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Recently, electroencephalogram (EEG) based on motor imagery (MI) have gained 
significant traction in brain-computer interface (BCI) technology, particularly for 
the rehabilitation of paralyzed patients. But the low signal-to-noise ratio of MI 
EEG makes it difficult to decode effectively and hinders the development of BCI. 
In this paper, a method of attention-based multiscale EEGNet (AMEEGNet) was 
proposed to improve the decoding performance of MI-EEG. First, three parallel 
EEGNets with fusion transmission method were employed to extract the high-
quality temporal-spatial feature of EEG data from multiple scales. Then, the efficient 
channel attention (ECA) module enhances the acquisition of more discriminative 
spatial features through a lightweight approach that weights critical channels. The 
experimental results demonstrated that the proposed model achieves decoding 
accuracies of 81.17, 89.83, and 95.49% on BCI-2a, 2b and HGD datasets. The 
results show that the proposed AMEEGNet effectively decodes temporal-spatial 
features, providing a novel perspective on MI-EEG decoding and advancing future 
BCI applications.
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1 Introduction

Brain-computer interface (BCI) is an innovative interdisciplinary research field that 
combines biomedical science, neuroscience, and human-computer interaction. Its aim is to 
establish a direct bidirectional communication channel between the brain and external 
devices, such as robotic arms and humanoid robots, bypassing the peripheral nerves and 
thereby enhancing the quality of life for individuals with disabilities (Wolpaw et al., 2020; 
Mane et al., 2020; Robinson et al., 2021).

Compared to evoked electroencephalography (EEG) (Gefferie et al., 2023), motor imagery 
(MI) EEG is inherently spontaneous, which provides unique advantages in BCI technology by 
enabling control without external environmental interference (Sharma et al., 2023). In the 
process of collecting MI EEG signals, researchers have found that different motor imagery 
tasks activate distinct brain regions (Eaves et  al., 2024). During both ipsilateral and 
contralateral movements, electrical signals from the sensorimotor cortex exhibit varying 
amplitude responses in the frequency bands of α (8–12) Hz and β (13–30) Hz, known as event-
related synchronization (ERS) and event-related desynchronization (ERD) respectively (Tariq 
et  al., 2020). Leveraging these phenomena, researchers have developed various feature 
extraction methods in the temporal, frequency, and spatial domains, including short-time 
Fourier transform (STFT), continuous wavelet transform (CWT), and common spatial pattern 
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(CSP), along with other variant algorithms (Shayeste and Asl, 2023; 
Zhang et  al., 2020; You et  al., 2020). Additionally, a variety of 
classification algorithms such as artificial neural networks (ANN), 
support vector machines (SVM), and Bayesian classifiers have been 
employed (Zhang et al., 2019; Luo et al., 2020; Tortora et al., 2020). 
These traditional machine learning methods have the poor 
performance for EEG decoding due to their limited feature extraction 
capability. For example, while CSP focuses on extracting spatial 
domain features, it is influenced by noise and artifacts, which can 
obscure important information. In addition, it also overlooks the 
temporal features of EEG signals.

In recent years, deep learning has played a significant role in 
improving EEG-based MI-BCI. Among these deep learning 
architectures, convolutional neural networks (CNN) are widely used 
for their ability to learn features from EEG datasets, demonstrating 
strong performance in the prediction and classification of various EEG 
signal (Schirrmeister et al., 2017; Ozcan and Erturk, 2019; Wang et al., 
2019). For instance, Liu et al. (2023) proposed an end-to-end CNN 
model named SincMSNet, which extracts features through spatial 
convolutions and temporal logarithmic variance. Lawhern et  al. 
(2018) introduced EEGNet, a deep learning framework adaptable to 
various EEG signals. This framework combines deep and shallow 
convolutional structures, enabling training on limited datasets while 
achieving high decoding accuracy and reduced training time, thereby 
enhancing model efficiency and generalization capability, making it 
an ideal tool for processing EEG signals. Some researchers use multi-
scale method to learn EEG features. Liu et  al. (2022) proposed a 
network designed to derive a multi-scale spectral representation of 
EEG data. Zhang et al. (2021) employed the EEG-inception method 
to extract multi-scale EEG features through augmentation techniques. 
Amin et al. (2021) utilized different convolution kernels for multi-
scale EEG feature extraction and incorporated BiLSTM to enhance the 
modeling effectiveness in the time domain. While these methods 
leverage various convolution kernels for multi-scale feature extraction, 
they face limitations in the number of scales extracted. Adding more 
scales can significantly increase the number of parameters, resulting 
in models that are not lightweight.

Models based on attention mechanisms have gained popularity in 
EEG decoding due to their ability to selectively process specific 
information while filtering out irrelevant data. Many researchers have 
integrated attention mechanisms into deep learning to focus on 
important decoding information, thereby enhancing MI-EEG 
decoding performance. Xie et al. (2022) proposed a deep learning 
structure based on the multi-head self-attention mechanism for EEG 
classification. Additionally, Altaheri et al. (2022) combined attention 
mechanisms with temporal convolutional networks to emphasize the 
most valuable features. These methods demonstrate better 
performance with attention mechanisms, highlighting that focusing 
on important EEG signals is an effective way to enhance the accuracy 
and robustness of EEG decoding.

In light of the above, to enhance the robustness and decoding 
performance of MI-EEG decoding, an attention-based multiscale 
EEGNet (AMEEGNet) for effective MI-EEG decoding is proposed. 
This model effectively decodes MI EEG across multiple scales and 
further increases the decoding scales through fusion transmission, all 
while introducing only a minimal number of additional parameters. 
The lightweight ECA mechanism significantly improves performance 
without incurring substantial overhead. AMEEGNet enhances the 

decoding capabilities of EEGNet and can be seamlessly integrated into 
networks that utilize EEGNet, serving as a replacement to elevate 
overall decoding performance. This article highlights four main 
contributions and innovations as follows:

 1) To address the issue of low performance in temporal-spatial 
EEG decoding, a multi-scale EEGNet is utilized to extract 
features across various scales, enabling the model to learn 
temporal-spatial features from different EEG domain. This 
approach significantly boosts the extraction capabilities of the 
model, allowing it to capture both temporal and spatial features 
at multiple scales. As a result, it deepens the understanding of 
complex EEG signals and improves the feature extraction and 
generalization abilities of the model.

 2) To further enhance the multi-scale decoding effect of the 
model while avoiding complex architecture, fusion 
transmission is employed to comprehensively analyze EEG 
signal features across different temporal and spatial scales. 
Fusion transmission requires parallel networks to facilitate 
parameter sharing, thereby improving the degree of multiscale 
interaction. This innovative method significantly expands 
feature extraction capabilities of the model, providing a more 
comprehensive representation of EEG activity. As a result, this 
approach overcomes the limitations of traditional architectural 
methods and enhances the accuracy of EEG signal decoding.

 3) To enhance the model’s ability to focus on important channels 
while reducing computational burden, the efficient channel 
attention (ECA) mechanism is employed (Wang et al., 2020). 
This lightweight approach emphasizes key channels, facilitating 
the acquisition of more discriminative spatial features. By 
assigning greater weights to critical EEG signal features, this 
method avoids complex dimensionality reduction and 
enhancement processes, achieving efficient and lightweight 
feature extraction.

 4) The model achieved excellent results on the BCI Competition 
IV 2a, 2b and HGD datasets. Additionally, visualization 
techniques were employed to analyze the model, enhancing 
interpretability and comprehensive validation of the proposed 
method’s performance.

2 Methods

2.1 Motor imagery datasets

BCI Competition IV 2a dataset is a key resource for research in 
MI-EEG decoding, including four MI classification tasks. It includes 
EEG recordings from 22 electrodes positioned on nine participants 
(Brunner et al., 2008), sampled at 250 Hz and filtered within the range 
of 0.5 Hz to 100 Hz. The four MI classification tasks involve: left hand, 
right hand, foot, and tongue. Each participant completed two sessions 
on separate days, with each session comprising six runs, and each run 
containing 48 trials. One of these sessions is designated for model 
training, while the other serves for evaluation.

BCI Competition IV 2b dataset is designed for two specific 
classification tasks and contains EEG signals collected from three 
electrodes positioned on nine participants (Leeb et al., 2008). It shares 
the same sampling frequency of 250 Hz and filtering range of 0.5 Hz 
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to 100 Hz. The two MI classification tasks focus on left hand and right 
hand. Each subject engaged in five sessions; the first two sessions 
include 120 trials each, while the last three sessions comprise 160 trials 
each. The initial three sessions are utilized for training the model, 
while the final two sessions are reserved for evaluation.

The High Gamma Dataset (HGD) is designed for a four-class MI 
classification task (Schirrmeister et  al., 2017). It includes EEG 
recordings from 44 electrodes positioned on 14 healthy subjects, with 
each subject participating in 13 runs. The four MI classification tasks 
consist of left hand, right hand, foot, and rest (no movement). For each 
subject, the training set comprises approximately 880 trials (all runs 
except the last two), while the test set includes around 160 trials (the 
last two runs). The original sampling rate for HGD is 500 Hz; however, 
for consistency with similar research involving BCI Competition IV 
2a and 2b, the dataset was resampled to 250 Hz.

2.2 Data preprocessing

In MI-EEG decoding, data preprocessing is typically employed to 
remove noise and artifacts generated during experiments, thereby 
enhancing signal quality and ensuring the accuracy of MI-EEG 
decoding. However, this process can lead to data loss. AMEEGNet is 
an end-to-end lightweight network that does not require EEG noise 
or artifact removal, nor bandpass filtering, the only preprocessing 
method employed is data segmentation. This approach allows 
AMEEGNet model to learn relevant signal features directly from the 
raw data, avoiding potential data loss associated with preprocessing 
methods. Figure 1 illustrates the timing scheme for a motor imagery 
EEG (MI-EEG) acquisition experiment. Data segmentation focuses 
on the “cue” and “motor imagery” phases, which are critical for 
capturing signals from the brain (Sharma et al., 2023). According to 
the collection processes of datasets (Schirrmeister et al., 2017; Brunner 
et al., 2008; Leeb et al., 2008; Ohyver et al., 2019), the “cue” and “motor 
imagery” phases are segmented as follows: the BCI IV 2a dataset is 
segmented over the time interval [1.5 s, 6 s], resulting in 1,125 
samples; the BCI IV 2b dataset is segmented over the time interval 
[0 s, 4 s], resulting in 1,000 samples; and the HGD dataset is also 
segmented over the time interval [0 s, 4 s], yielding 1,000 samples.

2.3 Overall structure of AMEEGNet

To enhance feature extraction performance and improve the 
ability to focus on important features for motor imagery EEG 

(MI-EEG) decoding, thereby increasing robustness and decoding 
accuracy of model, an attention-based multiscale EEGNet 
(AMEEGNet) is proposed. This framework consists of three key 
blocks for MI-EEG decoding: block 1 is parallel EEGNet block; block 
2 is efficient channel attention block; block 3 is classification block.

In parallel EEGNet block, raw EEG data is direct input into three 
parallel EEGNet architectures, each with different parameters, 
allowing for the extraction of temporal-spatial features from raw EEG 
signals at multiple scales; the ECA block is a lightweight attention 
mechanism that assigns varying weights to different channels, 
optimizing network parameters adaptively based on feature 
importance; the classification block includes a flatten layer followed 
by two dense layers. Finally, the softmax activation function is used to 
classify MI-EEG tasks. Figure 2 is the overall structure of AMEEGNet.

2.3.1 Parallel EEGNet block
In this work, the block consists of three parallel EEGNet 

architectures, each extracting temporal-spatial features from EEG data 
at multiple scales. All three EEGNets process the same temporal-
domain and spatial-domain EEG signals. The input of them is a 
two-dimensional EEG signal. EEGNet includes three convolutional 
layers: the first layer is a 2D convolutional layer that enables the model 
to flexibly extract features relevant to the decoding task. The second 
layer is a depthwise convolutional layer that allows the model to learn 
features independently for each channel, effectively capturing the 
complex relationships between different channels and enhancing 
decoding accuracy. The third layer is a separable convolutional layer 
that helps the model extract more representative features through the 
combination of various attributes, enabling it to learn rich features 
with fewer parameters.

The first layer performs a temporal convolution with F1i filters of 
size (1, Ki), where the i = 1, 2, 3, represents the three parallel EEGNet 
architectures, and Ki indicates the filter length for EEGNet i along the 
time axis. F1i represents the temporal feature maps output by this layer 
of EEGNet i. Specifically, F11 = 4 and K1 = 16; and F12 = 2 × F11, 
F13 = 2 × F12, K2 = 2 × K1, and K3 = 2 × K2. It can extract EEG signal 
features on three time scales and obtain more feature maps in those 
time scales. The depthwise convolutional layer with F1i × D filters of 
size (C, 1), where the C is the number of EEG channels and the D is 
the number of filters associated with each temporal feature map from 
the previous layer, empirically set to 2. The final layers utilize F2i filters 
of size (1, 16), where the F2i = F1i × D. These varying parameters 
enable the extraction of different lengths of temporal features and 
multi-dimensional spatial features, resulting in effective multi-scale 
feature extraction. Batch normalization (BN) and activation layers of 
exponential linear unit (ELU) are added after the second and third 
layers to normalize outputs and introduce non-linearity. This enhances 
model stability and improves the learning of complex patterns in the 
EEG signals.

More importantly, although parallel architectures can enhance the 
effectiveness of multi-scale feature extraction, they also have limited 
effect in feature extraction. Continuing to increase parallel 
architectures may lead to gradient disappearance or explosion, raising 
the risk of overfitting. Therefore, to improve multi-scale feature 
extraction performance while avoiding complex model architectures, 
fusion transmission is employed to comprehensively analyze EEG 
signal features across various temporal and spatial scales. The output 
from the 2D convolutional layer of EEGNet 1 is combined with the 

FIGURE 1

A timing scheme for a motor imagery EEG acquisition experiment.
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output from the 2D convolutional layer of EEGNet 2 and fed into the 
depthwise convolutional layer of EEGNet 2. This allows the depthwise 
convolutional layer to analyze features with two different filter lengths 
and temporal feature maps, further facilitating multi-scale feature 
extraction. Subsequently, the outputs from the depthwise 
convolutional layers of EEGNet 2 and EEGNet 3 are combined to 
create a feature that integrates multi-scale information, serving as the 
input to the separable convolutional layer of EEGNet 3. Fusion 
transmission enables a deeper integration of multi-scale features, 
allowing the layers to extract and analyze a broader range of EEG 
signals. With this method, the three parallel EEGNet architectures put 
temporal features at different scales into more depthwise and separable 
convolution layers with varying filters. This approach allows for the 
learning of more diverse scale features compared to models without 
fusion transmission, thereby enhancing the effectiveness of multi-
scale feature extraction.

2.3.2 Efficient channel attention block
In recent studies, inspired by the successful use of attention 

mechanisms for channel selection in MI-EEG processing as 
demonstrated in MI-EEG decoding (Liu et al., 2022; Altaheri et al., 
2022), a new model has been proposed that utilizes the efficient 
channel attention (ECA) module for channel selection. The core 
idea of the ECA module is to capture inter-channel dependencies 
through 1D convolution. Compared to traditional attention 
mechanisms, the ECA module bypasses complex dimensionality 
reduction and expansion processes, resulting in a more efficient and 
lightweight design. After the depthwise convolutional layer, the 
output consists of linear combinations of the original channels. This 
newly formed feature map, treated as a channel, retains valuable 
information derived from the original EEG signals. The ECA 
focuses on those feature maps. The architecture of the ECA module 
is illustrated in Figure  3. The following section will explain the 
working mechanism of the ECA module and demonstrate how it 
achieves its objectives.

The output of parallel EEGNet block serves as the input feature X, 
the ECA block applies global average pooling (GAP) across the spatial 
dimensions to generate a channel descriptor, as shown in Equation 1:

 
( )

1 1

1GAP
H W

h w
z X X

H W = =
= =
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(1)

The result in the vector z of size channels C, representing the 
global information of each channel. And the k value, which determines 
the size of the convolution kernel, is computed based on the number 
of input channels C, the formula for value of k is as shown in 
Equation 2:

 

( )2log C b
k

γ
+

=
 

(2)

where γ is a hyperparameter typically set to a constant, and b is the 
bias, they are used to control the kernel size k. The value of k is usually 
constrained to small odd numbers, in this block, k = 3. Next, a 1D 
convolution is applied using the computed k value to capture channel 
dependencies, Equation 3 this process of generating convolution output:

 ( )y W z bσ= ∗ +  (3)

where W is the convolution kernel of size k, and σ is the sigmoid 
activation function. This step generates an attention score for each 
channel. Finally, the original feature map X is rescaled using the 
computed channel weights, as shown in Equation 4:

FIGURE 2

The overall structure of AMEEGNet, including three blocks: block 1 is parallel EEGNet block; block 2 is efficient channel attention block; block 3 is 
classification block.

FIGURE 3

ECA block architecture. X is the input feature, GAP represents the 
Global Average Pooling layer, k denotes the size of the 1D 
convolution, σ is the activation function, and X  indicates the output 
data.
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 X̃ X y=   (4)

where ⊙ denotes element-wise multiplication, and X̃  is the 
output feature map with enhanced channel attention. Three output 
feature maps will be input of classification block.

The ECA block enables the module to focus on important channel 
contributions, effectively emphasizing significant channels while 
maintaining a lightweight and computationally efficient structure. 
This enhancement allows AMEEGNet to achieve improved robustness 
and effectiveness in MI-EEG decoding.

2.3.3 Classification block
The classification block is used to classify the processed EEG 

features into distinct categories. It consisted the flatten layer, two dense 
layers and a softmax activation layer. The flatten layer converts the multi-
dimensional output from the three ECA blocks into a one-dimensional 
vector, allowing the model to effectively process the feature 
representations. Following the flatten layer, the first dense layer contains 
32 units, applying weights to the flattened input and enabling the model 
to learn complex patterns and relationships in the data. And the second 
dense layer, consisting of 4 or 2 units, the number is the number of final 
classification task, further refines these features, enhancing the model’s 
ability to differentiate between classes. Finally, the softmax activation 
layer produces a probability distribution over the output classes, the 
calculation for the softmax output layer is as follows Equation 5:

 ( ) ( )Tsoftmax softmaxŷ z W x b= = +
 

(5)

where x represents the input to the second dense layer, TW  
denotes the weight matrix, b is the bias term, and ŷ is the output 
probability of the softmax function, expressed as Equation 6:

 
( )softmax

z

z
K

ez
e

=
∑  

(6)

where K represents the number of labelled outputs. In EEG 
decoding tasks, K = 4 or 2.

The classification block integrates the outputs from three parallel 
structures and employs two dense layers for hierarchical feature 
learning. This enhances the expressive power of model, allowing it to 
capture more complex patterns than a single fully connected layer. As 
a result, it leads to improved classification performance, achieving 
better results for MI-EEG decoding.

3 Experiment results and discussion

3.1 Experimental details and performance 
metrics

To ensure the validity of all experiments, identical settings were 
employed across all test cases: all experiments are conducted using the 
same experimental setup: the AMEEGNet model is built within the 
Pytorch 1.12 framework using Python 3.10 and trained on an Nvidia 
GTX 3060 with 12GB of memory. The Adam optimizer is employed 

to optimize the model parameters, with hyperparameter settings 
including a learning rate of 0.001, a batch size of 64, and a total of 
1,000 epochs using the cross-entropy loss function.

Performance metrics of model is depending on the
 (1) Accuracy

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +  

(7)

Equation 7 is formula for accuracy. Where TP represents true 
positives (correctly identified as positive), FP denotes false positives 
(incorrectly marked as positive), TN refers to true negatives (correctly 
identified as negative), and FN indicates false negatives (positive cases 
incorrectly labeled as negative).

 (2) Kappa score

 
o e

e
Kappa

1
P P

P
−

=
−  

(8)

Equation 8 is formula for Kappa score. Where Po is the overall 
accuracy rate, Pe is the random classification accuracy rate. 
Additionally, to statistically verify the significant differences between 
AMEEGNet and other comparison networks, the Wilcoxon signed-
rank test (Ohyver et al., 2019) is employed to analyze the network 
results and conduct significance testing.

3.2 Within-subject results of proposed 
methods

This section aims to evaluate the performance of AMEEGNet by 
comparing it against established baseline methods. The performance 
evaluation is conducted using the BCI IV 2a, 2b and HGD datasets. 
The baseline methods include one traditional machine learning 
method and six state-of-the-art deep learning methods, described as 
follows: Antony et al. (2022) utilized online recursive independent 
component analysis to analyze seven principal components and 
employed adaptive SVM for classification. Lawhern et  al. (2018) 
introduced EEGNet, which leverages one-dimensional and deep 
convolutional layers for real-time feature extraction. Hermosilla et al. 
(2021) proposed ShallowConNet, which utilizes two layers of small 
convolutional kernels, offering advantages in fast decoding and ease 
of training. Chen et al. (2024) proposed EEGNeX, which employs 8 
and 32 filters in CNNs to achieve a lightweight decoding architecture. 
Altuwaijri et  al. (2022) developed MBEEGNet and MBEEGSE, 
incorporating multi-branch CNNs and squeeze-and-excitation (SE) 
attention blocks. Musallam et  al. (2021) utilized temporal 
convolutional networks (TCN) with residual blocks to optimize 
the architecture.

Table 1 present the within-subject results of proposed and baseline 
method on the BCI IV 2a, 2b and HGD datasets. The Wilcoxon 
signed-rank test is employed to statistically analyze the differences 
between the baseline and the proposed network on BCI 2a. The 
p-values presented in this section are derived from the analysis of the 
proposed network. When compared with one traditional machine 
learning method and six state-of-the-art deep learning methods, the 
machine learning approach achieves a p-value of p < 0.001. This 
indicates that the proposed model demonstrates significant 
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improvements over the traditional machine learning approach. And 
all deep learning approaches demonstrate superior performance in 
both the two-class (2b dataset) and four-class (2a dataset, HGD) 
decoding tasks. This indicates that traditional machine learning 
methods struggle with nonlinear features, resulting in a significant 
difference when compared to the proposed network, and deep 
learning methods are effective at extracting complex features from 
MI-EEG data. While EEGNet (p < 0.02), EEGNeX (p < 0.001), and 
ShallowConvNet (p < 0.001) achieve commendable accuracy and 
k-scores, TCN (p < 0.2) excels in extracting temporal-spatial features, 
resulting in improved performance. However, the proposed 
AMEEGNet, with its multi-scale feature extraction, surpasses TCN by 
2.41% accuracy and 0.032 k-score in the 2a dataset, by 3.85% and 
0.077  in the 2b dataset, and 2.77% and 0.0369  in the HGD. Both 
MBEEGNet (p < 0.001) and MBEEGSE (p < 0.2) utilize multi-scale 
extraction architectures, with MBEEGSE benefiting from squeeze-
and-excitation (SE) attention, thus achieving better performance. 
With fusion transmission mechanism, AMEEGNet facilitates more 
comprehensive feature learning and extraction. Coupled with its 
lightweight ECA block, AMEEGNet surpasses MBEEGSE by 3.72% 
and 0.050 in the 2a dataset, by 0.61% and 0.013 in the 2b dataset, and 
by 2.1% and 0.028 in the HGD. In addition, the proposed method have 
relatively small standard, it shows that the proposed method has better 
decoding stability. In terms of p-value results, AMEEGNet shows 
superior improvement effects among the deep learning methods.

From Table 1, it is evident that AMEEGNet achieves the highest 
accuracy and k-scores for both the two-class and four-class decoding 
tasks, demonstrating its effectiveness and robustness in MI-EEG decoding.

To evaluate the performance of the proposed method across 
different classification tasks and identify which tasks are easily confused, 

the confusion matrices for the BCI IV 2a, 2b and HGD datasets are 
presented in Figure 4. The left matrix shows high accuracy for the left 
hand, right hand, and foot classes, indicating effective discrimination 
among these tasks. However, the tongue class has an accuracy below 0.8, 
suggesting potential overlap with other classes. The middle matrix 
illustrates excellent classification capabilities in the two class task, with 
high diagonal values indicating effective distinction between the two 
classes. The right matrix illustrates comprehensive decoding 
performance across four classes. Overall, the proposed method 
demonstrates strong decoding performance and classification ability 
across all three datasets.

3.3 Cross-independent results of proposed 
methods

This section focuses on assessing cross-subject decoding 
performance through a subject-independent experiment. The Leave-
One-Subject-Out (LOSO) evaluation method designates one subject 
from the dataset as the test set, while the remaining subjects are used 
to create the training set. This approach effectively evaluates the cross-
subject decoding performance of model. Table 2 presents the results 
of the LOSO experiment on the BCI 2a dataset, using accuracy, 
standard deviation, and Kappa score to assess the decoding 
performance of each model. The proposed method achieves the 
highest accuracy of 66.68% and a Kappa score of 0.5558, indicating 
strong decoding performance for previously unseen subjects and 
robust applicability in real-world scenarios.

Specifically, compared to the traditional machine learning method 
CSP + SVM (p < 0.02), the proposed method shows a significant 

TABLE 1 Within-subject experiment results on the three datasets.

Method BCI IV 2a BCI IV 2b HGD

Accuracy Standard k-
score

Accuracy Standard k-
score

Accuracy Standard k-
score

CSP + SVM 

(Antony et al., 

2022)

66.44 10.16 0.538 78.72 12.48 0.667 87.72 7.02 0.8380

EEGNet (Lawhern 

et al., 2018)
77.12 12.86 0.702 86.55 9.77 0.744 92.99 5.93 0.9065

ShallowConvNet 

(Hermosilla et al., 

2021)

75.28 9.83 0.661 86.60 7.96 0.732 92.72 6.74 0.9029

EEGNeX (Chen 

et al., 2024)
74.54 12.55 0.672 83.70 9.10 0.674 87.04 6.32 0.8273

MBEEGNet 

(Altuwaijri et al., 

2022)

76.12 9.12 0.669 89.21 8.21 0.784 93.83 4.28 0.9178

MBEEGSE 

(Altuwaijri et al., 

2022)

77.45 11.61 0.699 89.22 8.34 0.784 93.39 6.04 0.9118

TCNet (Musallam 

et al., 2021)
78.76 7.38 0.717 85.98 9.17 0.720 92.72 5.16 0.9029

Proposed 81.17 10.43 0.749 89.83 8.07 0.797 95.49 4.08 0.9398

Bold values represent the best results.
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improvement of 15.22%. When compared to EEGNet (p < 0.2), 
EEGNeX (p < 0.2), and TCNet (p < 0.01), the proposed method 
demonstrates enhancements of 1.52, 2.41, and 4.07%, respectively, 
highlighting the effectiveness of the multi-scale architecture in 
improving subject-independent decoding performance. 
ShallowConvNet (p < 0.2) exhibits similar performance to EEGNet. 
while the proposed method outperforms the multi-scale deep learning 
methods MBEEGNet (p < 0.2) and MBEEGSE (p < 0.2) by 0.38 and 
1.46%, respectively. This improvement can be  attributed to the 
integration of fusion transmission and the ECA block, which enhances 
the decoding capabilities of model. Furthermore, the Wilcoxon 
signed-rank test indicates that the proposed method exhibits superior 
improvement effects among the decoding techniques, demonstrating 
excellent performance for both subject-dependent and subject-
independent decoding tasks.

3.4 Evaluation of the proposed multi-scale 
learning strategy

AMEEGNet utilizes several designed blocks to enhance its 
performance. To evaluate of the proposed multi-scale learning 
strategy, an ablation study was conducted. Three structures were 
examined in this study: the parallel EEGNet structure, the fusion 
transmission structure, and the ECA block structure. The model 
without any of these structures is referred to as EEGNet, which is 
analyzed in section 3.2; therefore, this ablation experiment does not 
include the model without these structures.

Table 3 illustrates the model structures for experiments 1 to 4 
on the BCI IV 2a dataset, where “✓” indicates the presence of a 
structure and “⨯” indicates its absence. Experiment 4 represents 
AMEEGNet. The results demonstrate that each structure 

FIGURE 4

Confusion matrix of results on BCI IV 2a, 2b, and HGD. Left is for 2a, middle is for 2b and right is for HGD.

TABLE 2 Leave-One-Subject-Out (LOSO) experiment results on the BCI 2a datasets.

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Accuracy Standard k-
score

CSP + SVM 

(Antony et al., 

2022)

50.00 53.43 62.18 44.59 55.21 50.65 46.87 58.03 42.22 51.46 6.08 0.3564

EEGNet (Lawhern 

et al., 2018)
68.75 53.12 77.08 60.59 55.21 52.95 73.44 78.99 66.32 65.16 9.60 0.5355

ShallowConvNet 

(Hermosilla et al., 

2021)

62.57 51.04 80.21 60.07 53.65 51.56 72.74 82.64 72.22 65.18 11.49 0.5507

EEGNeX (Chen 

et al., 2024)
61.63 58.68 67.19 59.72 68.92 60.94 75.00 64.41 61.98 64.27 4.95 0.5237

MBEEGNet 

(Altuwaijri et al., 

2022)

67.53 50.00 83.16 62.50 56.77 51.56 73.61 82.81 68.75 66.30 11.58 0.5508

MBEEGSE 

(Altuwaijri et al., 

2022)

67.53 49.31 81.6 61.81 53.82 48.61 71.18 83.33 69.79 65.22 12.15 0.5363

TCNet (Musallam 

et al., 2021)
62.5 50.00 81.08 58.68 49.61 49.31 70.83 73.44 68.06 62.61 10.93 0.4887

Proposed 69.27 49.83 81.77 61.46 59.72 53.99 72.22 81.77 70.14 66.68 10.67 0.5558

Bold values represent the best results.
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FIGURE 5

Results of the ablation experiments conducted on subjects in the BCI IV 2a dataset. (A) Displays the performance results of the ablation experiments 
for each individual subject. (B) Shows the overall performance outcomes for each ablation experiment across subjects.

contributes to the decoding effectiveness of model. The model 
utilizing both the parallel EEGNet and fusion transmission 
structures performs worse than the one with only the parallel 
EEGNet, indicating that complex features may not be effectively 
classified by the classification block alone. However, the inclusion 
of the ECA block clarifies the features, leading to significant 
improvements in performance of AMEEGNet.

To more accurately assess the impact of the ablation experiments 
on each subject, the accuracy of every subject based on the BCI 2a 
dataset was also examined. In Figure 5A, the results indicate significant 
improvements for subjects S04, S07, and S08, suggesting that the 
designed structure enhances the stability of decoding performance 
across different individuals. Figure 5B shows that experiments 1, 2, 
and 3 exhibit similar trends; however, the improvement in decoding 
effectiveness is clearly evident in experiment 4. This indicates that the 
use of structures alone is not sufficient, whereas the combination of 
structures yields better feature extraction results, highlighting the 
effectiveness of the structural design and their combined application. 
To verify and analyze the results from a statistical perspective, the 
Wilcoxon signed-rank test is employed. The results of experiment 4 
showed significant differences compared to experiments 1, 2, and 3, 
with p-values of p < 0.05, p < 0.02, and p < 0.001. These findings 
highlight the importance of the proposed enhancements, which 

improve accuracy and provide a statistically significant advantage over 
earlier methodologies.

3.5 Visualization

To visually evaluate the proposed AMEEGNet and baseline 
methods and demonstrate the effectiveness of channel attention, 
visualization techniques were employed. Figure  6 presents the 
t-distributed stochastic neighbor embedding (Svantesson et al., 2023) 
(T-SNE) visualization results of various deep learning methods. The 
results show significant overlap in the classification tasks for EEGNet, 
TCNet, and MBEEGNet. Different colors represent the various 
classification tasks; the left and right hand classifications show clear 
separation across all networks, in contrast, the tongue class task of 
ShallowConvNet exhibits considerable dispersion, leading to poor 
classification performance. EEGNeX displays relatively clear 
classification boundaries but suffers from numerous misclassifications 
across all four categories. The proposed model demonstrates a more 
concentrated classification effect for each task, although the tongue 
class task remains somewhat diffuse. Future research could focus on 
improving classification performance in the tongue task, as well as 
enhancing the overall MI-EEG decoding effectiveness.

TABLE 3 Ablation experiment results of AMEEGNet on BCI IV 2a.

Exp. Parallel EEGNet Fusion transmission ECA block Accuracy Standard k-score

1 ✓ ⨯ ⨯ 78.32 9.85 0.715

2 ✓ ✓ ⨯ 79.40 10.40 0.725

3 ✓ ⨯ ✓ 79.01 11.22 0.720

4 ✓ ✓ ✓ 81.17 10.43 0.749
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To examine the spatial features learned by proposed model, 
Gradient-weighted Class Activation Mapping (Grad-CAM) (Li et al., 
2020) is utilized to emphasize EEG signals based on these features, 
visualizing the activated spatial components during MI EEG decoding 
on EEG topography maps.

Figure 7 presents a comparison of the EEG topographic heat maps 
between input signals and activated signals from the BCI IV 2a 
dataset. The upper part of the figure illustrates the influence of the 
input EEG signals on the final classification task, with red regions 
indicating a stronger impact on classification and blue regions 
representing a weaker effect. This visual representation helps identify 

which areas of the input EEG signals are most significant for the 
model’s predictions. The lower part of the figure shows the heat map 
activated during the decoding process. Here, red regions signify areas 
of the network that are fully utilized for activation during decoding, 
while blue regions indicate areas that are less effectively activated. By 
comparing the upper and lower parts of the figure, it is possible to 
determine whether the model activates and utilizes important signals. 
Overlapping red and blue areas indicate that the model effectively uses 
significant signals while disregarding those that are less important.

Notably, different classification tasks exhibit distinct activated 
regions, indicating that the model concentrates on specific features 

FIGURE 6

T-SNE visualization of deep learning methods.

FIGURE 7

EEG topographic heat map comparison between input signals and activated signals in BCI IV 2a dataset.
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relevant to each task. In each classification task, there is a significant 
overlap of red and blue areas, suggesting that the model effectively 
identifies and activates important spatial features for decoding MI 
EEG tasks. For the tongue task, the activated regions resemble those 
of the left and right hand tasks, which may account for the unclear 
classification performance observed in the T-SNE results. This overlap 
underscores the difficulty of distinguishing the tongue class from the 
other tasks, indicating that classifying tongue tasks from a spatial 
perspective presents challenges. Future efforts could focus on 
enhancing the decoding performance of tasks, which currently suffer 
from poor spatial resolution, by exploring other dimensions, such as 
temporal aspects, to improve the overall performance of the model.

4 Discussion and conclusion

To improve the power of model extract more distinguishable 
temporal-spatial features, enhance the effect of MI-EEG decoding, 
thereby pushing the BCI development, this study proposes an 
attention-based multiscale EEGNet (AMEEGNet), the model exhibits 
excellent performance in MI-EEG decoding. First, AMEEGNet use 
three parallel EEGNet to achieve the effect of multiscale feature 
extraction, addition of fusion transmission method, achieve the larger 
degree effect of multiscale feature extraction. Then, the ECA block is 
used to flexibly capture the dependency relationships between 
channels, giving greater weight to important channels, improve the 
power of model feature extraction. Finally, a fallen layer integrates the 
output of three parallel network, and decoding signals with two dense 
layers and softmax activation function.

Some comparative experiments were conducted based on publicly 
datasets, On the BCI Competition IV 2a dataset, an average 
classification accuracy of 81.17% and an average classification kappa 
value of 0.749 were achieved. Its four class classification accuracy and 
kappa value were significantly higher than traditional machine 
learning algorithms and currently more advanced deep learning 
algorithms. In addition, on the BCI Competition IV 2b dataset, the 
proposed method achieved an average classification accuracy of 
89.83% and an average classification kappa value of 0.797, 
demonstrating outstanding decoding advantages over the compared  
network.

Future work will focus on further exploring the temporal aspects 
of the model to enhance performance in dynamic environments. 
Specifically, we aim to integrate recurrent neural networks (RNNs) to 
capture contextual relationships within the proposed network. This 
may involve combining AMEEGNet with long short-term memory 
(LSTM) networks for parameter tuning, which could improve the 
decoding performance of motor imagery (MI) EEG signals.

In addition, future research will also address the challenges of 
online decoding, emphasizing the importance of short-time decoding 
strategies. By focusing on real-time processing, aiming to enhance the 
model’s responsiveness and accuracy in practical applications, paving 
the way for more effective BCI.
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