signal proper-
ties. For its most effective use, it is recommended that it be used in 
combination with other physiological and anatomical techniques 
providing insight about the cellular structure and mechanisms that 
determine the observed dynamics. Here, we refer, for example, to the 
possibility to probe the dynamical properties of portions of neural 
tissue – either in vivo or in vitro – in conjunction with the application 
of pharmacological agents that neural plasticity mediated by nMDA 
or metabotropic glutamate receptors. This would provide focused 
information on the effects of pharmacological manipulations on 
the dynamical properties of biological neural networks.
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The fi eld of BMIs has been developing very actively for the last few 
years (Lebedev and Nicolelis, 2006; Martinoia et al., 2004; Novellino 
et al., 2007; Serruya et al., 2002; Taylor et al., 2002; Wessberg et al., 
2000). The direct interaction between the nervous system and exter-
nal devices has a broad range of applications. In particular, there is a 
promising potential to use BMIs for reconnecting with the external 
world patients suffering from a variety of disabling neurological dis-
orders (Donoghue, 2002; Hochberg et al., 2006; Kennedy and Bakay, 
1998; Nicolelis, 2003). The novel feature of our method is the use of 
the interface with an external device as a research tool. The external 
device is used to reveal certain characteristics of the neural prepara-
tion. In particular, we used two different external devices alternatively 
with the same preparation in order to address the arbitrariness in 
the parameter choice for data analysis. At the same time, the external 
device affects the behavior of the entire BMI system and implicitly 
shapes the neural activity of the preparation. Evidently, activity pat-
terns exhibited by the preparation in closed-loop interaction with a 
particular artifi cial device may differ from those exhibited in natural 
conditions. In the described experiments, we do not try to simulate 
the natural behavior or natural neural dynamics. Therefore, all the 
measurements and conclusions regarding the neural preparation are 
strictly valid only within the context of a particular BMI system.

We need to stress that in this initial test of our procedure we 
have used external devices that fi ltered out high frequency com-
ponents of the neural signal, so that the resulting behavior was 
relatively smooth. This however, needs not to be a constraint in 
other implementations of this approach. We have decided here 
to introduce an amount of low-pass fi ltering, in analogy with the 
smoothing properties of the musculo-skeletal system together with 
the spinal circuitry (Partridge, 1966, 1973). In the general case, dif-
ferent external systems excite different components of the neural 
dynamics and thus can be used as investigation tools aimed at dif-
ferent operational conditions. Ultimately, the intrinsic dimension 
of the neural system is likely to be higher than the estimate by our 
method. This is not necessarily a disadvantage, as the coupled device 
can deliberately be designed to fi lter out frequency components 
and dynamical behaviors that may be detrimental to the effective 
control of external devices, such as wheelchairs or robotic arms.

Our results indicate that the neural dynamics are captured by 
relatively simple descriptive models. Here, one must take into account 
that we used an extracellular electrode. This is not an implicit con-
straint of the method, as the same concepts can in principle be applied 
in combination with intracellular recording. As the task of separating 
single units from extracellular recordings is based on some arbitrary 
assumptions, we did not make any attempt to this end. We conclude 
with three considerations on assessing the dynamical dimension of 
neural preparations in experimental and theoretical investigations:

1. To design effective computational models of a neural prepara-
tion, one must take into consideration its dynamical dimension. 

The dynamical dimension provides the lower bound for the 
number of tunable parameters for any adequate model. If the 
state of the neural preparation has four independent compo-
nents, as we have assessed using the model-less method pre-
sented here, then any model trying to match experimental data 
for a similar input/output arrangement must use at least four 
independent parameters.

2. Our fi ndings on dynamical dimension suggest the presence of 
structural features of the preparation, such as connectivity pat-
terns and dynamical properties of particular channels. These 
fi ndings suggest further investigations with other means. For 
example, pharmacological agents are used for altering channel 
properties (Grillner, 2003), for blocking selected ion channels 
(Cangiano et al., 2002), or for altering properties of multi-
synaptic transmission (Schwartz et al., 2005; Takahashi et al., 
2001). The dynamical dimension assessment can be used in 
combination with these agents to provide a direct evaluation 
of their effect on neural dynamics.

The general framework of the present study emphasizes the 
interdisciplinary approach involving experimental  neurobiology, 
engineering, and dynamical systems theory. In previous works 
(Celletti and Villa, 1996; Ivanov et al., 1996; Lee et al., 2001; 
Sarnthein et al., 1998) the same embedding dimension method, 
has been used for analyzing the electroencephalogram recorded 
from the brain of different mammals (e.g. rabbits, rats, and 
humans), and for comparing the results obtained during dif-
ferent experimental (i.e. physiological and pathological, such 
as epilepsy) conditions. However, the most typical applications 
of this embedding method are in the area of breathing (Thayer 
and Moulden, 1997) and heart rhythm analysis (Bettermann and 
Van Leeuwen, 1998; Yeragani and Radhakrishna, 2003), where the 
intent of the researches is to identify changes in the electrocardi-
ography recording that could indicate the occurrence of a heart 
pathology (i.e. arrhythmias). Although there are similar applica-
tions in the area of neural function (Jelles et al., 2008; Kannathal 
et al., 2004; Slutzky et al., 2002; Stam, 2005), we are not aware of 
studies assessing the dynamical dimension in a specifi c portion 
of the nervous system.
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