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In this study, we developed an encrypted guaranteed-cost tracking control

scheme for autonomous vehicles or robots (AVRs), by using the adaptive

dynamic programming technique. To construct the tracking dynamics under

unreliable communication, the AVR’s motion is analyzed. Tomitigate information

leakage and unauthorized access in vehicular network systems, an encrypted

guaranteed-cost policy iteration algorithm is developed, incorporating

encryption and decryption schemes between the vehicle and the cloud based

on the tracking dynamics. Building on a simplified single-network framework,

the Hamilton-Jacobi-Bellman equation is approximately solved, avoiding the

complexity of dual-network structures and reducing the computational costs.

The input-constrained issue is successfully handled using a non-quadratic

value function. Furthermore, the approximate optimal control is verified to

stabilize the tracking system. A case study involving an AVR system validates the

e�ectiveness and practicality of the proposed algorithm.

KEYWORDS

adaptive dynamic programming, encryption and decryption, tracking control, optimal

control, autonomous vehicle

1 Introduction

Autonomous vehicles or robots (AVRs) have rapidly transformed from a futuristic

concept to a tangible reality, driving significant advancements in automotive technology.

The advancement of autonomous vehicle technology has increasingly focused on

improving tracking control systems, which are crucial for effective vehicle guidance (Pan

et al., 2023). However, a persistent issue is the unreliable communication between a local

vehicle and a reference vehicle, leading to discrepancies in signal reception and affecting

tracking precision. In addition to these developments, the emergence of connected vehicles

(Li et al., 2019a; Liu et al., 2023b), which leverages cloud computing for data processing

and optimization, presents both opportunities and challenges. These systems function

as cyber–physical systems (He et al., 2014; Zhang et al., 2014; Mohan et al., 2020),

integrating computational and physical processes to enhance real-time data exchange

and improve overall traffic management (Jiang et al., 2022; Li et al., 2019b). However,

during communication between the vehicle and the cloud, the network’s homogeneous and

civilian nature makes it, particularly, vulnerable to attacks. This vulnerability, especially in

the absence of robust security protocols, exposes these systems to cyber threats, including

eavesdropping.
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To enhance the security of vehicular cyber-physical systems,

researchers from various fields, such as communication, control

systems, and information theory, have developed various strategies

to address cyberattacks across different layers (Han et al., 2024;

Deng and Wen, 2021; Liu et al., 2021, 2023a). Various types

of attacks, including denial-of-service (DoS) attacks, false data

injection (FDI) attacks, and replay attacks, have been extensively

studied (Teixeira et al., 2012; Li et al., 2024; Hu et al., 2023). These

types of attacks share the characteristic of being active strategies

designed to disrupt system functionality or manipulate transmitted

data. Although defense mechanisms have made progress in

countering such threats, majority of the existing methods primarily

concentrate on detecting and mitigating explicit attacks, often

overlooking the fundamental challenge of ensuring communication

security. In vehicular cybersecurity, one of the critical issues is

the threat of eavesdropping attacks (Yang et al., 2020; Wu et al.,

2022). Unlike the direct and active nature of DoS and FDI attacks,

eavesdropping operates passively, enabling attackers to intercept

sensitive information while remaining undetected. This makes it a

significant long-term threat that can compromise communication

confidentiality and can even enable more destructive attacks.

Addressing this challenge requires advanced encryption and

privacy-preserving techniques to ensure secure communication.

Although these methods are effective, they do not ensure optimal

control performance at minimal energy cost, as they do not

incorporate the principles of optimal control.

Optimal tracking control has become a cornerstone of modern

control theory, with adaptive dynamic programming (ADP)

algorithms attracting considerable interest in recent years (Lu et al.,

2020; Mu et al., 2017b). For non-linear optimal control problems,

the principal challenge lies in solving the Hamilton-Jacobi-Bellman

(HJB) equation—a problem that is nearly intractable through exact

mathematical methods. ADP techniques have offered a promising

alternative by leveraging neural networks (NNs) to approximate

optimal solutions, leading to significant advancements across

fields such as automatic control and artificial intelligence (Mu

et al., 2017a; Guo et al., 2024). For example, El-Sousy et al.

(2021) designed a three-network structure to approximate the

solution of the HJB equation for permanent-magnet synchronous

motor servo drives. Wang et al. (2020) proposed an dual-network

to approximate local Q-functions and control policies, solving

optimal consensus control for non-linear multiagent systems.

Furthermore, ADP-based optimal tracking control has been widely

investigated (Dong et al., 2022; Song et al., 2023), including efforts

to address input-constrained systems (Yang et al., 2023; Zhang

et al., 2018). However, conventional ADP approaches, particularly

those employing actor-critic frameworks, are frequently hindered

by significant approximation errors introduced during iterative

processes and NN training, thereby restricting their practical

applicability.

To address these challenges, researchers have proposed several

single-network ADP methodologies designed to streamline system

architectures and enhance computational efficiency in handling

nonlinear systems (Xu et al., 2023; Chen et al., 2021; Zou and

Zhang, 2023). Chen et al. (2021) developed an event-triggered

optimal control scheme for a macro–micro stage system, using

a single critic NN to solve the modified HJB equation. In

Guo et al. (2024), a distributed control strategy for attitude-

constrained quadrotor unmanned aerial vehicle is proposed based

on a critic network. Among the core ADP algorithms, value

iteration and policy iteration (PI) have been widely employed,

demonstrating robust performance in numerous applications

(Zhang et al., 2020; Lin et al., 2023). However, the two-

stage iterative procedures inherent in these methods frequently

involve information transmission, which makes them susceptible

to interception by adversaries. This vulnerability necessitates

additional security measures, thereby increasing computational

complexity and further constraining their applicability to complex

systems. Although efforts to streamline computational burdens by

eliminating actor networks have yielded progress, current ADP

methods still inadequately address essential issues such as input

saturation and ensuring reliable system performance, leaving these

critical areas as potential opportunities for future research.

Unlike the previous studies, this article proposes an encrypted

guaranteed-cost tracking control scheme for input-constrained

tracking system with unreliable communication, and the main

contributions are summarized as follows:

1. This article introduces an encrypted guaranteed-cost tracking

control scheme for AVRs under unreliable communication.

Compared with existing works, this is the first attempt to

integrate ADP with encryption techniques, addressing both

control performance and information security challenges in

vehicular networks.

2. The designed privacy-preserving control method introduces a

strategy to address eavesdropping attacks in control systems.

By applying consistent output masking and encryption

mechanisms at both the vehicle side and the cloud side, sensitive

data and critical control information are effectively protected

from potential breaches. This integrated approach ensures

secure data transmission while maintaining the integrity and

privacy of the control system.

3. A single-network structure with enhanced computational

efficiency is proposed to approximate the HJB equation.

Compared to conventional dual-network designs, the single-

network structure reduces computational complexity while

maintaining theoretical guarantees on weight error convergence

and system stability. Additionally, input saturation is explicitly

addressed through the adoption of a nonlinear value function,

further enhancing the robustness.

2 Preliminaries and problem
formulation

Consider an AVR operating in the X-Y plane, the position and

orientation of the vehicle’s mass center are represented by a posture

vector

Z : =







x(t)

y(t)

ϑ(t)






,

where x(t) and y(t) denote the horizontal and vertical positions,

respectively, and ϑ(t) denotes the heading direction measured
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counterclockwise from the X-axis. The vehicle’s motion is governed

by the following kinematic model:

Ż = Ku(t) =







cos(ϑ(t)) Y sin(ϑ(t))

sin(ϑ(t)) −Y cos(ϑ(t))

0 1







[

v(t)

w(t)

]

. (1)

Here, v(t) and w(t) represent the vehicle’s linear and rotational

velocities, respectively, while Y is the distance between the vehicle’s

mass center and its drive axle; and K is the Jacobian matrix that

links the control inputs to the vehicle’s motion. So far, the control

objectives are summarized in the following.

Control objective: For an AVR under unreliable

communication, design an ADP-based robust optimal controller

with secure information exchange to drive the vehicle along the

target, such that the following objectives are achieved:

1) Robust tracking control objective: For an AVR,

Zc : = [x(t); y(t);ϑ(t)] to track the desired orbit

Zd : = [xd(t); yd(t);ϑd(t)] under malicious cyberattacks on

the tracking process, as shown in Figure 1. Due to the occurrence

of an attack, a small deviation arises between the received signal

and the actual signal. This deviation, caused by malicious attacks,

is defined as Za : = [xa(t); ya(t);ϑa(t)]. We assume that Za and its

derivative are bounded.

With the minor difference Za caused by unreliable

communication, following the framework in Zhang et al.

(2022), we derive the tracking error system as

Że =







cos(ϑe(t))vd(t)+ ye(t)wd(t)− vc(t)+ γx(t)
sin(ϑe(t))vd(t)− xe(t)wd(t)− wc(t)+ γy(t)

wd(t)− wc(t)+ γϑ (t)






, (2)

where Ze : = [xe(t); ye(t);ϑe(t)] denotes the tracking error

posture, vd(t) and wd(t) are the desired linear and rotational

velocities, vc(t) and wc(t) are the control inputs of the vehicle,

and [γx(t); γy(t); γϑ (t)] captures the effect of cyberattacks on the

received signals and given by







γx(t)

γy(t)

γϑ (t)






=







cos(ϑc(t))ẋa + sin(ϑc(t))ẏa
− sin(ϑc(t))ẋa + cos(ϑc(t))ẏa

ϑ̇a






.

This model describes the dynamic behavior of the tracking error in

AVR control.

To facilitate system description and control implementation, let

us consider that z = [xe(t); ye(t);ϑe(t)], f (z) = [cos
(

ϑe(t)
)

vd(t);
sin

(

ϑe(t)
)

vd(t);wd(t)], g(z) = [−1, ye(t); 0,L − xe(t); 0, 1], and
u = [vc(t),wc(t)]. The system (Equation 2) is rewritten as

ż = f (z)+ g(z)u+ γ , (3)

where u is control input and satisfies the asymmetric constrained

set O =
{

u||u| ≤ h̄
}

. To follow the conventional optimal tracking

architecture, we can rewrite the reference trajectory as follows

żd = fd(zd)+ gd(zd)ud, (4)

where ud is the steady-state control input taking the following form

ud = g−1
d

(zd)(żd − fd(zd)), (5)

where g−1
d

(zd)gd(zd) = In, In denotes an n× n identify matrix.

Assumption 1. The unreliable communication γ (t) is bounded by

γ̄ , that is ‖γ̄ (t)‖ ≤ γ̄ , where γ̄ is positive constant.

2) Prevent eavesdropping objective: As shown in Figure 1, the cloud

handles monitoring, scheduling, optimization, and computation

tasks, while the local controller is responsible for distributing

control signals, albeit with limited data storage and processing

capabilities. The cyberattack considered here is eavesdropping,

where unauthorized interception of data during transmission

allows attackers to steal sensitive system information, such as

real-time control signals and operational states. To mitigate these

risks, encryption and decryption mechanisms are implemented to

safeguard the confidentiality and integrity of the transmitted data,

ensuring secure communication and enhancing the system’s overall

reliability.

3) Optimal control objective: Based on the optimal control

strategy, the AVR can achieve a compromise between performance

and cost when running along a target, such that

min J(z) =
∫ ∞

t
γ1γ̄

2 + T(z, u) ds, (6)

s.t. ż = f (z)+ g(z)u, u ∈ O,

where T(z, u) = zTQz + Ū(µ), which is the utility function with

feedback control µ = u−ud, γ1 is positive constant,Q = QT > 0,

and Ū(·) is a positive definite non-quadratic integrand function.

3 Iterative algorithm design

In this section, based on the preceding analysis, the tracking

problem is reformulated into a stabilization problem for the

error dynamics. To address this, a cryptography-based controller

is designed, which not only mitigates the impact of unreliable

communication but also ensures the security of information

transmission against eavesdropping.

3.1 Encryption and decryption algorithm
design

To effectively counter eavesdropping attacks on data

transmitted between the vehicle side and the cloud side, privacy-

preserving rules are designed for both sides. The encryption

and decryption formulas (Han et al., 2024) for each iteration are

provided in the following.

1) AVR to Cloud:

Encryption process: At the vehicle side, the data z to be sent

are extracted from Equation 3 and encrypted using Equation 7,

resulting in the encrypted data zr . This encrypted data are then

transmitted to the cloud. The encryption formula is as follows:















zs = a(t)z + Aξ (t), (7a)

a(t) = e

(

δ1
∑

∥

∥

∥
V

r
(z)(t−1)

∥

∥

∥

2

2

)

, (7b)

ξ (t) = ρ1e
−(t mod ρ2), (7c)

where a(t) and ξ (t) are encryption operators, δ1, ρ1, and ρ2 are

constants, and A is the channel assignment matrices. To simplify
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FIGURE 1

Proposed scheme for tracking process of AVRs.

the presentation of the method, it is assumed that Vs(z)(t − 1) is

already stored in the cloud. The value V(z) needs to be calculated

on the cloud side. Its design is detailed in Section 3.2 and it serves

as an essential component of the controller µ.

Decryption process: The cloud side receives the encrypted data

zr and decrypts it to recover the original data z. The decryption

formula is as follows:














z = zr − Aξ (t)

c(t)
, (8a)

c(t) = e

(

δ1
∑

∥

∥

∥
V

s
(z)(t−1)

∥

∥

∥

2

2

)

, (8b)

where c(t) is the counterpart of a(t). It is observed that the design

forms of the encryption operators a(t) and ξ (t), and encrypted

expressions are shared between the vehicle side and the cloud.

Furthermore, the parameters A, δ1, ρ1, and ρ2 are also shared.

2) Cloud to AVR:

Encryption process: After policy evaluation, the computed V(z)

is encrypted using Equation 9 and sent back to the vehicle.















Vs(z) = b(t)V(z)+ Bζ (t), (9a)

b(t) = e

(

δ2
∑

‖zr‖22
)

, (9b)

ζ (t) = ̺1e
−(t mod ̺2), (9c)

where b(t) and ζ (t) are encryption operators, δ2, ̺1, and ̺2 are

constants, and B is the channel assignment matrices.

Decryption process: At the vehicle side, the received encrypted

data Vr(z) is decrypted using Equation 10 to recover V(z) for policy

improvement.











V(z) = Vr(z)− Bζ (t)

d(t)
, (10a)

d(t) = e

(

δ2
∑

‖zs‖22
)

, (10b)

where d(t) is the counterpart of b(t). Similarly, the design forms of

the encryption operators b(t) and ζ (t), and encrypted expressions

are shared between the vehicle side and the cloud. Furthermore,

the parameters B, δ2, ̺1, and ̺2 are also shared. At this point,

a complete iteration of privacy-preserving processing has been

completed.

From the above encryption and decryption processes, it can be

observed that the introduced masking signals ξ (t) and ζ (t) and

the encryption formula designs effectively ensure privacy during

data transmission between the vehicle and the cloud. Notably, the

data transmitted over the network are not the raw values z and

V(z) but their encrypted counterparts, zs, zr , Vs(z), and Vr(z),

which effectively prevent unauthorized entities from intercepting

sensitive information.

3.2 Encrypted iterative algorithm design

The objective is to stabilize Equation 3 by constructing an

encrypted iterative algorithm so that minimizing the performance

index function, thereby reducing control costs and enhancing

system security. Recalling Equation 6, the performance index is

V(z) =
∫ ∞

t
(γ1γ̄

2 + zTQz + Ū(µ)) ds, (11)

where

Ū(µ) =
m

∑

i=1

2θ1

∫ ui−ud

0
h−1

(

ι

θ1

)

ridιi (12)

= 2θ1

∫ u−ud

0
h−1

(

ι

θ1

)

Rdι,
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where R = diag{[r1, ..., rm]} > 0, ι = [ι1, ..., ιm]
T . The function

h(·) is assumed to be a monotonic odd function satisfying h(0) = 0.

For the purposes of this article, h(·) is specifically selected as h(x) =
(

ez − e−z
)

/
(

ez + e−z
)

.

According to the optimal control theory, Equation 11 is

a Lyapunov function for the Equation 3 and the Hamiltonian

function can be derived as

H(z,µ,V(z)) = γ1γ̄
2+zTQz + Ū(µ)+ ∇V(z)

(

f (z)+ g(z)u+ γ
)

,

(13)

with ∇V(z) = ∂V(z)
∂z . On defining V∗(z) as the minimum value of

Equation 11, based on Bellman’s principle of optimality, we have

0 = H(z,µ,V∗(z)) (14)

= γ1γ̄
2 + zTQz + Ū(µ)+∇V∗(z)

(

f (z)+ g(z)u∗ + γ
)

,

and the optimal control u∗ is obtained from ∂H(z,µ,V
∗
(z))

∂u∗ = 0:

u∗ = θ1 tanh

(

− 1

2θ1
R−1gT(z)∇V∗(z)

)

+ ud. (15)

Substituting Equation 15 into Equation 12 yields

Ū(µ∗) =∇V∗T(z)g(z) tanh(D(z))+ θ21
m

∑

i=1

ln
(

1− tanh2(Di(z))
)

,

(16)

where D(z) = 1
2θ1

R−1gT(z)∇V∗(z) and µ∗ = u∗ − ud. Then, the

HJB equation can be derived as

H(z,µ∗,V∗(z)) =γ1γ̄ 2 + zTQz +∇V∗(z)
(

f (z)+ γ
)

(17)

+ θ21
m

∑

i=1

ln
(

1− tanh2(Di(z))
)

= 0.

As highlighted in the preceding analysis, obtaining the optimal

controller in Equation 15 necessitates solving the HJB Equation 17,

a task well-known for its considerable computational and analytical

challenges. To overcome this challenge, an iterative algorithm based

on ADP is employed to obtain an approximate solution. The details

of this iterative algorithm are presented in Algorithm 1.

Lemma 1. By utilizing the encrypted PI process as described in

Algorithm 1, which incorporates encryption and decryption steps

for secure control of the tracking error dynamics in an AVR, the

resulting control uς ensures the asymptotic stability of the system

dynamics. Additionally, Vς (z) will converge to the optimal value

function V∗(z) as ς → ∞, ensuring that uς converges to the

optimal control u∗.

Proof. Initially, without iterations, the control u1 is considered

admissible. For ∀uς produced during iterations, consider the

Lyapunov function Vς (z), which satisfies

V̇ς (z) = ∇Vς (z)ż

= ∇Vς (z)
(

f (z)+ g(z)uς + γ
)

. (20)

Input: For iteration index ς = 1, initial

admissible control policy u1, and

computation precision o.

1 repeat

2 Encryption process: State zς is encrypted into

zsς using Equation 7.

3 Decryption process: The received data zrς is

decrypted into zς using Equation 8.

4 Policy Evaluation: Solving the Vς(z) by

γ1γ̄
2 + zTQz+ Ū(µ)+∇Vς(z)

(

f(z)+ g(z)uς + γ
)

= 0.

(18)

5 Encryption process: Vς is encrypted into Vs
ς

using Equation10.

6 Decryption process: The received data Vr
ς is

decrypted into Vς using Equation 9.

7 Policy Improvement: Updating uς+1 as

uς+1 = −θ1 tanh
(

1

2θ1
R−1gT(z)∇Vς(z)

)

+ ud. (19)

Set ς = ς + 1.

8 until ‖Vς+1(z)− Vς(z)‖ ≤ o;

9 return uς,Vς(z).

Algorithm 1. Encrypted guaranteed cost policy iteration algorithm.

According to HJB Equation 17, we can drive

∇Vς (z)
(

f (z)+ g(z)uς + γ
)

= −γ1γ̄ 2 − zTQz − Ū(µς ), (21)

where µς = uς − ud. Then, substituting Equation 21 into

Equation 22 yields

V̇ς (z) = −γ1γ̄ 2 − zTQz − Ū(µς ) ≤ 0. (22)

Therefore, the iteration process ensures that the error dynamics

remain asymptotically stable. Moreover, policy improvement is

achieved by minimizing the associated value function, consistent

with the Kleinman method, guaranteeing convergence. As the

iteration count ς → ∞, Vς (z) → V∗(z), and uς → u∗ hold. This
concludes the proof.

Based on Lemma 1, the iterative process, enhanced with secure

encryption and decryption, converges, leading to optimal control

as the approximation errors diminish.

4 Critic neural network design

In this section, this study employs the fundamental update

equations of PI to design a NN, utilizing the critic neural network

(CNN) to approximate the solution of the HJB Equation 17

during each iteration step. Therefore, based on the universal

approximation property of NNs, there exist ideal weightsW∗ such
that the ideal value function can be approximated as

V∗(z) = W∗Tϕ(z)+ ǫ1(z), (23)
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where ϕ(z) ∈ R
α denotes activation functions and α is the number

of neurons. Utilizing Equation 23, HJB Equation 17 becomes

γ1γ̄
2 + zTQz + (W∗T∇ϕ(z)+ ∇ǫT1 (z))

(

f (z)+ γ
)

(24)

+ θ21
m

∑

i=1

ln
(

1− tanh2(Hi(z))
)

= 0,

where

Hi(z) = H1i(z)+H2i(z) (25)

= 1

2θ
R−1gT(z)∇ϕT(z)W∗ + 1

2θ1
R−1gT(z)∇ǫT1 (z),

with ∇ϕ(z) = ∂ϕ1
∂z and ∇ǫ1(z) = ∂ϕ

∂z . Therefore, by defining

residual error ǫH , Equation 24 can be rewritten as

γ1γ̄
2 + zTQz +W∗T∇ϕ(z)

(

f (z)+ γ
)

+ ǫH

+ θ21

m
∑

i=1

ln
(

1− tanh2(H1i(z))
)

= 0, (26)

where

ǫH = ∇ǫT1 (z)
(

f (z)+ γ
)

− θ21
m

∑

i=1

1

O1i(z)
tanh(O2i(z))

(

1− tanh2(O2i(z))
)

, (27)

with O1i(z) ∈ [1 − tanh2(Di(z)), 1 − tanh2(H1i(z))], O2i(z) ∈
[Di(z),H1i(z)]. Note that if the number of hidden layer neurons α

is sufficiently large, the residual error ǫH will approach zero. Based

on the Lipschitz assumption of the system dynamics, this ǫH is

bounded within a compact set, that is, ‖ǫH‖ ≤ ǭH . Therefore, based

on Equation 23 the ideal optimal control is

u∗ = θ1 tanh

(

− 1

2θ1
R−1gT(z)∇ϕTW∗

)

+ ud + ǫ2 (28)

where ǫ2 = − 1
2

∑m
i=1(1−tanh2(ψi))R

−1gT(z)∇ǫ1,ψi ∈ [Di,H1i].

Since the ideal weight is unknown, the approximated value

function is

V̂(z) = Ŵ
T
ϕ(z), (29)

where Ŵ is approximated value ofW∗. Then, we can get

û = −θ1 tanh
(

1

2θ1
R−1gT(z)∇ϕT(z)Ŵ

)

+ ud. (30)

Thus, approximated Hamiltonian function is

H(z, µ̂, V̂(z)) = γ1γ̄
2 + zTQz + Ŵ

T∇ϕ(z)
(

f (z)+ γ
)

+ θ21

m
∑

i=1

ln
(

1− tanh2(Ĥ1i(z))
)

: = ǫ̂H , (31)

where ǫ̂H is the residual error due to NN approximation error.

Furthermore, let us consider E = 1
2 ǫ̂

T
H ǫ̂H , and to ensure that

Ŵ converge toward the optimal weights W∗, the weight update

formula (Zhang et al., 2018) is

˙̂
W1 =− η τ

̟ 2
ǫ̂H + η

2
κ∇ϕ1

(

g(I −M(Ĥ1))g
T
)

∇Va (32)

+ η
(

− θ1∇ϕgS
τT

̟
Ŵ− (K2 −K1τ

T)Ŵ
)

,

where η is learning rate, τ = ∇ϕ(z)
(

f (z)+g(z)û+γ
)

,̟ = τTτ+1,

and K1 and K2 are a tuning matrix. M = diag{tanh2(Ĥ1i)}, S =
sgn(Ĥ1)− tanh(Ĥ1). Based on the Lemma 2 by Zhang et al. (2018),

Va denotes Lyapunov function, and if ∇Va

(

f (z) + gû + γ
)

> 0,

then κ = 0, else κ = 1. Defining W̃ = W∗ − Ŵ, we obtain

˙̃
W = −ηττTW̃+ η τ

̟
(θ1W̃

T∇ϕgS+ ǫ̆H)

− η

2
κ∇ϕ1g

(

I −M(Ĥ1)
)

gT∇Va (33)

+ ηθ1∇ϕgS
τT

̟
Ŵ+ η(K2 −K1τ

T)Ŵ,

with ǫ̆H = θ1W
T∇ϕg

(

sgn(H1) − sgn(Ĥ1)
)

+ 2θ21 H̄ − ǫH , H̄ =
∑m

i=1 ln
1+exp(−2H1i)

1+exp(−2Ĥ1i)
.

Theorem 1. For the optimal control policy described in

Equation 30, the weight tuning law of the CNN is determined by

the update formula provided in Equation 32. Under this design,

the error dynamic system z and the weight errors W̃ are uniformly

ultimately bounded (UUB).

Proof. Define the Lyapunov function as L = L1 + L2, where

L1 =
1

2
W̃

T
η−1W̃, L2 = Va(z). (34)

First, along Equation 33, the derivative of L2 is

L̇1 =W̃
T
η−1 ˙̃

W1 (35)

=W̃
T
η−1

{

− ηττTW̃+ η τ
̟

(θ1W̃
T∇ϕgS+ ǫ̆H )−

η

2
κ∇ϕ1

(

g(I −M(Ĥ1))g
T
)

∇Va

+ ηθ1∇ϕgS
τT

̟
Ŵ+ η(K2 −K1τ

T )Ŵ

}

=− W̃
T
ττTW̃+ θ1W̃

T∇ϕgS τ
T

̟
W̃

T + ǫ̆H
τT

̟
W̃

T − 1

2
κ∇V

T
a g

(

I −M(Ĥ1)
)

gT∇ϕTW̃

+ θ1W̃
T∇ϕgS τ

T

̟
W

∗ − θ1W̃
T∇ϕgS τ

T

̟
W̃+ W̃

T
(K2 −K1τ

T )Ŵ

=− W̃
T
ττTW̃+ ǫ̆H

τT

̟
W̃

T − 1

2
κ∇V

T
a g

(

I −M(Ĥ1)
)

gT∇ϕTW̃

+ θ1W̃
T∇ϕgS τ

T

̟
W

∗ + W̃
T
(K2 −K1τ

T )Ŵ

=−P
T
AP+P

T
B− 1

2
κ∇V

T
a g

(

I −M(Ĥ1)
)

gT∇ϕTW̃,

where

P =
[

W̃
T
τ

W̃
T

]

,A =
[

I − 1
2K

T
1

− 1
2K1 K2

]

,

B =
[

− 1
̟
ǫ̆H

(θ1W̃
T∇ϕgS τT

̟
+K2 −K1τ

T)W∗

]

.
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Supposing that ‖W∗‖ ≤ W̄1, W̄1 > 0, and due to ǫ̆H is bound,

‖B‖ ≤ B̄, B̄ > 0. Therefore, L̇1 is

L̇1 ≤− λmin(A)‖P‖2 + B̄‖P‖ − 1

2
κ∇VT

a g
(

I −M(Ĥ1)
)

gT∇ϕTW̃.

(36)

Owing to κ of L2, L̇ is divided into two parts. For κ = 0, we

have

L̇ ≤∇VT
a ż − λmin(A)‖P‖2 + B̄‖P‖. (37)

From a study by Rudin et al. (1964), we can know ∇VT
a ż <

−‖∇Va‖zm < 0, ‖z‖ ≤ zm, zm > 0, thus, L̇ becomes

L̇ ≤− ‖∇Va‖zm − λmin(A)

(

‖P‖ − B̄

2λmin(A)

)2

+ B̄
2

4λmin(A)
.

Moreover, L̇ < 0 if

‖∇Va‖ >
B̄
2

4zmλmin(A)
, (38)

or

‖P‖ > B̄

2λmin(A)
. (39)

According to Equation 39, we can derive

‖W̃‖ > 2B̄√
5λmin(A)

. (40)

For κ = 1, L̇ is

L̇ ≤ ∇VT
a ż − λmin(A)‖P‖2 + B̄‖P‖

− 1

2
κ∇VT

a g
(

I −M(Ĥ1)
)

gT∇ϕTW̃ (41)

≤ ∇VT
a (f + gû+ γ )− λmin(A)‖P‖2 + B̄‖P‖

− 1

2
∇VT

a g
(

I −M(Ĥ1)
)

gT∇ϕTW̃.

Regarding tanh(H1)− tanh(Ĥ1) : = H̆, using the Taylor series,

we know

H̆ = 1

2θ1

(

I −M(Ĥ1)
)

gT∇ϕTW̃+ o
(

(H1 − Ĥ1)
2
)

,

where o
(

(H1 − Ĥ1)
2
)

is the higher order term and satisfies

‖o
(

(H1 − Ĥ1)
2
)

‖
≤ ‖H̆‖ + 1

2θ1

(

I −M(Ĥ1)
)

gT∇ϕTW̃

≤ ‖ tanh(H1)‖ + ‖ tanh(Ĥ1)‖ + 1
2θ1

(

I −M(Ĥ1)
)

gT∇ϕTW̃
(42)

=
(
∑m

i=1 | tanh(H1)|2
)
1
2

+
(
∑m

i=1 | tanh(Ĥ1)|2
)
1
2 + 1

2θ1

(

I −M(Ĥ1)
)

gT∇ϕTW̃

≤ 2
√
m+ 1

θ1
ḡϕ̄‖W̃‖,

where ‖g‖ ≤ ḡ, ḡ > 0 and ‖∇ϕ‖ ≤ ϕ̄, ϕ̄ > 0.

Recalling Equations 28–30, the term in Equation 41 with

respect to ∇Vag can be written as

∇VT
a

(

gû− 1

2
g
(

I −M(Ĥ1)
)

gT∇ϕTW̃
)

=− θ1∇VT
a g tanh(H1)+ θ1∇VT

a go
(

(H1 − Ĥ1)
2
)

=∇VT
a gu

∗ − ∇VT
a ǫ2 + θ1∇VT

a go
(

(H1 − Ĥ1)
2
)

. (43)

Until now, Equation 41 can be rewritten as

L̇ ≤∇V
T
a (f + gu∗ + γ )− λmin(A)‖P‖2 + B̄‖P‖ − ∇V

T
a ǫ2 + θ1∇V

T
a go

(

(H1 − Ĥ1)
2
)

≤‖∇Va‖‖f + gu∗‖ + ‖∇Va‖‖γ ‖ − λmin(A)‖P‖2 + B̄‖P‖ − ∇V
T
a ǫ2

+ θ1∇V
T
a go

(

(H1 − Ĥ1)
2
)

≤− λmin(A)‖P‖2 + B̄‖P‖ − λmin(C)‖∇Va‖2 + ǭ2 ḡ‖∇Va‖ + 2θ1
√
mḡ‖∇Va‖

+ γ̄ ‖∇Va‖ + ḡ2ϕ̄‖∇Va‖‖W̃‖

= − λmin(A)‖P‖2 + B̄‖P‖ − λmin(C)‖∇Va‖2 + ω‖∇Va‖ + ḡ2ϕ̄‖∇Va‖‖W̃‖,
(44)

where ‖ǫ2‖ ≤ ǭ2, ǭ2 > 0. Let ℓ1 and ℓ2 satisfy 0 < ℓ1 < 1,
0 < ℓ2 < 1, and ℓ1 + ℓ2 = 1. Then, Equation 44 can be rewritten
as

L̇ ≤− 4ℓ2λmin(C)λmin(A)− ḡ4ϕ̄2

4ℓ2λmin(C)

(

‖P‖ − 2ℓ2λmin(C)B̄

4ℓ2λmin(C)λmin(A)− ḡ4ϕ̄2

)2

− ℓ1λmin(C)

(

‖∇Va‖ −
ω

2ℓ1λmin(C)

)2

− ℓ1λmin(C)

(

‖∇Va‖ −
ḡ2ϕ̄

2ℓ1λmin(C)
‖W̃‖

)2

+ ℓ2λmin(C)B̄
2

4ℓ2λmin(C)λmin(A)− ḡ4ϕ̄2
+ ω2

4ℓ1λmin(C)

=− ω1

4ℓ2λmin(C)

(

‖P‖ − 2ℓ2λmin(C)B̄

ω1

)2

− ℓ1λmin(C)

(

‖∇Va‖ −
ω

2ℓ1λmin(C)

)2

− ℓ1λmin(C)

(

‖∇Va‖ −
ḡ2ϕ̄

2ℓ1λmin(C)
‖W̃‖

)2

+ ω2 .

Therefore, L̇ < 0 if

‖∇Va‖ >
ḡ2ϕ̄

2ℓ1λmin(C)
+

√

ω1

ℓ1λmin(C)
, (45)

or

‖P‖ >2ℓ2λmin(C)B̄

ω1
+ 2

√

ℓ2λmin(C)ω2

ω1
. (46)

Similar to Equation 40, we can derive

‖W̃‖ >4ℓ2λmin(C)B̄√
5ω1

+ 4

√

ℓ2λmin(C)ω2

5ω1
. (47)

By considering the two cases, κ = 0 and κ = 1, and

based on the derived results as expressed in Equations 38–40 and

Equations 45–47, we can conclude that the function ∇Va and the

error weights W̃ are UUB. Furthermore, knowing that Va is in

polynomial form, it follows that the error z is also UUB.

Remark 1. The algorithm designed in this article is depicted

in Figure 2, where Algorithm 1 is implemented using a CNN.

The CNN generates the estimated value function V̂, which is

subsequently used to derive the approximated optimal control law

û based on Equation 30. In contrast to the constrained optimal

control designs presented in the studies by Zou and Zhang
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FIGURE 2

Illustration of tracking for AVRs subject to privacy protection.

FIGURE 3

AVR driving trajectories. (A) The X-Y plot of tracking trajectories. (B–D) Tracking trajectories. (E–G) Tracking errors.

(2023); Chen et al. (2021), this work integrates privacy-preserving

mechanisms during information transmission by leveraging

encryption and decryption techniques. This incorporation not

only safeguards data confidentiality but also enhances the overall

security and reliability of the proposed algorithm.

5 Simulation results

To analyze the tracking performance of the AVR, we

conduct simulations based on a predefined tracking error

dynamic model. The tracking error dynamics Że is modeled

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1549414
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al. 10.3389/fnbot.2025.1549414

FIGURE 4

The constrained control input.

as






ẋe
ẏe
ϑ̇e






=







cos(ϑe)vd
sin(ϑe)vd

wd






+







−1 ye
0 Y− xe
0 −1






u+ γ , (48)

where Y represents the distance from the vehicle’s center

of mass to the rear axle, set to Y = −1.2m in this

article. The desired reference trajectory is initialized with the

state:

[xd(0), yd(0),ϑd(0)]
T = [0, 0, 0]T ,

and the vehicle’s trajectory is initialized with the

state:

[xc(0), yc(0),ϑc(0)]
T = [−2.5, 2.5,−0.5]T .

Consequently, the initial value of error

denotes

[xe(0), ye(0),ϑe(0)]
T = [2.5,−2.5, 0.5]T .

The reference trajectory’s desired velocities are vd = 0.5 and wd =
0.04. Under the input constraints, h̄ = 1.5, meaning the constraint

range is [−1.5, 1.5]. The unreliable communication γ is defined

as

γ (t) = σ







sin(σ )xe
cos(σ )ye
sin(σ )xeye






,

where σ is a random variable uniformly distributed in σ ∈
[−0.1, 0.1]. For the performance evaluation, we define the cost

function using the weighting matrices

Q =







10 0 0

0 10 0

0 0 10






, R =

[

1.5 0

0 0.5

]

.

The activation function vector of CNN is ϕ(z) =
[

z41 , z
4
2 , z

4
3 ,

z21z
2
2 , z

2
2z

2
3 , z

2
1z

2
3 , z

2
1z2, z

2
2z3, z1z

2
2 , z

3
3 , sin(z1), sin(z2), sin(z3), cos(z1),

cos(z2), cos(z3)
]T
. ρ1 = 1.1, ρ2 = 1.03, ̺1 = 3.2, ̺2 = 1.08,

δ1 = 0.3× 10−5, δ2 = 0.4× 10−2, A = 1, and B = 1.

Using the proposed method, Figure 3A illustrates the two-

dimensional trajectory of the AVR. The vehicle quickly adjusts

its direction and begins tracking the reference trajectory with

FIGURE 5

Encrypted error and decrypted error.

FIGURE 6

Encrypted value function and decrypted value function.

good accuracy. After the initial phase, the vehicle follows the

desired trajectory smoothly and closely. Figures 3B–G depict the

tracking performance and error, demonstrating that the position

error gradually reduces to zero, while the directional error also

diminishes to zero, effectively ensuring precise position tracking

throughout the process.

Figure 4 displays the evolution of the designed controller

during the vehicle’s tracking process. The dashed lines indicate the

upper and lower bounds of the input constraints, which are set to

[−1.5, 1.5]. The privacy-preserving characteristics of the proposed

scheme are illustrated in Figure 5. It is evident that masking

the vehicle-side output z effectively safeguards its privacy from

potential attackers. Meanwhile, as shown in Figure 6, masking on

the cloud side further prevents the leakage of critical information

related to the designed control strategy. Therefore, these results

ensure robust privacy protection during data transmission.
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6 Conclusion

This study develops an encrypted guaranteed-cost tracking

control scheme to address the challenges of information security

and computational efficiency in AVR systems using the adaptive

dynamic programming technique. By leveraging ADP and

integrating encryption mechanisms between the vehicle and the

cloud, the proposed method ensures stable tracking performance

under unreliable communication. The input constraints are

successfully managed using a nonlinear value function, while

the CNN facilitates an efficient solution to the HJB equation.

Simulation results from a case study confirm the stability and

effectiveness of the designed algorithm, demonstrating its potential

for real-world applications in AVR networks. Future work will

focus on ensuring the security of cloud-based computations

by processing encrypted data, further enhancing the safety and

reliability of cloud operations in vehicular network systems.
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