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Path planning of mobile robot 
based on improved double deep 
Q-network algorithm
Zhenggang Wang *, Shuhong Song  and Shenghui Cheng 

College of Electrical Engineering, Anhui Polytechnic University, Wuhu, China

Aiming at the problems of slow network convergence, poor reward convergence 
stability, and low path planning efficiency of traditional deep reinforcement learning 
algorithms, this paper proposes a BiLSTM-D3QN (Bidirectional Long and Short-
Term Memory Dueling Double Deep Q-Network) path planning algorithm based on 
the DDQN (Double Deep Q-Network) decision model. Firstly, a Bidirectional Long 
Short-Term Memory network (BiLSTM) is introduced to make the network have 
memory, increase the stability of decision making and make the reward converge 
more stably; secondly, Dueling Network is introduced to further solve the problem 
of overestimating the Q-value of the neural network, which makes the network 
able to be updated quickly; Adaptive reprioritization based on the frequency penalty 
function is proposed. Experience Playback, which extracts important and fresh data 
from the experience pool to accelerate the convergence of the neural network; 
finally, an adaptive action selection mechanism is introduced to further optimize 
the action exploration. Simulation experiments show that the BiLSTM-D3QN path 
planning algorithm outperforms the traditional Deep Reinforcement Learning 
algorithm in terms of network convergence speed, planning efficiency, stability 
of reward convergence, and success rate in simple environments; in complex 
environments, the path length of BiLSTM-D3QN is 20 m shorter than that of the 
improved ERDDQN (Experience Replay Double Deep Q-Network) algorithm, the 
number of turning points is 7 fewer, the planning time is 0.54 s shorter, and the 
success rate is 10.4% higher. The superiority of the BiLSTM-D3QN algorithm in terms 
of network convergence speed and path planning performance is demonstrated.
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1 Introduction

In recent years, there has been a notable increase in the utilization of mobile robots in a 
variety of fields, including the military and industry, for the performance of essential unmanned 
tasks (Deguale et al., 2024). As the complexity of use scenarios and the level of safety standards 
continue to evolve, the challenge of efficiently and accurately planning driving paths has 
become a significant research topic (Meng et  al., 2023). The planning of robot paths has 
consistently been a topic of significant interest within the field of robotics. It enhances the 
autonomy and operational efficiency of robots in diverse environments, offering substantial 
benefits for applications across various sectors of modern society (Kong et al., 2024). The 
fundamental objective of path planning is to identify the optimal route from the initial position 
to the intended destination of the robot, which typically necessitates a comprehensive 
assessment of factors such as distance, time, energy consumption, and the safety of the path 
(Guo et al., 2020). An optimal path should be free of obstacles, minimize detours, and facilitate 
efficient navigation (Junli et al., 2020). Mobile robots frequently operate in environments with 
diverse obstacles and unknown variables, underscoring the importance of path planning 
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algorithms that can effectively avoid obstacles and operate in real-time 
with high reliability (Sha et al., 2023).

The existing body of literature on path planning algorithms can 
be divided into two main categories: traditional algorithms and those 
based on machine learning (Yuwan et al., 2022). The traditional path 
planning algorithms include Ant Colony Optimization (Lei et  al., 
2023), A* algorithm (Yu et al., 2024), Particle Swarm Optimization 
(Meetu et al., 2022), Dijkstra algorithm (Zhou et al., 2023), Genetic 
Algorithm (Debnath et  al., 2024), Dynamic Window Approach 
(Chuanbo et al., 2023), and Artificial Potential Field algorithm (Zhang 
et al., 2023), among others. While these algorithms are widely used, 
they also have corresponding shortcomings, including low planning 
efficiency, poor search ability, and the tendency to fall into local optima. 
In recent years, the application of Deep Reinforcement Learning (DRL) 
algorithms in the field of path planning has been significantly advanced 
by the progress of hardware technology. DRL integrates the robust 
feature extraction capabilities of Deep Learning (DL) with the decision 
optimization abilities of Reinforcement Learning (RL), thereby offering 
a novel approach to address the limitations of traditional path planning 
algorithms (Chen et al., 2024). The DRL algorithm most widely used 
in path planning is the Deep Q Network (DQN) algorithm proposed 
by the DeepMind team (Lin and Wen, 2023). The DQN effectively 
addresses the “curse of dimensionality” problem faced by Q-value 
tables in complex environments by utilizing a neural network to replace 
the Q-value table in the Q-Learning algorithm. However, the traditional 
DQN algorithm exhibits shortcomings such as overestimation of 
Q-values and slow network convergence.

In light of the shortcomings of the DQN algorithm, Huiyan et al. 
(2023) put forth an augmented DDQN (double DQN) approach to 
path planning, which enhances the efficacy of algorithmic training 
and the precision of optimal path generation. Jinduo et al. (2022) put 
forth a double DQN-state splitting Q network (DDQNSSQN) 
algorithm that integrates state splitting with optimal states. This 
method employs a multi-dimensional state classification and storage 
system, coupled with targeted training to obtain optimal path 
information. Yan et  al. (2023) put forth an end-to-end local path 
planner n-step dueling double DQN with reward-based ϵ-greedy 
(RND3QN) based on a deep reinforcement learning framework, 
which acquires environmental data from LiDAR as input and uses a 
neural network to fit Q-values to output the corresponding discrete 
actions. The problem of unstable mobile robot action selection due to 
sparse rewards is effectively solved. Shen and Zhao (2023) put forth a 
DDQN-based path planning framework for UAVs to traverse 
unknown terrain, which effectively mitigates the issue of 
overestimation of Q values. Wang et al. (2024) put forth an extended 
double deep Q network (DDQN) model that incorporates a radio 
prediction network to generate a UAV trajectory and anticipate the 
accumulated reward value resulting from action selection. This 
approach enhances the network’s learning efficiency. In a further 
development of the field, Li and Geng (2023) proposed a probabilistic 
state exploration ERDDQN algorithm. This has the effect of reducing 
the number of times the robot enters a repeated state during training, 
thus allowing it to explore new states more effectively, improve the 
speed of network convergence, and optimize the path planning effect. 
Tang et al. (2024) put forth a competitive architecture dueling-deep Q 
network (D3QN) for UAV path planning, which further optimizes the 
calculation of Q value and facilitates more precise updates to network 
parameters. Yuan et al. (2023) proposed the D3QN-PER path planning 

algorithm, which employs the Prioritized Experience Replay (PER) 
mechanism to enhance the utilization rate of crucial samples and 
accelerate the convergence of the neural network.

The aforementioned research has enhanced the functionality of the 
DQN algorithm to a certain degree; nevertheless, there are still 
significant issues that require attention, including low sample 
utilization, slow network convergence, and unstable reward 
convergence. To address this issue, this paper proposes a BiLSTM-
D3QN path planning algorithm based on the DDQN algorithm. First, 
a BILSTM network is introduced to render the neural network 
memory-based, thereby increasing the stability of decision-making 
and thus facilitating more stable reward convergence. Secondly, a 
competitive network is introduced to further address the issue of 
overestimation of the neural network’s Q-value, thereby enabling the 
network to update more rapidly. The proposal of adaptive 
reprioritization of experience replay based on frequency penalty 
function is intended to facilitate the extraction of crucial and recent 
data from the experience pool, thus accelerating the convergence of the 
neural network. Finally, an adaptive action selection mechanism is 
introduced with the objective of further optimizing action exploration.

2 Related work

2.1 Q-Learning algorithm

Reinforcement Learning is an important branch of machine 
learning that aims to learn how to take the best action in a given 
situation by interacting with the environment in order to maximize 
cumulative rewards. Reinforcement learning differs from supervised 
learning and unsupervised learning in that it emphasizes trial and 
error in interacting with the environment for feedback, constantly 
adjusting strategies to achieve the best results. The basic framework of 
reinforcement learning is shown in Figure 1. The agent chooses action 

ta  based on current state ts . The environment provides reward tr  for 
the current action and state 1ts +  for the next moment based on the 
action. After continuous interaction, the agent’s decision is improved 
and updated to obtain a higher reward tr .

The Q-Learning algorithm is a model-free reinforcement learning 
method based on a value function. It selects the optimal strategy by 
updating the action value function Q. The update of Q value is shown 
in Equation 1:

FIGURE 1

Basic reinforcement learning architecture.
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 ( ) ( ) ( ) ( )1, , max , ,t t t t t a t t tQ s a Q s a r Q s a Q s aα γ ′ + ′← +  + −   (1)

Where ( ),t tQ s a  denotes the Q-value of the intelligent body for 
selecting action ta  in the current state ts ; α  denotes the learning rate; 
γ  denotes the discount factor; tr  denotes the reward value obtained 
after executing action ta , and ( )1max ,a tQ s a+′ ′  denotes the maximum 
Q-value for the next state.

2.2 DQN algorithm

The traditional DQN algorithm, as proposed by the DeepMind 
team, is based on the Q-Learning algorithm. The introduction of a 
neural network as the carrier of the value function allows for the 
nonlinear approximation of the state value function through the use 
of a neural network with parameters ω and an activation function. 
This approach enhances the efficiency of path planning. In contrast to 
the Q-Learning algorithm Q-value table, the DQN employs a neural 
network to address the dimensional explosion problem that arises in 
complex environments (Chen et al., 2024). However, the conventional 
DQN approach selects the action with the maximum Q-value when 
searching for the optimal action, which is susceptible to overestimation 
of the Q-value during network updates. Figure  2 illustrates the 
structure of the DQN algorithm.

The DQN neural network comprises two networks with identical 
structures: the current network ( CQ ) and the target network ( TQ ). The 
algorithm employs the current network to calculate an estimated 
value for a given state and utilizes the output value of the target 
network in conjunction with a sequential difference method to 
perform gradient descent, thereby updating the current network. 
Once the current network has undergone a specified number of 
updates, the target network is updated by copying the parameters C 

of the current network. During the training phase, a random and 
uniform sample is selected from the experience replay pool and 
provided to the two neural networks for the purpose of gradient 
descent with respect to the loss function. The calculation formula is 
presented in Equations 2,3.

 ( )( )2t arget, ;ω= −Loss C t tL Q s a Q
 (2)

 ( )t arget 1max , ;γ ω+′= + ′ ′t a T tQ r Q s a
 (3)

Where ω is the current network parameter and ω′ is the target 
network parameter; γ  is the discount factor; ( ), ;ωC t tQ s a  is the 
current network output value; and ( )1max , ;ω+′ ′ ′a T tQ s a  is the 
maximum action value of the target network at state 1ts + .

Following the calculation of the loss value, the DQN updates the 
network parameter ω through the application of the gradient descent 
method. The gradient descent formula is presented in Equation 4.

 ( ) ( )1 t arget , , , ,t t C t t t C t t tE Q Q s a Q s aω ω ω ω+  = + − ∇   (4)

2.3 DDQN algorithm

In response to the issue of overestimation of the Q value in the 
DQN algorithm, the DeepMind team put forth the DDQN algorithm 
as a potential solution. In comparison to the DQN algorithm, the 
DDQN algorithm modifies the manner in which the Q value is 
calculated within the target network. This involves the decomposition 
of the maximization operation within the target network into the 
utilization of distinct networks for the purposes of action selection 
and action evaluation. In contrast to the conventional approach of 

FIGURE 2

Schematic diagram of DQN structure.
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selecting the maximum Q value, the DDQN algorithm initially 
identifies the action a′ that corresponds to the maximum Q value in 
state 1ts +  through the current network. The target network then 
calculates the Q value based on action a′ and the current state 1ts + . 
This process effectively mitigates the issue of overestimation of Q 
values (Yuan et al., 2023), leading to more precise Q value estimation. 
The structural diagram of the DDQN network is illustrated in 
Figure 3.

The Target Value in the DDQN algorithm is calculated as shown 
in Equation 5:

 ( )( )t arget 1 1 1,arg max , ; ;γ ω ω+ + ′ + ′= + ′t T t a C tQ r Q s Q s a
 (5)

where a′ represents the set of all possible actions in the next state 
1ts + ; and ( )1arg max , ;ω+′ ′a C tQ s a  represents the action with the 

largest Q value selected by the current Q network in 1ts + .

3 BiLSTM-D3QN path planning 
algorithm

While DDQN addresses the issue of overestimation of 
Q-values to a degree, it nevertheless exhibits certain shortcomings 
and constraints. In the DDQN algorithm, the value of ε is a 
constant. In the latter stages of path planning, the robot may fail 
to identify the optimal path due to the random selection of actions. 
While the experience replay buffer addresses the issue of data 
correlation, it also presents a challenge in efficiently sampling 
representative experiences from the experience pool to accelerate 
network convergence. Furthermore, when the robot encounters 
the same obstacle, it may execute disparate actions, which impedes 
the value function from attaining convergence. This ultimately 
results in an unstable decision-making process. In light of these 
considerations, this paper puts forth a BiLSTM-D3QN path 
planning algorithm founded upon the DDQN decision-
making model.

3.1 Design of reward function

In the context of mobile robot path planning, the term “state” is 
defined as the position coordinates of the robot, as illustrated in 
Equation 6:

 ( ),S x y=  (6)

Its action space is shown in Figure 4.
The area in which the robot is permitted to move is divided into a 

grid, and the robot is therefore able to move freely to any of the eight 
surrounding grids. The digits 0 through 7 are used to represent the 
eight directions: front, back, left, right, top left, top right, bottom left, 
and bottom right, respectively. The action set is illustrated in 
Equation 7:

 ( )0,1,2,3,4,5,6,7A =  (7)

Reward functions are a key component of research in the field of 
RL on path planning. Classical DRL algorithms typically employ sparse 
reward functions, as discussed in Zhao et al. (2024). The classical DRL 
algorithm is designed with arrival rewards and collision rewards, with 
a positive reward of 20 given for arrival at the target point and-20 for 
collision, and the reward function is shown in Equation 8:

 

20
20t

reach goal
r

collision


= −  
(8)

Since only the arrival and collision rewards are set during the 
training process, it results in a sparse reward signal. When the mobile 
robot acts, ineffective actions often occur. In general, terms, when the 
robot completes the action, if the reward value is 0 at this time, the 
robot can not judge what to do next based on the current state, and it 
is not clear how to reach the target position. Due to the difficulty of 
pre-exploration, the robot needs to go through a longer trial-and-
error process to find the correct path. During this process, the robot 

FIGURE 3

Schematic diagram of DDQN structure.
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is mainly guided by the negative rewards from collisions and lacks the 
guidance of positive rewards, so it is difficult to update a better strategy 
during strategy evaluation.

One solution to the reward sparsity problem is to add auxiliary 
rewards, and in this paper, we introduce a dynamic reward function. 
Distance and direction rewards are added to the environment as 
auxiliary rewards, and the reward values are dynamically presented 
with the change of robot position. The closer the mobile robot is to the 
target point, the greater the reward is. The reward function is shown 
in Equation 9:

 

( )
( )
( )

3

20

Ä
2 0,1,2,3
2.5 4,5,6,7
5
20

t

reach goal
j other
l

r a A
a A
out of step
collision





= − ∈
− ∈
−

−  

(9)

To ensure safety in the path planning process, the simulation 
environment is given to the obstacle expansion. When the distance 
between robot and the obstacle is less than 0.1 m it is considered to 
have collision, and the distance between the robot and the target point 
is less than 0.1 m it is considered to have reached the target point, and 
the distance between the mobile robot and the target point is 
calculated as shown in Equation 10:

 
( ) ( )2 2

∆ = − + −current goal current goall x x y y
 (10)

where ∆l  is the Euclidean distance between the robot and the 
target position at time t ; j  is the distance-assisted reward constant, 
which is used to adjust the scale of the reward; ( ),current currentx y  is the 

current position of the mobile robot and ( ),goal goalx y  is the target 
point position.

The improved dynamic reward function in this paper is shown in 
Equation 11:

 ( )3
=

∆
t

jr
l  

(11)

In the gradient update of the neural network value function, the 
error term is shown in Equation 12:

 ( )t arget , ,t C t t tQ Q s aδ ω= −  (12)

When the reward tr  is sparse, the change of tδ  is drastic and has 
high variance, which affects the convergence. By introducing a smooth 
reward function, the variance of the gradient update term and the 
gradient update formula are shown in Equations 13 and 14:

 ( ) ( ) ( )( )t arget , ,t C t t tVar Var Q Var Q s aδ ω= +  (13)

 ( ) ( ) ( )t arget , , , ,Loss C t t t C t t tL E Q Q s a Q s aω ω ω ω ∇ = − ∇   (14)

Sparse rewards can lead to the following problems:

 (1) The target value t argetQ  is discontinuous: when the rewards are 
sparse, tr  is zero in most time steps, resulting in an unsmooth 
change in the value of t argetQ ;

 (2) Invalid gradient: When tr  is mostly zero, the update signal 
( ( )t arget , ,C t t tQ Q s a ω− ) of the gradient becomes sparse and 
has high variance, leading to difficulty in optimization. By 
introducing a smooth reward function with continuous 
non-zero values, the problem of sparse reward where most of 
tr  is zero is eliminated. The continuity of tr  makes the 

distribution of the objective value t argetQ  more continuous, 
which directly reduces the variance of t argetQ . Convergence 
is improved.

The visualization of the signal distribution for the traditional and 
dynamic reward functions is shown in Figure 5. Assuming that the target 
point location of the mobile robot is (0.50, 0.50), the highlighted reward 
peaks at 20 when the Euclidean distance Äl  between the robot and the 
target location is a minimum value of 0.1. The traditional reward function 
reward signal on the left side is only activated in a small area (with a radius 
of about 0.1) of the target point, and the other regions are almost 
unrewarded. The reward signal is very sparse, leading to inefficient 
training of the reinforcement learning algorithm. The right dynamic 
reward function reward signal gradually increases as the distance between 
the mobile robot and the target point decreases, and the color gradually 
changes from bright (high reward value) to dark (low reward value), 
forming a smooth gradient field. The dynamic reward function can 
alleviate the sparse reward problem by extending the reward coverage and 
establishing a gradient reward field, thus significantly improving the 
algorithm’s performance. This gradient reward design can effectively 
guide the mobile robot towards the target direction.

FIGURE 4

Schematic diagram of the action space.
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3.2 Adaptive action selection mechanism

In the traditional action selection strategy, ε in the ε-greedy 
strategy is a fixed value. First, this may lead to insufficient exploration 
in the early stage of the system, which is easy to fall into the local 
optimal solution and unable to find the global optimal solution. In 
addition, there is too much exploration in the later stage, which can 
lead to slower convergence and the inability to effectively utilize the 
currently learned optimal policy, affecting the final performance. To 
avoid falling into a local optimum, the ε-greedy policy is improved so 
that the value of ε is no longer a fixed value and decreases linearly as 
planning progresses. The action selection mechanism in the early 
stage of planning selects actions more randomly by probability, and in 
the later stage it is more likely to select actions with large reward 
values. The action selection function is shown in Equation 15:

 

( )
( )

arg max , ;ω ε
ε

 >=  ≤

a t
t

Q s a n
a

random A n
 

(15)

where n  is a random number between 0 and 1; the exploration 
factor ε  represents the degree of random exploration of the 
environment; and the set of all actions is denoted A.

At each time step t , the selection of action ta  is divided into 
two cases:

 (1) When n  is greater than ε , the action a  that maximizes 
( ),; ,;tQ s a ω  in the current state ts  is selected. This means that 

in this case the algorithm prefers to select the action with the 
highest reward in the current estimation, i.e., it utilizes the 
best-known action.

 (2) When n is less than ε , choose a random action from the set of 
all possible actions A. This means that in this case, the 
algorithm prefers to randomly explore new actions to discover 
potentially better strategies.

ε  dynamic adjustment is shown in Equation 16:

 
( )min max min 1t

t
T

ε ε ε ε  = + − ⋅ − 
  

(16)

where t  is the current number of cycles; T  is the total number of 
cycles; maxε  is the maximum exploration rate; and minε  is the 
minimum exploration rate.

To achieve a smooth transition of ε , the most commonly used 
method is linear decay. As the number of cycles of t  increases, the 

value of 1 t
T

 − 
 

 gradually decreases, and the exploration rate ε  

gradually decreases from the maximum value maxε  to the 
minimum value minε . When t  is equal to 0, tε  is equal to maxε , 
which means that in the initial stage, the exploration factor is at the 
maximum value, and the algorithm prefers random exploration. 
When t  is greater than 0 and less than T , the exploration factor 
gradually finds a balance between exploration and utilization. 
When t  is equal to T , tε  is equal to minε , which means that in the 
final stage, the exploration factor is at its minimum value and the 
algorithm prefers to utilize the best-known action. This satisfies the 
exploration degree in the early stage and avoids missing the 
optimal path in the later stage, while retaining the possibility of 
randomly selecting actions with lower probability.

3.3 Adaptive reprioritization of experience 
replay based on frequency penalty function

In traditional DQN algorithms, experience playback is usually done 
by sampling uniformly from the experience pool, which is less efficient. 
Therefore, academics have proposed a prioritized experience replay (PER) 
based on temporal difference error (TD Error), where experiences with 
large TD Error usually indicate higher learning value. However, there are 
places where PER can be optimized. In this paper, we propose adaptive 
reprioritization of experience replay based on frequency penalty function, 
whose core concept is to reflect the change in importance of experience 
by combining the TD Error and the frequency with which the experience 

FIGURE 5

Visualization of signal distributions with traditional and dynamic reward functions.
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is used. The frequency-of-use-based penalty function reduces the 
probability of being sampled again by dynamically adjusting the priority 
of those experiences that have been sampled multiple times. The 
penalization function using the frequency and the prioritization of 
experience are shown in Equations 17 and 18:

 
( ) 1

1i
i

f u
uµ

=
+  

(17)

 ( ) ( )i i ip f uνδ ρ= + ⋅  (18)

where ip  is the priority of data i; iδ  is the TD Error; the parameter 
ρ  is set to avoid ip  being 0; ν  is a parameter controlling the degree of 
amplification of the priority; ( )if u  is the penalization function using 
the frequency; iu  is the number of times the experience i has been 
sampled; and µ  is the penalty rate constant.

The probability of each piece of data being drawn is shown in 
Equation 19:

 
( ) i

kk

pP i
p

=
∑  

(19)

where the denominator is the sum of all data priorities; k  is the 
number of data in the experience pool.

The preference for playing back experiences with high TD error 
leads to the problem that the neural network training process is prone 
to oscillations or even divergence. Therefore the importance of 
sampling weight iω  is introduced to solve this problem. As shown in 
Equation 20:

 

1 1
i

iN P

β
ω  

= ⋅ 
   

(20)

where N  is the number of data in the experience pool; parameter 
β  controls the influence of importance sampling weights in the 
learning process.

3.4 Dueling Network

This paper introduces a competitive network into the neural 
network structure of the DDQN algorithm. The competitive network 
introduces a dual layer with two branches between the hidden layer 
and the output layer of the DDQN network, which are, respectively, 
the advantage function layer A and the state value function layer V . 
The advantage function layer calculates the advantage of each action 
relative to the average, and the state function layer calculates the state 
value of the object in its current state. The advantage value of each 
action is summed with the state value to obtain the Q-value of each 
action. The problem of overestimation of the Q-value by the neural 
network can be  further solved. The structure of the competition 
network is shown in Figure 6.

The Q value calculation for the Dueling DQN is shown in 
Equation 21:

 
( ) ( ) ( ) ( )1, ; , ; ; , ;ω ω ω ω

′
+ − ′= ∑A V A

t t t t t t
a

Q s a A s a V s A s a
A

 
(21)

where ( ), ;ω A
t tA s a

 is the dominant value function in state ts ;
 ( ); V

tV s ω  is the state value function in state ts ; Aω  and Vω  are the 
network parameters of the dominant and state value functions, 

respectively; A  is the size of the action space; and ( ), ;ω
′

′∑ A
t

a

A s a  is 

the average of all action values obtained from the dominant value 
function layer.

This is precisely because in a competitive network, the Q value of 
network Q is calculated by summing up the Value Function and the 
Advantage Function. The existence of the Value Function allows the 
Algorithmic Network to evaluate the state value that is not affected by 
actions, thereby improving the accuracy of the Q value calculation and 
the algorithm’s efficiency.

3.5 Bidirectional long short-term memory 
network

In this paper, a Bidirectional Long Short-Term Memory 
Network (BiLSTM) is introduced to solve the problem of poor 
decision-making due to partial observability based on the DDQN 
decision model. By adding BiLSTM, the action selection is 
correlated before and after. The decision-making is more stable 
when facing the same obstacle, and the reward converges more 
stably in path planning.

3.5.1 Long short-term memory network
Long Short-Term Memory (LSTM) is an improvement of 

Recurrent Neural Network (RNN), which solves the problem of 
“vanishing gradient” in model training by adding memory units. The 
basic units of the LSTM network include forgetting gates, input gates, 
and output gates. Therefore, LSTM can effectively retain and update 
long-term memory and process complex time series data. The network 
structure is shown in Figure 7.

tf  is the output of the forgetting gate at the moment t; ti  is the 
output of the input gate at the moment t; to  is the output of the output 
gate at the moment t; tc  is the cellular state of the memory cell LSTM 
at the current moment; 1tc −  is the cellular state of the memory cell 
LSTM at the previous moment; tx  is the input vector at the current 
moment; th  is the output vector at the current moment; σ  is the 
activation function; and 1th −  is the output at the previous moment.

The core of LSTM is the forgetting gate, which is responsible for 
preserving long-term memory and is used to decide the data to 
be preserved in the historical information and to select the memorized 
information for the Sigmoid nonlinear transformation. Its formula is 
shown in Equation 22:

 ( )1t xf t hf t ff W x W h bσ −= + +  (22)

where xfW  and hfW  are the weight parameters of the forgetting 
gate; fb  is the bias parameter of the forgetting gate.

The input gate is used to control the size of the data flowing into 
the memory cell, and the information in the memory cell can 
be updated using Equation 23 and Equation 24:

 ( )1t xi t hi t ii W x W h bσ −= + +  (23)
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 ( )
˜

1tanht C t C t CC W x W h b−= + +  (24)

where xiW  and hiW  are the weight matrices of the input gates; ib  is 
the bias vector of the input gates; 

˜
tC  is the temporary variable used to 

compute tc ; CW  is the neural network parameter; and Cb  is the 
deviation vector.

The effect of the previous moment memory cell on the current 
moment memory cell can be expressed by Equation 25:

 
˜

1 tt t t tc f c i C−= +   (25)

where ⊙ stands for the Hadamard product operation.
The output gate is used to determine the output value of the LSTM 

network and the current input features and the previous moment 
output are passed to the activation function to compute the output at 
the current moment. The computational formula is shown in 
Equation 26 and Equation 27:

 ( )tanht t th o c=   (26)

 ( )1t xo t ho t oo W x W h bσ −= + +  (27)

where xoW  and hoW  are the weight parameters of the output gate; 
ob  is the bias parameter of the input gate.

3.5.2 Bidirectional long short-term memory 
network

BiLSTM Network is an improved LSTM network that considers 
both past and future information while processing sample data. The 
model combines a forward-backward LSTM layer and a backward-
forward LSTM layer on top of a unidirectional LSTM network. This 
allows for more comprehensive use of information from the sample 
data in training, improved accuracy in the sequence labeling task, and 
a reduction in information loss, which increases the stability of 
decision-making. The structure is shown in Figure 8.

FIGURE 7

Schematic diagram of the LSTM structure.

FIGURE 6

Schematic diagram of the Dueling Network architecture.
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BiLSTM network is the original signal from the input layer into 
the network layer after the forward LSTM calculation to get an output 
value, the value will affect the learning rate and the output function, 
etc.; at the same time, after the reverse LSTM calculation to get the 
output value, which will determine the connection weights of the 
input nodes in the BiLSTM, to form a new set of output values. The 
calculation process is shown in Equations 28, 29:

 ( )1,t th LSTM x h −=


 (28)

 ( )1,t th LSTM x h −=


 (29)

where tx  is the input at moment t, h


 is the output of the forward 
implicit layer at each moment, and h



 is the output of the backward 
implicit layer at each moment.

The outputs of the forward LSTM and the backward LSTM are 
merged at each time step, usually by splicing. The calculation formula 
is shown in Equation 30:

 t t th h h =  


 (30)

where || denotes vector concatenation.

3.6 BiLSTM-D3QN algorithm path planning 
overall process

The framework of the BiLSTM-D3QN model is shown in Figure 9. 
The BiLSTM-D3QN model adopts a dual network structure, which 
inputs the current state ts  from the experience pool to the current 
network CQ  based on the priority, and then selects the action ta  under 
the state ts  according to the adaptive action and obtains the Q-value of 
the current network. The state 1ts +  is input to the target network TQ . At 
the same time, the action MAXa  corresponding to the maximum Q value 
in state 1ts +  is selected in the current network, and then MAXa  is used to 
find the Q value in the target network. The current network updates the 
network parameters ω by backpropagation of the loss function and 
periodically copies the parameters to the target network parameters ω′. 
In the inner layer of the two network structures, the state information is 
extracted through the memory unit module and input into the two-layer 

BiLSTM network. After passing through the four fully connected layers, 
the advantage function layer A and the state value function layer V  
output the Q value. This makes the mobile robot memorable and more 
stable in decision-making when encountering the same obstacles. The 
robot’s ability to find target points and avoid obstacles becomes stronger, 
which also makes the converged reward curve less volatile thus planning 
a better path. Path planning pseudocode of mobile robot based on 
BiLSTM-D3QN is shown in Algorithm 1.

ALGORITHM 1 Main program of BiLSTM-D3QN 
(Path planning pseudocode of mobile robot 
based on BiLSTM-D3QN)

1. Initialize an experience pool M with capacity N
2. Initialize learning rate, discount factor
3.  The same parameters initialize the BiLSTM-current network CQ  

and the BiLSTM-target network TQ
4. for episode =1 to T do
5. Initialize the environment
6. Initialize done = False
7. Initialize step counter = 0
8. Initialize accumulate reward = 0
9. while not done and step counter < max episode step do
10.  Determine mobile robot state ts
11.  if mobile robots in an accessible state then
12.   Selection of action ta  based on probability ε
13.  otherwise use a greedy strategy to select an action ta
14.  end if
15. Perform action ta , get reward tr , and new state 1ts +
16. Accumulate reward += tr
17. Store the experience data ( )1, , ,t t t ts a r s +  in the experience pool M
18. Randomly select batch data samples ( )1, , ,j j j js a r s +  from M
19. if end of the episode then
20. Set t arget jQ r=
21. else
22. Set ( )t arget 1max ,; ,;t a T tQ r Q s aγ ω′ + ′+ ′=
23. end if
24.  Perform gradient descent for network parameter ω  in  

( )( )2t arget,; ,;C t tQ s a Qω −
25. Determine mobile robot state 1ts +
26. if mobile robot in an obstructed state then
27.  Set done = False
28.  Finish the episode
29. else
30.  continue
31. end if
32. Step counter + = 1
33. end while
34. end for

4 Experimental results and analysis

4.1 Environment setup and parameter 
configuration

A simulation comparison experiment was set up to verify the 
algorithm’s effectiveness proposed in this paper. Experimental 
environment: CPU model i7-13700H, GPU model RTX4070, Python 

FIGURE 8

Schematic diagram of the BiLSTM structure.
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3.8, Pytorch 2.2.2, Tensorflow 2.13, Cuda 11.8. In this experiment, two 
raster environments were created. Environment 1 is a simple 
environment with a raster map size of 16 × 16; environment 2 is a 
complex environment with a raster map size of 25 × 25. In both 
environments, the black rectangular blocks represent obstacles, and the 
white parts are free-movement areas. The red square in the bottom left 
corner represents the starting point of the mobile robot; the red square 
in the top right corner represents the endpoint of the mobile robot. The 
starting point of Environment 1 is (10, 0) and the endpoint is (150, 160); 
the starting point of Environment 2 is (10, 0) and the endpoint is (240, 
250). The robot can move on the map in eight directions: up, down, left, 
right, top left, top right, bottom left, and bottom right. Each movement 
is 10 m long. The episode ends when the robot hits an obstacle, exceeds 
the maximum number of steps, or reaches the end. The map of the 
simulation environment is shown in Figure 10.

 (1) Comparison with traditional DRL algorithms in a simple 
environment. The experimental environment is shown in 
environment 1  in Figure  10A. In Environment 1, the path 
planning of the Q-learning, DQN, DDQN, and the proposed 
BiLSTM-D3QN algorithm with the same parameters are 
performed, respectively. The superiority of the proposed 
algorithm over traditional DRL path planning algorithms in a 
simple environment is verified.

 (2) Comparison of the algorithm with improved algorithms in 
complex environments. The experimental environment is shown 
in environment 2 in Figure 10B. Q-learning, DQN, DDQN, and 
ERDDQN (Wang et al., 2024) with the same parameters are 
made to perform path planning with the BiLSTM-D3QN 

algorithm proposed in this paper, under Environment 2. 
Environment 2 is more complex than environment 1, and path 
planning is more difficult, which can better verify the 
effectiveness and robustness of the algorithm in this paper.

In both environments, 250 rounds of path planning are performed. 
The activation function used by the neural network is ReLU, the 
optimizer is Adam, and the network parameters are saved every 5 
updates. The hyperparameter settings are shown in Table 1.

4.2 Analysis of training results

4.2.1 Comparison with traditional DRL algorithms 
in simple environment

To verify the effectiveness of the proposed algorithm, it is compared 
with the Q-learning, DQN, and DDQN path planning algorithms in 
environment 1. Figure 11 shows the path-planning route maps of the 
four algorithms, and Figure  12 compares the metrics of the four 
algorithms in environment 1, including the planned path length, the 
number of planned path turning points, and the time required for path 
planning. As can be  seen from Figures 11, 12, the BiLSTM-D3QN 
algorithm plans an optimal path. Although the BiLSTM-D3QN 
algorithm and the DQN and DDQN algorithms both plan a path length 
of 200 m, the number of path turning points for the BiLSTM-D3QN 
algorithm is 8, which is lower than the 13 for the DQN algorithm and 
the 10 for the DDQN algorithm. The time required for path planning is 
1.02 s, which is lower than the 2.32 s for the DQN algorithm and the 
1.54 s for the DDQN algorithm. Of the four algorithms compared, the 

FIGURE 9

Overall framework of BiLSTM-D3QN algorithm.
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worst performer was the Q-learning algorithm. The path planned by the 
Q-learning algorithm was 230 m long, with 15 turning points and a 
planning time of 3.55 s. It can be  seen that the BiLSTM-D3QN 
algorithm proposed in this paper is superior to the traditional 
Q-learning, DQN, and DDQN algorithms in terms of path planning.

From Table 2, it can be seen that in 250 training episodes, the 
algorithm with the highest overall success rate is the BiLSTM-D3QN 
algorithm proposed in this paper, which reaches 97.6%; followed by 
the DDQN algorithm 93.2% and the DQN algorithm 88.4%; while the 
overall success rate of the ordinary Q-learning algorithm is 80.4%. The 
BiLSTM-D3QN path planning algorithm has a greater advantage in 
the overall success rate. Meanwhile, from the point of view of the 
growth rate of the cumulative number of successes per 50 rounds, the 
average growth rate of the algorithm proposed in this paper is 0.995, 
which is higher than that of other algorithms, indicating that the 
neural network has the fastest convergence speed. Combined with the 
above analysis, the superiority of BiLSTM-D3QN is reflected in its 
faster growth rate of successful episodes and higher final success rate.

Figure  13 shows a comparison of the cumulative reward and 
number of steps for each episode of path planning by the robot in 
Environment 1 for Q-learning, DQN, DDQN, and the proposed 
BiLSTM-D3QN algorithm. Green represents Q-learning, yellow 
represents DQN, blue represents DDQN, and red represents BiLSTM-
D3QN. After 250 episodes of path planning in the same environment, 
all four algorithms were able to complete the robot’s path-planning 
task to the goal point, and the reward and step curves converged and 
eventually became similar. However, there were significant differences 
in the speed and stability of convergence. The Q-learning algorithm 
gradually converged after 120 episodes, and the curve fluctuated 
greatly after convergence. This indicates that during the later training 
process, although the mobile robot reaches the target point, it makes 
unstable decisions, causing the reward value to fluctuate greatly. The 
DQN and DDQN algorithms are actively explored during the first 40 
training episodes. The reward curve and the step curve show 
fluctuations, and the DDQN algorithm is superior to the DQN 
algorithm in terms of accumulated reward value and number of steps 
in each episode. This is because the DDQN algorithm changes the way 
the Q-value of the target network is calculated, alleviating the problem 

of overestimating the Q-value in the DQN algorithm and making the 
network converge more stably. The BiLSTM-D3QN algorithm 
proposed in this paper converges rapidly after 10 episodes of 
exploration. After 30 episodes, the reward and step curves tend to 
stabilize and reach an optimal value, which is significantly faster than 
the other algorithms compared. This shows that the frequency penalty 
function of the algorithm in this paper reprioritizes the experience 
replay mechanism, which improves the use of important data and thus 
accelerates the convergence of the neural network. The final reward 
value exceeds that of DQN and DDQN, which is attributed to the fact 
that the competitive network in BiLSTM-D3QN has a separate data 
flow structure that can approximate the Q function more effectively 
and accurately. The algorithm in this paper has less variation in reward 
value in the later stages of training. The BiLSTM memory network 
relates the previous and subsequent actions so that the robot’s 
decisions are stable and the robot achieves a more stable cumulative 
reward during path planning. In summary, the BiLSTM-D3QN 
algorithm outperforms other algorithms during path planning 

FIGURE 10

Map of the simulation environment. (a) Environment 1 is a simple environment. (b) Environment 2 is a complex environment.

TABLE 1 The hyperparameter settings.

Parameters Meaning Value

α Learning rate 0.001

γ Discount factor 0.99

maxε Maximum exploration rate 0.6

minε Minimum exploration rate 0.1

M Replay memory capacity 100,000

B Batch size 128

U Update network at fixed interval 5

Step Maximum steps 10,000

ν Priority exponent 0.6

β Importance sampling weight 0.4

µ Penalty rate constant 0.01

j Distance reward constant 0.1
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training in terms of convergence speed, cumulative reward, and 
overall stability.

4.2.2 Comparison with improved deep 
reinforcement learning algorithms in complex 
environment

Q-learning, DQN, DDQN, and ERDDQN are made to compare 
with the BiLSTM-D3QN algorithm proposed in this paper under 
environment 2. Figure 14 shows the path planning line diagrams of the 
five algorithms, and Figure  15 shows the comparison of the five 

FIGURE 11

Comparison of the planned routes of the four algorithms in env 1. (a) Q-Learning algorithm; (b) DQN algorithm; (c) DDQN algorithm; (d) BilSTM-D3QN 
algorithm.

FIGURE 12

Comparison of the four algorithm indicators in env 1. (a) Path lengths; (b) Number of turning points; (c) Times.

TABLE 2 Cumulative number of successes in env 1.

Episode Q-learning DQN DDQN BiLSTM-D3QN

50 34 36 41 45

100 71 77 86 94

150 113 123 134 144

200 159 171 183 194

250 208 221 233 244

Success rate 83.20% 88.40% 93.20% 97.60%
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algorithms in environment 2 in terms of various metrics, including the 
length of the planned path, the number of inflection points of the 
planned path, and the time required for path planning. From Figure 14, 
it can be seen that the BiLSTM-D3QN algorithm plans better paths. 
The worst performance of the five algorithms in the comparison is the 
Q-learning algorithm, the Q-learning algorithm plans a path length of 
330 m, the number of turning points is 19, and the planning time is 
4.59 s. The Q-learning has the most turning points, which indicates 

that its path planning is more unstable, there are more unnecessary 
path adjustments the computational complexity is higher and the 
optimization performance is poor. DQN and DDQN algorithms plan 
path lengths of 330 m and 290 m, the number of turning points is 16 
and 14, and the planning time is 3.29 s and 2.48 s, respectively. The 
planned path length of BiLSTM-D3QN algorithm is 250 m, which is 
20 m shorter than that of ERDDQN algorithm; the number of 
inflection points in the path of the ERDDQN algorithm is 11, which is 

FIGURE 13

Comparison of rewards and steps accumulated per episode in env 1. (a) Accumulated rewards for each episode of path planning; (b) Taken steps for 
each episode of path planning.

FIGURE 14

Comparison of the five algorithms for planning paths in env 2. (a) Q-Learning algorithm; (b) DQN algorithm; (c) DDQN algorithm; (d) ERDDQN 
algorithm; (e) BilSTM-D3QN algorithm.
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a lot of inflection points, whereas the number of inflection points in 
the path of this paper’s algorithm is only 4; and this paper’s algorithm 
takes a shorter time for path planning, which is only 1.61 s shorter than 
that of the ERDDQN algorithm. Only 1.61 s is lower than the 2.15 s of 
ERDDQN algorithm. It shows that it is the most computationally 
efficient, and can converge more quickly in environmental decision 
making. In summary, the BiLSTM-D3QN algorithm proposed in this 
paper outperforms the traditional DRL algorithms and the ERDDQN 
algorithm in the performance of path planning.

Table  3 shows that in the more complex environment 2, the 
algorithm with the highest overall success rate is still the BiLSTM-
D3QN algorithm proposed in this paper, which reaches 94.0%; 
followed by the ERDDQN algorithm at 83.6%, the DDQN algorithm 
at 79.2%, and the DQN algorithm at 75.2%; the overall success rate of 
the ordinary Q-learning algorithm is 72.8%, reflecting its poor 
adaptability to complex environments. Its poor ability to adapt to 
complex environments. BiLSTM-D3QN combines the BiLSTM 
network, which can not only memorize the past state but also consider 
the future state. It also processes the environment information more 
comprehensively, so it performs the best in the path planning task. In 
terms of growth, BiLSTM-D3QN consistently leads in the development 
of cumulative successes per 50 episodes, followed by ERDDQN, 
indicating that these two algorithms are the most capable of learning. 
BiLSTM-D3QN and ERDDQN have the most stable growth rates 
while Q-learning and DQN show more fluctuating performance. In 
the last episode (200–250 rounds), the growth rate of BiLSTM-D3QN 
increases significantly, indicating that it has a stronger ability to adapt 
to complex environments at a later stage. BiLSTM-D3QN not only 
grows the most in each episode but also grows at a relatively smooth 
rate, showing superior learning performance and adaptability to 
the environment.

Figure  16 compares the accumulated rewards and steps per 
round of path planning performed by the robot using Q-learning, 
DQN, DDQN, and ERDDQN with the BiLSTM-D3QN algorithm 
proposed in this paper under Environment 2, where green is 
Q-learning, yellow is DQN, blue is DDQN, cyan is ERDDQN, and 
red is BiLSTM-D3QN. After 250 rounds of path planning under the 
same environment, all five algorithms are able to complete the 
robot’s path planning task of reaching the target point, but there is a 
big difference in the convergence speed and stability of the 
ERDDQN algorithm. The convergence speed and stability are very 
different. The Q-learning algorithm converges more slowly, and in 
the first 100 episodes of training, the reward value fluctuates 
dramatically and is still in the stage of substantial exploration. The 
DQN algorithm converges better than Q-learning and gradually 
stabilizes after about 150 episodes. DQN shows strong exploratory 
behavior with large fluctuations in reward values in the first 50 
episodes, and the fluctuations are relatively small after convergence. 
However, there are still some ups and downs. The ERDDQN 
algorithm gradually converges after 50 episodes of active exploration 
in the early stage of training and reaches the maximum value of 
around 120 episodes. However, the reward curve and step curve 
show fluctuation after convergence, which indicates that in the later 
stage of training, although the mobile robot arrives at the goal point, 
the mobile robot makes unstable decisions, resulting in the 
fluctuation of the reward value larger. The BiLSTM-D3QN algorithm 
proposed in this paper converges quickly after 40 exploration 
episodes, and the average reward value and the number of steps are 
better than the ERDDQN algorithm in the process of convergence, 
and the degree of fluctuation of the reward curve and the number of 
steps curve is smaller, which is attributed to the fact that the 
competitive network in BiLSTM-D3QN has a separated data flow 

FIGURE 15

Comparison of the five algorithms indicators in env 2. (a) Path lengths; (b) Number of turning points; (c) Times.

TABLE 3 Cumulative number of successes in env 2.

Episode Q-learning DQN DDQN ERDDQN BiLSTM-D3QN

50 25 32 33 37 43

100 55 69 74 79 90

150 99 107 113 120 139

200 140 146 150 163 185

250 182 188 198 209 235

Success rate 72.80% 75.20% 79.20% 83.60% 94.00%
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structure, which can approximate the Q function more effectively 
and accurately; BiLSTM-D3QN reaches its maximum value at 
around 100 rounds, which is faster than the comparative ERDDQN 
algorithm, suggesting that the reprioritised empirical replay 
mechanism of this paper’s algorithm, based on the frequency penalty 
function, improves the use of important data and thus speeds up the 
convergence of the neural network; BiLSTM-D3QN has very little 
fluctuation in the reward value function after 100 training rounds, 

while the ERDDQN algorithm curve shows a small fluctuation, 
which is due to the fact that the BiLSTM memory network in the 
algorithmic structure of this paper makes the front and back actions 
relevant, so the robot’s decision is stable and a more stable 
cumulative reward is achieved during path planning. In summary, 
the BiLSTM-D3QN algorithm outperforms the ERDDQN algorithm 
in terms of convergence speed, cumulative reward, and overall 
stability during path planning training.

FIGURE 16

Comparison of rewards and steps accumulated per episode in env 2. (a) Accumulated rewards for four algorithms; (b) Taken steps for four algorithms; 
(c) Accumulated rewards for two algorithms; (d) Taken steps for two algorithms.

FIGURE 17

Simulation environment infographic.
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FIGURE 18

First view of a mobile robot.

4.3 Analysis of ROS simulation results

To verify the feasibility of the improved algorithm in real robots, this 
section implements mobile robot path planning under the ROS Gazebo 
simulator. A small four-wheeled all-terrain robot of Jackal UGV is used 
in this experiment, and the robot autonomously builds a map of the 
environment by LiDAR, and the blue line is the LiDAR scanning line, as 
shown in Figure  17. The first view of the mobile robot during the 
planning process is shown in Figure 18. The ERDDQN algorithm and 
the BiLSTM-D3QN algorithm proposed in this paper are applied to this 
environment, and the actual environment path planning results obtained 
are shown in Figure 19. As can be seen from Figure 19, both algorithms 
can generate a global path in this environment. The ERDDQN algorithm 
is compared with the BiLSTM-D3QN algorithm proposed in this paper, 
and the experimental results are shown in Table 4.

As shown in Table  4, the path length of the BiLSTM-D3QN 
algorithm proposed in this paper is 28.3 m and the path planning time 
is 3.19 s. Compared with the ERDDQN algorithm, the robot path length 

and path planning time are reduced by 5.98 and 27%, respectively, 
which fully verifies that in real complex environments, the BiLSTM 
network and the improved prioritized experience replay mechanism 
enable the robot to improve the collision avoidance and goal point 
finding ability, and reduces the robot path length and plans a better path.

5 Conclusion

This paper proposes the BiLSTM-D3QN path planning algorithm 
to improve the traditional DDQN algorithm for the path planning 
problem of mobile robots. On the one hand, this paper introduces a 
frequency penalty function, which makes the real-time important data 
in the experience pool fully utilized to improve the convergence rate of 
the neural network; on the other hand, this paper adds a competitive 
network architecture with separate data streams, which can approximate 
the Q function more effectively and accurately, and further solves the 
problem of overestimation of the Q-value function; The bidirectional 
long and short-term memory network is added to the network structure 
so that the model has the function of extracting and remembering the 
obstacle information, which improves the stability of the mobile robot’s 
decision making and makes the reward convergence more stable; and 
this paper introduces an adaptive action selection mechanism to further 
optimize the action exploration. Finally, simulation comparison 
experiments are set up in both simple and complex environments, and 
the experimental results show that the BiLSTM-D3QN path planning 
algorithm is better than the traditional deep reinforcement learning 
algorithm in terms of network convergence speed, planning efficiency, 
stability of reward convergence and success rate in simple environments; 
in complex environments, the path length of BiLSTM-D3QN is 20 m 
shorter and the number of turning points is 7% less than that of the 
ERDDQN algorithm. 20 m, 7 fewer turning points, 0.54 s less planning 
time, and a 10.4% higher success rate than the ERDDQN algorithm. 
The algorithm is ported to a ROS robot, and mobile robot path planning 
experiments are designed under the ROS Gazebo simulator, which 
verifies that the improved algorithm is feasible in the real world. 
However, since this paper only studies static obstacle avoidance and 
does not consider the presence of dynamic obstacles, the direction of 
future research is to add dynamic obstacles in the environment so that 
it can still obtain a better path in a more complex environment.

FIGURE 19

Comparison of planning paths for simulation environments. (a) ERDDQN algorithm; (b) BilSTM-D3QN algorithm.
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