
Frontiers in Neurorobotics 01 frontiersin.org

Path planning of mobile robot
based on improved double deep
Q-network algorithm
Zhenggang Wang *, Shuhong Song and Shenghui Cheng

College of Electrical Engineering, Anhui Polytechnic University, Wuhu, China

Aiming at the problems of slow network convergence, poor reward convergence
stability, and low path planning efficiency of traditional deep reinforcement learning
algorithms, this paper proposes a BiLSTM-D3QN (Bidirectional Long and Short-
Term Memory Dueling Double Deep Q-Network) path planning algorithm based on
the DDQN (Double Deep Q-Network) decision model. Firstly, a Bidirectional Long
Short-Term Memory network (BiLSTM) is introduced to make the network have
memory, increase the stability of decision making and make the reward converge
more stably; secondly, Dueling Network is introduced to further solve the problem
of overestimating the Q-value of the neural network, which makes the network
able to be updated quickly; Adaptive reprioritization based on the frequency penalty
function is proposed. Experience Playback, which extracts important and fresh data
from the experience pool to accelerate the convergence of the neural network;
finally, an adaptive action selection mechanism is introduced to further optimize
the action exploration. Simulation experiments show that the BiLSTM-D3QN path
planning algorithm outperforms the traditional Deep Reinforcement Learning
algorithm in terms of network convergence speed, planning efficiency, stability
of reward convergence, and success rate in simple environments; in complex
environments, the path length of BiLSTM-D3QN is 20 m shorter than that of the
improved ERDDQN (Experience Replay Double Deep Q-Network) algorithm, the
number of turning points is 7 fewer, the planning time is 0.54 s shorter, and the
success rate is 10.4% higher. The superiority of the BiLSTM-D3QN algorithm in terms
of network convergence speed and path planning performance is demonstrated.

KEYWORDS

deep reinforcement learning, mobile robot, path planning, BiLSTM, Dueling Network

1 Introduction

In recent years, there has been a notable increase in the utilization of mobile robots in a
variety of fields, including the military and industry, for the performance of essential unmanned
tasks (Deguale et al., 2024). As the complexity of use scenarios and the level of safety standards
continue to evolve, the challenge of efficiently and accurately planning driving paths has
become a significant research topic (Meng et al., 2023). The planning of robot paths has
consistently been a topic of significant interest within the field of robotics. It enhances the
autonomy and operational efficiency of robots in diverse environments, offering substantial
benefits for applications across various sectors of modern society (Kong et al., 2024). The
fundamental objective of path planning is to identify the optimal route from the initial position
to the intended destination of the robot, which typically necessitates a comprehensive
assessment of factors such as distance, time, energy consumption, and the safety of the path
(Guo et al., 2020). An optimal path should be free of obstacles, minimize detours, and facilitate
efficient navigation (Junli et al., 2020). Mobile robots frequently operate in environments with
diverse obstacles and unknown variables, underscoring the importance of path planning

OPEN ACCESS

EDITED BY

Mohanraj Thangamuthu,
Amrita Vishwa Vidyapeetham, India

REVIEWED BY

V. Arunkumar,
Vellore Institute of Technology (VIT), India
Sivasankar Ganesan,
Amrita Vishwa Vidyapeetham, India

*CORRESPONDENCE

Zhenggang Wang
 wangzhenggang@ahpu.edu.cn

RECEIVED 17 October 2024
ACCEPTED 22 January 2025
PUBLISHED 13 February 2025

CITATION

Wang Z, Song S and Cheng S (2025) Path
planning of mobile robot based on improved
double deep Q-network algorithm.
Front. Neurorobot. 19:1512953.
doi: 10.3389/fnbot.2025.1512953

COPYRIGHT

© 2025 Wang, Song and Cheng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 13 February 2025
DOI 10.3389/fnbot.2025.1512953

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1512953&domain=pdf&date_stamp=2025-02-13
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1512953/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1512953/full
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1512953/full
mailto:wangzhenggang@ahpu.edu.cn
https://doi.org/10.3389/fnbot.2025.1512953
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1512953

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 02 frontiersin.org

algorithms that can effectively avoid obstacles and operate in real-time
with high reliability (Sha et al., 2023).

The existing body of literature on path planning algorithms can
be divided into two main categories: traditional algorithms and those
based on machine learning (Yuwan et al., 2022). The traditional path
planning algorithms include Ant Colony Optimization (Lei et al.,
2023), A* algorithm (Yu et al., 2024), Particle Swarm Optimization
(Meetu et al., 2022), Dijkstra algorithm (Zhou et al., 2023), Genetic
Algorithm (Debnath et al., 2024), Dynamic Window Approach
(Chuanbo et al., 2023), and Artificial Potential Field algorithm (Zhang
et al., 2023), among others. While these algorithms are widely used,
they also have corresponding shortcomings, including low planning
efficiency, poor search ability, and the tendency to fall into local optima.
In recent years, the application of Deep Reinforcement Learning (DRL)
algorithms in the field of path planning has been significantly advanced
by the progress of hardware technology. DRL integrates the robust
feature extraction capabilities of Deep Learning (DL) with the decision
optimization abilities of Reinforcement Learning (RL), thereby offering
a novel approach to address the limitations of traditional path planning
algorithms (Chen et al., 2024). The DRL algorithm most widely used
in path planning is the Deep Q Network (DQN) algorithm proposed
by the DeepMind team (Lin and Wen, 2023). The DQN effectively
addresses the “curse of dimensionality” problem faced by Q-value
tables in complex environments by utilizing a neural network to replace
the Q-value table in the Q-Learning algorithm. However, the traditional
DQN algorithm exhibits shortcomings such as overestimation of
Q-values and slow network convergence.

In light of the shortcomings of the DQN algorithm, Huiyan et al.
(2023) put forth an augmented DDQN (double DQN) approach to
path planning, which enhances the efficacy of algorithmic training
and the precision of optimal path generation. Jinduo et al. (2022) put
forth a double DQN-state splitting Q network (DDQNSSQN)
algorithm that integrates state splitting with optimal states. This
method employs a multi-dimensional state classification and storage
system, coupled with targeted training to obtain optimal path
information. Yan et al. (2023) put forth an end-to-end local path
planner n-step dueling double DQN with reward-based ϵ-greedy
(RND3QN) based on a deep reinforcement learning framework,
which acquires environmental data from LiDAR as input and uses a
neural network to fit Q-values to output the corresponding discrete
actions. The problem of unstable mobile robot action selection due to
sparse rewards is effectively solved. Shen and Zhao (2023) put forth a
DDQN-based path planning framework for UAVs to traverse
unknown terrain, which effectively mitigates the issue of
overestimation of Q values. Wang et al. (2024) put forth an extended
double deep Q network (DDQN) model that incorporates a radio
prediction network to generate a UAV trajectory and anticipate the
accumulated reward value resulting from action selection. This
approach enhances the network’s learning efficiency. In a further
development of the field, Li and Geng (2023) proposed a probabilistic
state exploration ERDDQN algorithm. This has the effect of reducing
the number of times the robot enters a repeated state during training,
thus allowing it to explore new states more effectively, improve the
speed of network convergence, and optimize the path planning effect.
Tang et al. (2024) put forth a competitive architecture dueling-deep Q
network (D3QN) for UAV path planning, which further optimizes the
calculation of Q value and facilitates more precise updates to network
parameters. Yuan et al. (2023) proposed the D3QN-PER path planning

algorithm, which employs the Prioritized Experience Replay (PER)
mechanism to enhance the utilization rate of crucial samples and
accelerate the convergence of the neural network.

The aforementioned research has enhanced the functionality of the
DQN algorithm to a certain degree; nevertheless, there are still
significant issues that require attention, including low sample
utilization, slow network convergence, and unstable reward
convergence. To address this issue, this paper proposes a BiLSTM-
D3QN path planning algorithm based on the DDQN algorithm. First,
a BILSTM network is introduced to render the neural network
memory-based, thereby increasing the stability of decision-making
and thus facilitating more stable reward convergence. Secondly, a
competitive network is introduced to further address the issue of
overestimation of the neural network’s Q-value, thereby enabling the
network to update more rapidly. The proposal of adaptive
reprioritization of experience replay based on frequency penalty
function is intended to facilitate the extraction of crucial and recent
data from the experience pool, thus accelerating the convergence of the
neural network. Finally, an adaptive action selection mechanism is
introduced with the objective of further optimizing action exploration.

2 Related work

2.1 Q-Learning algorithm

Reinforcement Learning is an important branch of machine
learning that aims to learn how to take the best action in a given
situation by interacting with the environment in order to maximize
cumulative rewards. Reinforcement learning differs from supervised
learning and unsupervised learning in that it emphasizes trial and
error in interacting with the environment for feedback, constantly
adjusting strategies to achieve the best results. The basic framework of
reinforcement learning is shown in Figure 1. The agent chooses action

ta based on current state ts . The environment provides reward tr for
the current action and state 1ts + for the next moment based on the
action. After continuous interaction, the agent’s decision is improved
and updated to obtain a higher reward tr .

The Q-Learning algorithm is a model-free reinforcement learning
method based on a value function. It selects the optimal strategy by
updating the action value function Q. The update of Q value is shown
in Equation 1:

FIGURE 1

Basic reinforcement learning architecture.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 03 frontiersin.org

 () () () ()1, , max , ,t t t t t a t t tQ s a Q s a r Q s a Q s aα γ ′ + ′← + + − (1)

Where (),t tQ s a denotes the Q-value of the intelligent body for
selecting action ta in the current state ts ; α denotes the learning rate;
γ denotes the discount factor; tr denotes the reward value obtained
after executing action ta , and ()1max ,a tQ s a+′ ′ denotes the maximum
Q-value for the next state.

2.2 DQN algorithm

The traditional DQN algorithm, as proposed by the DeepMind
team, is based on the Q-Learning algorithm. The introduction of a
neural network as the carrier of the value function allows for the
nonlinear approximation of the state value function through the use
of a neural network with parameters ω and an activation function.
This approach enhances the efficiency of path planning. In contrast to
the Q-Learning algorithm Q-value table, the DQN employs a neural
network to address the dimensional explosion problem that arises in
complex environments (Chen et al., 2024). However, the conventional
DQN approach selects the action with the maximum Q-value when
searching for the optimal action, which is susceptible to overestimation
of the Q-value during network updates. Figure 2 illustrates the
structure of the DQN algorithm.

The DQN neural network comprises two networks with identical
structures: the current network (CQ) and the target network (TQ). The
algorithm employs the current network to calculate an estimated
value for a given state and utilizes the output value of the target
network in conjunction with a sequential difference method to
perform gradient descent, thereby updating the current network.
Once the current network has undergone a specified number of
updates, the target network is updated by copying the parameters C

of the current network. During the training phase, a random and
uniform sample is selected from the experience replay pool and
provided to the two neural networks for the purpose of gradient
descent with respect to the loss function. The calculation formula is
presented in Equations 2,3.

 ()()2t arget, ;ω= −Loss C t tL Q s a Q
 (2)

 ()t arget 1max , ;γ ω+′= + ′ ′t a T tQ r Q s a
 (3)

Where ω is the current network parameter and ω′ is the target
network parameter; γ is the discount factor; (), ;ωC t tQ s a is the
current network output value; and ()1max , ;ω+′ ′ ′a T tQ s a is the
maximum action value of the target network at state 1ts + .

Following the calculation of the loss value, the DQN updates the
network parameter ω through the application of the gradient descent
method. The gradient descent formula is presented in Equation 4.

 () ()1 t arget , , , ,t t C t t t C t t tE Q Q s a Q s aω ω ω ω+ = + − ∇ (4)

2.3 DDQN algorithm

In response to the issue of overestimation of the Q value in the
DQN algorithm, the DeepMind team put forth the DDQN algorithm
as a potential solution. In comparison to the DQN algorithm, the
DDQN algorithm modifies the manner in which the Q value is
calculated within the target network. This involves the decomposition
of the maximization operation within the target network into the
utilization of distinct networks for the purposes of action selection
and action evaluation. In contrast to the conventional approach of

FIGURE 2

Schematic diagram of DQN structure.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 04 frontiersin.org

selecting the maximum Q value, the DDQN algorithm initially
identifies the action a′ that corresponds to the maximum Q value in
state 1ts + through the current network. The target network then
calculates the Q value based on action a′ and the current state 1ts + .
This process effectively mitigates the issue of overestimation of Q
values (Yuan et al., 2023), leading to more precise Q value estimation.
The structural diagram of the DDQN network is illustrated in
Figure 3.

The Target Value in the DDQN algorithm is calculated as shown
in Equation 5:

 ()()t arget 1 1 1,arg max , ; ;γ ω ω+ + ′ + ′= + ′t T t a C tQ r Q s Q s a
 (5)

where a′ represents the set of all possible actions in the next state
1ts + ; and ()1arg max , ;ω+′ ′a C tQ s a represents the action with the

largest Q value selected by the current Q network in 1ts + .

3 BiLSTM-D3QN path planning
algorithm

While DDQN addresses the issue of overestimation of
Q-values to a degree, it nevertheless exhibits certain shortcomings
and constraints. In the DDQN algorithm, the value of ε is a
constant. In the latter stages of path planning, the robot may fail
to identify the optimal path due to the random selection of actions.
While the experience replay buffer addresses the issue of data
correlation, it also presents a challenge in efficiently sampling
representative experiences from the experience pool to accelerate
network convergence. Furthermore, when the robot encounters
the same obstacle, it may execute disparate actions, which impedes
the value function from attaining convergence. This ultimately
results in an unstable decision-making process. In light of these
considerations, this paper puts forth a BiLSTM-D3QN path
planning algorithm founded upon the DDQN decision-
making model.

3.1 Design of reward function

In the context of mobile robot path planning, the term “state” is
defined as the position coordinates of the robot, as illustrated in
Equation 6:

 (),S x y= (6)

Its action space is shown in Figure 4.
The area in which the robot is permitted to move is divided into a

grid, and the robot is therefore able to move freely to any of the eight
surrounding grids. The digits 0 through 7 are used to represent the
eight directions: front, back, left, right, top left, top right, bottom left,
and bottom right, respectively. The action set is illustrated in
Equation 7:

 ()0,1,2,3,4,5,6,7A = (7)

Reward functions are a key component of research in the field of
RL on path planning. Classical DRL algorithms typically employ sparse
reward functions, as discussed in Zhao et al. (2024). The classical DRL
algorithm is designed with arrival rewards and collision rewards, with
a positive reward of 20 given for arrival at the target point and-20 for
collision, and the reward function is shown in Equation 8:

20
20t

reach goal
r

collision

= −
(8)

Since only the arrival and collision rewards are set during the
training process, it results in a sparse reward signal. When the mobile
robot acts, ineffective actions often occur. In general, terms, when the
robot completes the action, if the reward value is 0 at this time, the
robot can not judge what to do next based on the current state, and it
is not clear how to reach the target position. Due to the difficulty of
pre-exploration, the robot needs to go through a longer trial-and-
error process to find the correct path. During this process, the robot

FIGURE 3

Schematic diagram of DDQN structure.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 05 frontiersin.org

is mainly guided by the negative rewards from collisions and lacks the
guidance of positive rewards, so it is difficult to update a better strategy
during strategy evaluation.

One solution to the reward sparsity problem is to add auxiliary
rewards, and in this paper, we introduce a dynamic reward function.
Distance and direction rewards are added to the environment as
auxiliary rewards, and the reward values are dynamically presented
with the change of robot position. The closer the mobile robot is to the
target point, the greater the reward is. The reward function is shown
in Equation 9:

()
()
()

3

20

Ä
2 0,1,2,3
2.5 4,5,6,7
5
20

t

reach goal
j other
l

r a A
a A
out of step
collision

= − ∈
− ∈
−

−

(9)

To ensure safety in the path planning process, the simulation
environment is given to the obstacle expansion. When the distance
between robot and the obstacle is less than 0.1 m it is considered to
have collision, and the distance between the robot and the target point
is less than 0.1 m it is considered to have reached the target point, and
the distance between the mobile robot and the target point is
calculated as shown in Equation 10:

() ()2 2

∆ = − + −current goal current goall x x y y
 (10)

where ∆l is the Euclidean distance between the robot and the
target position at time t ; j is the distance-assisted reward constant,
which is used to adjust the scale of the reward; (),current currentx y is the

current position of the mobile robot and (),goal goalx y is the target
point position.

The improved dynamic reward function in this paper is shown in
Equation 11:

 ()3
=

∆
t

jr
l

(11)

In the gradient update of the neural network value function, the
error term is shown in Equation 12:

 ()t arget , ,t C t t tQ Q s aδ ω= − (12)

When the reward tr is sparse, the change of tδ is drastic and has
high variance, which affects the convergence. By introducing a smooth
reward function, the variance of the gradient update term and the
gradient update formula are shown in Equations 13 and 14:

 () () ()()t arget , ,t C t t tVar Var Q Var Q s aδ ω= + (13)

 () () ()t arget , , , ,Loss C t t t C t t tL E Q Q s a Q s aω ω ω ω ∇ = − ∇ (14)

Sparse rewards can lead to the following problems:

 (1) The target value t argetQ is discontinuous: when the rewards are
sparse, tr is zero in most time steps, resulting in an unsmooth
change in the value of t argetQ ;

 (2) Invalid gradient: When tr is mostly zero, the update signal
(()t arget , ,C t t tQ Q s a ω−) of the gradient becomes sparse and
has high variance, leading to difficulty in optimization. By
introducing a smooth reward function with continuous
non-zero values, the problem of sparse reward where most of
tr is zero is eliminated. The continuity of tr makes the

distribution of the objective value t argetQ more continuous,
which directly reduces the variance of t argetQ . Convergence
is improved.

The visualization of the signal distribution for the traditional and
dynamic reward functions is shown in Figure 5. Assuming that the target
point location of the mobile robot is (0.50, 0.50), the highlighted reward
peaks at 20 when the Euclidean distance Äl between the robot and the
target location is a minimum value of 0.1. The traditional reward function
reward signal on the left side is only activated in a small area (with a radius
of about 0.1) of the target point, and the other regions are almost
unrewarded. The reward signal is very sparse, leading to inefficient
training of the reinforcement learning algorithm. The right dynamic
reward function reward signal gradually increases as the distance between
the mobile robot and the target point decreases, and the color gradually
changes from bright (high reward value) to dark (low reward value),
forming a smooth gradient field. The dynamic reward function can
alleviate the sparse reward problem by extending the reward coverage and
establishing a gradient reward field, thus significantly improving the
algorithm’s performance. This gradient reward design can effectively
guide the mobile robot towards the target direction.

FIGURE 4

Schematic diagram of the action space.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 06 frontiersin.org

3.2 Adaptive action selection mechanism

In the traditional action selection strategy, ε in the ε-greedy
strategy is a fixed value. First, this may lead to insufficient exploration
in the early stage of the system, which is easy to fall into the local
optimal solution and unable to find the global optimal solution. In
addition, there is too much exploration in the later stage, which can
lead to slower convergence and the inability to effectively utilize the
currently learned optimal policy, affecting the final performance. To
avoid falling into a local optimum, the ε-greedy policy is improved so
that the value of ε is no longer a fixed value and decreases linearly as
planning progresses. The action selection mechanism in the early
stage of planning selects actions more randomly by probability, and in
the later stage it is more likely to select actions with large reward
values. The action selection function is shown in Equation 15:

()
()

arg max , ;ω ε
ε

 >= ≤

a t
t

Q s a n
a

random A n

(15)

where n is a random number between 0 and 1; the exploration
factor ε represents the degree of random exploration of the
environment; and the set of all actions is denoted A.

At each time step t , the selection of action ta is divided into
two cases:

 (1) When n is greater than ε , the action a that maximizes
(),; ,;tQ s a ω in the current state ts is selected. This means that

in this case the algorithm prefers to select the action with the
highest reward in the current estimation, i.e., it utilizes the
best-known action.

 (2) When n is less than ε , choose a random action from the set of
all possible actions A. This means that in this case, the
algorithm prefers to randomly explore new actions to discover
potentially better strategies.

ε dynamic adjustment is shown in Equation 16:

()min max min 1t

t
T

ε ε ε ε = + − ⋅ −

(16)

where t is the current number of cycles; T is the total number of
cycles; maxε is the maximum exploration rate; and minε is the
minimum exploration rate.

To achieve a smooth transition of ε , the most commonly used
method is linear decay. As the number of cycles of t increases, the

value of 1 t
T

 −

 gradually decreases, and the exploration rate ε

gradually decreases from the maximum value maxε to the
minimum value minε . When t is equal to 0, tε is equal to maxε ,
which means that in the initial stage, the exploration factor is at the
maximum value, and the algorithm prefers random exploration.
When t is greater than 0 and less than T , the exploration factor
gradually finds a balance between exploration and utilization.
When t is equal to T , tε is equal to minε , which means that in the
final stage, the exploration factor is at its minimum value and the
algorithm prefers to utilize the best-known action. This satisfies the
exploration degree in the early stage and avoids missing the
optimal path in the later stage, while retaining the possibility of
randomly selecting actions with lower probability.

3.3 Adaptive reprioritization of experience
replay based on frequency penalty function

In traditional DQN algorithms, experience playback is usually done
by sampling uniformly from the experience pool, which is less efficient.
Therefore, academics have proposed a prioritized experience replay (PER)
based on temporal difference error (TD Error), where experiences with
large TD Error usually indicate higher learning value. However, there are
places where PER can be optimized. In this paper, we propose adaptive
reprioritization of experience replay based on frequency penalty function,
whose core concept is to reflect the change in importance of experience
by combining the TD Error and the frequency with which the experience

FIGURE 5

Visualization of signal distributions with traditional and dynamic reward functions.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 07 frontiersin.org

is used. The frequency-of-use-based penalty function reduces the
probability of being sampled again by dynamically adjusting the priority
of those experiences that have been sampled multiple times. The
penalization function using the frequency and the prioritization of
experience are shown in Equations 17 and 18:

() 1

1i
i

f u
uµ

=
+

(17)

 () ()i i ip f uνδ ρ= + ⋅ (18)

where ip is the priority of data i; iδ is the TD Error; the parameter
ρ is set to avoid ip being 0; ν is a parameter controlling the degree of
amplification of the priority; ()if u is the penalization function using
the frequency; iu is the number of times the experience i has been
sampled; and µ is the penalty rate constant.

The probability of each piece of data being drawn is shown in
Equation 19:

() i

kk

pP i
p

=
∑

(19)

where the denominator is the sum of all data priorities; k is the
number of data in the experience pool.

The preference for playing back experiences with high TD error
leads to the problem that the neural network training process is prone
to oscillations or even divergence. Therefore the importance of
sampling weight iω is introduced to solve this problem. As shown in
Equation 20:

1 1
i

iN P

β
ω

= ⋅

(20)

where N is the number of data in the experience pool; parameter
β controls the influence of importance sampling weights in the
learning process.

3.4 Dueling Network

This paper introduces a competitive network into the neural
network structure of the DDQN algorithm. The competitive network
introduces a dual layer with two branches between the hidden layer
and the output layer of the DDQN network, which are, respectively,
the advantage function layer A and the state value function layer V .
The advantage function layer calculates the advantage of each action
relative to the average, and the state function layer calculates the state
value of the object in its current state. The advantage value of each
action is summed with the state value to obtain the Q-value of each
action. The problem of overestimation of the Q-value by the neural
network can be further solved. The structure of the competition
network is shown in Figure 6.

The Q value calculation for the Dueling DQN is shown in
Equation 21:

() () () ()1, ; , ; ; , ;ω ω ω ω

′
+ − ′= ∑A V A

t t t t t t
a

Q s a A s a V s A s a
A

(21)

where (), ;ω A
t tA s a

 is the dominant value function in state ts ;
 (); V

tV s ω is the state value function in state ts ; Aω and Vω are the
network parameters of the dominant and state value functions,

respectively; A is the size of the action space; and (), ;ω
′

′∑ A
t

a

A s a is

the average of all action values obtained from the dominant value
function layer.

This is precisely because in a competitive network, the Q value of
network Q is calculated by summing up the Value Function and the
Advantage Function. The existence of the Value Function allows the
Algorithmic Network to evaluate the state value that is not affected by
actions, thereby improving the accuracy of the Q value calculation and
the algorithm’s efficiency.

3.5 Bidirectional long short-term memory
network

In this paper, a Bidirectional Long Short-Term Memory
Network (BiLSTM) is introduced to solve the problem of poor
decision-making due to partial observability based on the DDQN
decision model. By adding BiLSTM, the action selection is
correlated before and after. The decision-making is more stable
when facing the same obstacle, and the reward converges more
stably in path planning.

3.5.1 Long short-term memory network
Long Short-Term Memory (LSTM) is an improvement of

Recurrent Neural Network (RNN), which solves the problem of
“vanishing gradient” in model training by adding memory units. The
basic units of the LSTM network include forgetting gates, input gates,
and output gates. Therefore, LSTM can effectively retain and update
long-term memory and process complex time series data. The network
structure is shown in Figure 7.

tf is the output of the forgetting gate at the moment t; ti is the
output of the input gate at the moment t; to is the output of the output
gate at the moment t; tc is the cellular state of the memory cell LSTM
at the current moment; 1tc − is the cellular state of the memory cell
LSTM at the previous moment; tx is the input vector at the current
moment; th is the output vector at the current moment; σ is the
activation function; and 1th − is the output at the previous moment.

The core of LSTM is the forgetting gate, which is responsible for
preserving long-term memory and is used to decide the data to
be preserved in the historical information and to select the memorized
information for the Sigmoid nonlinear transformation. Its formula is
shown in Equation 22:

 ()1t xf t hf t ff W x W h bσ −= + + (22)

where xfW and hfW are the weight parameters of the forgetting
gate; fb is the bias parameter of the forgetting gate.

The input gate is used to control the size of the data flowing into
the memory cell, and the information in the memory cell can
be updated using Equation 23 and Equation 24:

 ()1t xi t hi t ii W x W h bσ −= + + (23)

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 08 frontiersin.org

 ()
˜

1tanht C t C t CC W x W h b−= + + (24)

where xiW and hiW are the weight matrices of the input gates; ib is
the bias vector of the input gates;

˜
tC is the temporary variable used to

compute tc ; CW is the neural network parameter; and Cb is the
deviation vector.

The effect of the previous moment memory cell on the current
moment memory cell can be expressed by Equation 25:

˜

1 tt t t tc f c i C−= + (25)

where ⊙ stands for the Hadamard product operation.
The output gate is used to determine the output value of the LSTM

network and the current input features and the previous moment
output are passed to the activation function to compute the output at
the current moment. The computational formula is shown in
Equation 26 and Equation 27:

 ()tanht t th o c= (26)

 ()1t xo t ho t oo W x W h bσ −= + + (27)

where xoW and hoW are the weight parameters of the output gate;
ob is the bias parameter of the input gate.

3.5.2 Bidirectional long short-term memory
network

BiLSTM Network is an improved LSTM network that considers
both past and future information while processing sample data. The
model combines a forward-backward LSTM layer and a backward-
forward LSTM layer on top of a unidirectional LSTM network. This
allows for more comprehensive use of information from the sample
data in training, improved accuracy in the sequence labeling task, and
a reduction in information loss, which increases the stability of
decision-making. The structure is shown in Figure 8.

FIGURE 7

Schematic diagram of the LSTM structure.

FIGURE 6

Schematic diagram of the Dueling Network architecture.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 09 frontiersin.org

BiLSTM network is the original signal from the input layer into
the network layer after the forward LSTM calculation to get an output
value, the value will affect the learning rate and the output function,
etc.; at the same time, after the reverse LSTM calculation to get the
output value, which will determine the connection weights of the
input nodes in the BiLSTM, to form a new set of output values. The
calculation process is shown in Equations 28, 29:

 ()1,t th LSTM x h −=

 (28)

 ()1,t th LSTM x h −=

 (29)

where tx is the input at moment t, h

 is the output of the forward
implicit layer at each moment, and h

 is the output of the backward
implicit layer at each moment.

The outputs of the forward LSTM and the backward LSTM are
merged at each time step, usually by splicing. The calculation formula
is shown in Equation 30:

 t t th h h =

 (30)

where || denotes vector concatenation.

3.6 BiLSTM-D3QN algorithm path planning
overall process

The framework of the BiLSTM-D3QN model is shown in Figure 9.
The BiLSTM-D3QN model adopts a dual network structure, which
inputs the current state ts from the experience pool to the current
network CQ based on the priority, and then selects the action ta under
the state ts according to the adaptive action and obtains the Q-value of
the current network. The state 1ts + is input to the target network TQ . At
the same time, the action MAXa corresponding to the maximum Q value
in state 1ts + is selected in the current network, and then MAXa is used to
find the Q value in the target network. The current network updates the
network parameters ω by backpropagation of the loss function and
periodically copies the parameters to the target network parameters ω′.
In the inner layer of the two network structures, the state information is
extracted through the memory unit module and input into the two-layer

BiLSTM network. After passing through the four fully connected layers,
the advantage function layer A and the state value function layer V
output the Q value. This makes the mobile robot memorable and more
stable in decision-making when encountering the same obstacles. The
robot’s ability to find target points and avoid obstacles becomes stronger,
which also makes the converged reward curve less volatile thus planning
a better path. Path planning pseudocode of mobile robot based on
BiLSTM-D3QN is shown in Algorithm 1.

ALGORITHM 1 Main program of BiLSTM-D3QN
(Path planning pseudocode of mobile robot
based on BiLSTM-D3QN)

1. Initialize an experience pool M with capacity N
2. Initialize learning rate, discount factor
3. The same parameters initialize the BiLSTM-current network CQ

and the BiLSTM-target network TQ
4. for episode =1 to T do
5. Initialize the environment
6. Initialize done = False
7. Initialize step counter = 0
8. Initialize accumulate reward = 0
9. while not done and step counter < max episode step do
10. Determine mobile robot state ts
11. if mobile robots in an accessible state then
12. Selection of action ta based on probability ε
13. otherwise use a greedy strategy to select an action ta
14. end if
15. Perform action ta , get reward tr , and new state 1ts +
16. Accumulate reward += tr
17. Store the experience data ()1, , ,t t t ts a r s + in the experience pool M
18. Randomly select batch data samples ()1, , ,j j j js a r s + from M
19. if end of the episode then
20. Set t arget jQ r=
21. else
22. Set ()t arget 1max ,; ,;t a T tQ r Q s aγ ω′ + ′+ ′=
23. end if
24. Perform gradient descent for network parameter ω in

()()2t arget,; ,;C t tQ s a Qω −
25. Determine mobile robot state 1ts +
26. if mobile robot in an obstructed state then
27. Set done = False
28. Finish the episode
29. else
30. continue
31. end if
32. Step counter + = 1
33. end while
34. end for

4 Experimental results and analysis

4.1 Environment setup and parameter
configuration

A simulation comparison experiment was set up to verify the
algorithm’s effectiveness proposed in this paper. Experimental
environment: CPU model i7-13700H, GPU model RTX4070, Python

FIGURE 8

Schematic diagram of the BiLSTM structure.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 10 frontiersin.org

3.8, Pytorch 2.2.2, Tensorflow 2.13, Cuda 11.8. In this experiment, two
raster environments were created. Environment 1 is a simple
environment with a raster map size of 16 × 16; environment 2 is a
complex environment with a raster map size of 25 × 25. In both
environments, the black rectangular blocks represent obstacles, and the
white parts are free-movement areas. The red square in the bottom left
corner represents the starting point of the mobile robot; the red square
in the top right corner represents the endpoint of the mobile robot. The
starting point of Environment 1 is (10, 0) and the endpoint is (150, 160);
the starting point of Environment 2 is (10, 0) and the endpoint is (240,
250). The robot can move on the map in eight directions: up, down, left,
right, top left, top right, bottom left, and bottom right. Each movement
is 10 m long. The episode ends when the robot hits an obstacle, exceeds
the maximum number of steps, or reaches the end. The map of the
simulation environment is shown in Figure 10.

 (1) Comparison with traditional DRL algorithms in a simple
environment. The experimental environment is shown in
environment 1 in Figure 10A. In Environment 1, the path
planning of the Q-learning, DQN, DDQN, and the proposed
BiLSTM-D3QN algorithm with the same parameters are
performed, respectively. The superiority of the proposed
algorithm over traditional DRL path planning algorithms in a
simple environment is verified.

 (2) Comparison of the algorithm with improved algorithms in
complex environments. The experimental environment is shown
in environment 2 in Figure 10B. Q-learning, DQN, DDQN, and
ERDDQN (Wang et al., 2024) with the same parameters are
made to perform path planning with the BiLSTM-D3QN

algorithm proposed in this paper, under Environment 2.
Environment 2 is more complex than environment 1, and path
planning is more difficult, which can better verify the
effectiveness and robustness of the algorithm in this paper.

In both environments, 250 rounds of path planning are performed.
The activation function used by the neural network is ReLU, the
optimizer is Adam, and the network parameters are saved every 5
updates. The hyperparameter settings are shown in Table 1.

4.2 Analysis of training results

4.2.1 Comparison with traditional DRL algorithms
in simple environment

To verify the effectiveness of the proposed algorithm, it is compared
with the Q-learning, DQN, and DDQN path planning algorithms in
environment 1. Figure 11 shows the path-planning route maps of the
four algorithms, and Figure 12 compares the metrics of the four
algorithms in environment 1, including the planned path length, the
number of planned path turning points, and the time required for path
planning. As can be seen from Figures 11, 12, the BiLSTM-D3QN
algorithm plans an optimal path. Although the BiLSTM-D3QN
algorithm and the DQN and DDQN algorithms both plan a path length
of 200 m, the number of path turning points for the BiLSTM-D3QN
algorithm is 8, which is lower than the 13 for the DQN algorithm and
the 10 for the DDQN algorithm. The time required for path planning is
1.02 s, which is lower than the 2.32 s for the DQN algorithm and the
1.54 s for the DDQN algorithm. Of the four algorithms compared, the

FIGURE 9

Overall framework of BiLSTM-D3QN algorithm.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 11 frontiersin.org

worst performer was the Q-learning algorithm. The path planned by the
Q-learning algorithm was 230 m long, with 15 turning points and a
planning time of 3.55 s. It can be seen that the BiLSTM-D3QN
algorithm proposed in this paper is superior to the traditional
Q-learning, DQN, and DDQN algorithms in terms of path planning.

From Table 2, it can be seen that in 250 training episodes, the
algorithm with the highest overall success rate is the BiLSTM-D3QN
algorithm proposed in this paper, which reaches 97.6%; followed by
the DDQN algorithm 93.2% and the DQN algorithm 88.4%; while the
overall success rate of the ordinary Q-learning algorithm is 80.4%. The
BiLSTM-D3QN path planning algorithm has a greater advantage in
the overall success rate. Meanwhile, from the point of view of the
growth rate of the cumulative number of successes per 50 rounds, the
average growth rate of the algorithm proposed in this paper is 0.995,
which is higher than that of other algorithms, indicating that the
neural network has the fastest convergence speed. Combined with the
above analysis, the superiority of BiLSTM-D3QN is reflected in its
faster growth rate of successful episodes and higher final success rate.

Figure 13 shows a comparison of the cumulative reward and
number of steps for each episode of path planning by the robot in
Environment 1 for Q-learning, DQN, DDQN, and the proposed
BiLSTM-D3QN algorithm. Green represents Q-learning, yellow
represents DQN, blue represents DDQN, and red represents BiLSTM-
D3QN. After 250 episodes of path planning in the same environment,
all four algorithms were able to complete the robot’s path-planning
task to the goal point, and the reward and step curves converged and
eventually became similar. However, there were significant differences
in the speed and stability of convergence. The Q-learning algorithm
gradually converged after 120 episodes, and the curve fluctuated
greatly after convergence. This indicates that during the later training
process, although the mobile robot reaches the target point, it makes
unstable decisions, causing the reward value to fluctuate greatly. The
DQN and DDQN algorithms are actively explored during the first 40
training episodes. The reward curve and the step curve show
fluctuations, and the DDQN algorithm is superior to the DQN
algorithm in terms of accumulated reward value and number of steps
in each episode. This is because the DDQN algorithm changes the way
the Q-value of the target network is calculated, alleviating the problem

of overestimating the Q-value in the DQN algorithm and making the
network converge more stably. The BiLSTM-D3QN algorithm
proposed in this paper converges rapidly after 10 episodes of
exploration. After 30 episodes, the reward and step curves tend to
stabilize and reach an optimal value, which is significantly faster than
the other algorithms compared. This shows that the frequency penalty
function of the algorithm in this paper reprioritizes the experience
replay mechanism, which improves the use of important data and thus
accelerates the convergence of the neural network. The final reward
value exceeds that of DQN and DDQN, which is attributed to the fact
that the competitive network in BiLSTM-D3QN has a separate data
flow structure that can approximate the Q function more effectively
and accurately. The algorithm in this paper has less variation in reward
value in the later stages of training. The BiLSTM memory network
relates the previous and subsequent actions so that the robot’s
decisions are stable and the robot achieves a more stable cumulative
reward during path planning. In summary, the BiLSTM-D3QN
algorithm outperforms other algorithms during path planning

FIGURE 10

Map of the simulation environment. (a) Environment 1 is a simple environment. (b) Environment 2 is a complex environment.

TABLE 1 The hyperparameter settings.

Parameters Meaning Value

α Learning rate 0.001

γ Discount factor 0.99

maxε Maximum exploration rate 0.6

minε Minimum exploration rate 0.1

M Replay memory capacity 100,000

B Batch size 128

U Update network at fixed interval 5

Step Maximum steps 10,000

ν Priority exponent 0.6

β Importance sampling weight 0.4

µ Penalty rate constant 0.01

j Distance reward constant 0.1

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 12 frontiersin.org

training in terms of convergence speed, cumulative reward, and
overall stability.

4.2.2 Comparison with improved deep
reinforcement learning algorithms in complex
environment

Q-learning, DQN, DDQN, and ERDDQN are made to compare
with the BiLSTM-D3QN algorithm proposed in this paper under
environment 2. Figure 14 shows the path planning line diagrams of the
five algorithms, and Figure 15 shows the comparison of the five

FIGURE 11

Comparison of the planned routes of the four algorithms in env 1. (a) Q-Learning algorithm; (b) DQN algorithm; (c) DDQN algorithm; (d) BilSTM-D3QN
algorithm.

FIGURE 12

Comparison of the four algorithm indicators in env 1. (a) Path lengths; (b) Number of turning points; (c) Times.

TABLE 2 Cumulative number of successes in env 1.

Episode Q-learning DQN DDQN BiLSTM-D3QN

50 34 36 41 45

100 71 77 86 94

150 113 123 134 144

200 159 171 183 194

250 208 221 233 244

Success rate 83.20% 88.40% 93.20% 97.60%

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 13 frontiersin.org

algorithms in environment 2 in terms of various metrics, including the
length of the planned path, the number of inflection points of the
planned path, and the time required for path planning. From Figure 14,
it can be seen that the BiLSTM-D3QN algorithm plans better paths.
The worst performance of the five algorithms in the comparison is the
Q-learning algorithm, the Q-learning algorithm plans a path length of
330 m, the number of turning points is 19, and the planning time is
4.59 s. The Q-learning has the most turning points, which indicates

that its path planning is more unstable, there are more unnecessary
path adjustments the computational complexity is higher and the
optimization performance is poor. DQN and DDQN algorithms plan
path lengths of 330 m and 290 m, the number of turning points is 16
and 14, and the planning time is 3.29 s and 2.48 s, respectively. The
planned path length of BiLSTM-D3QN algorithm is 250 m, which is
20 m shorter than that of ERDDQN algorithm; the number of
inflection points in the path of the ERDDQN algorithm is 11, which is

FIGURE 13

Comparison of rewards and steps accumulated per episode in env 1. (a) Accumulated rewards for each episode of path planning; (b) Taken steps for
each episode of path planning.

FIGURE 14

Comparison of the five algorithms for planning paths in env 2. (a) Q-Learning algorithm; (b) DQN algorithm; (c) DDQN algorithm; (d) ERDDQN
algorithm; (e) BilSTM-D3QN algorithm.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 14 frontiersin.org

a lot of inflection points, whereas the number of inflection points in
the path of this paper’s algorithm is only 4; and this paper’s algorithm
takes a shorter time for path planning, which is only 1.61 s shorter than
that of the ERDDQN algorithm. Only 1.61 s is lower than the 2.15 s of
ERDDQN algorithm. It shows that it is the most computationally
efficient, and can converge more quickly in environmental decision
making. In summary, the BiLSTM-D3QN algorithm proposed in this
paper outperforms the traditional DRL algorithms and the ERDDQN
algorithm in the performance of path planning.

Table 3 shows that in the more complex environment 2, the
algorithm with the highest overall success rate is still the BiLSTM-
D3QN algorithm proposed in this paper, which reaches 94.0%;
followed by the ERDDQN algorithm at 83.6%, the DDQN algorithm
at 79.2%, and the DQN algorithm at 75.2%; the overall success rate of
the ordinary Q-learning algorithm is 72.8%, reflecting its poor
adaptability to complex environments. Its poor ability to adapt to
complex environments. BiLSTM-D3QN combines the BiLSTM
network, which can not only memorize the past state but also consider
the future state. It also processes the environment information more
comprehensively, so it performs the best in the path planning task. In
terms of growth, BiLSTM-D3QN consistently leads in the development
of cumulative successes per 50 episodes, followed by ERDDQN,
indicating that these two algorithms are the most capable of learning.
BiLSTM-D3QN and ERDDQN have the most stable growth rates
while Q-learning and DQN show more fluctuating performance. In
the last episode (200–250 rounds), the growth rate of BiLSTM-D3QN
increases significantly, indicating that it has a stronger ability to adapt
to complex environments at a later stage. BiLSTM-D3QN not only
grows the most in each episode but also grows at a relatively smooth
rate, showing superior learning performance and adaptability to
the environment.

Figure 16 compares the accumulated rewards and steps per
round of path planning performed by the robot using Q-learning,
DQN, DDQN, and ERDDQN with the BiLSTM-D3QN algorithm
proposed in this paper under Environment 2, where green is
Q-learning, yellow is DQN, blue is DDQN, cyan is ERDDQN, and
red is BiLSTM-D3QN. After 250 rounds of path planning under the
same environment, all five algorithms are able to complete the
robot’s path planning task of reaching the target point, but there is a
big difference in the convergence speed and stability of the
ERDDQN algorithm. The convergence speed and stability are very
different. The Q-learning algorithm converges more slowly, and in
the first 100 episodes of training, the reward value fluctuates
dramatically and is still in the stage of substantial exploration. The
DQN algorithm converges better than Q-learning and gradually
stabilizes after about 150 episodes. DQN shows strong exploratory
behavior with large fluctuations in reward values in the first 50
episodes, and the fluctuations are relatively small after convergence.
However, there are still some ups and downs. The ERDDQN
algorithm gradually converges after 50 episodes of active exploration
in the early stage of training and reaches the maximum value of
around 120 episodes. However, the reward curve and step curve
show fluctuation after convergence, which indicates that in the later
stage of training, although the mobile robot arrives at the goal point,
the mobile robot makes unstable decisions, resulting in the
fluctuation of the reward value larger. The BiLSTM-D3QN algorithm
proposed in this paper converges quickly after 40 exploration
episodes, and the average reward value and the number of steps are
better than the ERDDQN algorithm in the process of convergence,
and the degree of fluctuation of the reward curve and the number of
steps curve is smaller, which is attributed to the fact that the
competitive network in BiLSTM-D3QN has a separated data flow

FIGURE 15

Comparison of the five algorithms indicators in env 2. (a) Path lengths; (b) Number of turning points; (c) Times.

TABLE 3 Cumulative number of successes in env 2.

Episode Q-learning DQN DDQN ERDDQN BiLSTM-D3QN

50 25 32 33 37 43

100 55 69 74 79 90

150 99 107 113 120 139

200 140 146 150 163 185

250 182 188 198 209 235

Success rate 72.80% 75.20% 79.20% 83.60% 94.00%

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 15 frontiersin.org

structure, which can approximate the Q function more effectively
and accurately; BiLSTM-D3QN reaches its maximum value at
around 100 rounds, which is faster than the comparative ERDDQN
algorithm, suggesting that the reprioritised empirical replay
mechanism of this paper’s algorithm, based on the frequency penalty
function, improves the use of important data and thus speeds up the
convergence of the neural network; BiLSTM-D3QN has very little
fluctuation in the reward value function after 100 training rounds,

while the ERDDQN algorithm curve shows a small fluctuation,
which is due to the fact that the BiLSTM memory network in the
algorithmic structure of this paper makes the front and back actions
relevant, so the robot’s decision is stable and a more stable
cumulative reward is achieved during path planning. In summary,
the BiLSTM-D3QN algorithm outperforms the ERDDQN algorithm
in terms of convergence speed, cumulative reward, and overall
stability during path planning training.

FIGURE 16

Comparison of rewards and steps accumulated per episode in env 2. (a) Accumulated rewards for four algorithms; (b) Taken steps for four algorithms;
(c) Accumulated rewards for two algorithms; (d) Taken steps for two algorithms.

FIGURE 17

Simulation environment infographic.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 16 frontiersin.org

FIGURE 18

First view of a mobile robot.

4.3 Analysis of ROS simulation results

To verify the feasibility of the improved algorithm in real robots, this
section implements mobile robot path planning under the ROS Gazebo
simulator. A small four-wheeled all-terrain robot of Jackal UGV is used
in this experiment, and the robot autonomously builds a map of the
environment by LiDAR, and the blue line is the LiDAR scanning line, as
shown in Figure 17. The first view of the mobile robot during the
planning process is shown in Figure 18. The ERDDQN algorithm and
the BiLSTM-D3QN algorithm proposed in this paper are applied to this
environment, and the actual environment path planning results obtained
are shown in Figure 19. As can be seen from Figure 19, both algorithms
can generate a global path in this environment. The ERDDQN algorithm
is compared with the BiLSTM-D3QN algorithm proposed in this paper,
and the experimental results are shown in Table 4.

As shown in Table 4, the path length of the BiLSTM-D3QN
algorithm proposed in this paper is 28.3 m and the path planning time
is 3.19 s. Compared with the ERDDQN algorithm, the robot path length

and path planning time are reduced by 5.98 and 27%, respectively,
which fully verifies that in real complex environments, the BiLSTM
network and the improved prioritized experience replay mechanism
enable the robot to improve the collision avoidance and goal point
finding ability, and reduces the robot path length and plans a better path.

5 Conclusion

This paper proposes the BiLSTM-D3QN path planning algorithm
to improve the traditional DDQN algorithm for the path planning
problem of mobile robots. On the one hand, this paper introduces a
frequency penalty function, which makes the real-time important data
in the experience pool fully utilized to improve the convergence rate of
the neural network; on the other hand, this paper adds a competitive
network architecture with separate data streams, which can approximate
the Q function more effectively and accurately, and further solves the
problem of overestimation of the Q-value function; The bidirectional
long and short-term memory network is added to the network structure
so that the model has the function of extracting and remembering the
obstacle information, which improves the stability of the mobile robot’s
decision making and makes the reward convergence more stable; and
this paper introduces an adaptive action selection mechanism to further
optimize the action exploration. Finally, simulation comparison
experiments are set up in both simple and complex environments, and
the experimental results show that the BiLSTM-D3QN path planning
algorithm is better than the traditional deep reinforcement learning
algorithm in terms of network convergence speed, planning efficiency,
stability of reward convergence and success rate in simple environments;
in complex environments, the path length of BiLSTM-D3QN is 20 m
shorter and the number of turning points is 7% less than that of the
ERDDQN algorithm. 20 m, 7 fewer turning points, 0.54 s less planning
time, and a 10.4% higher success rate than the ERDDQN algorithm.
The algorithm is ported to a ROS robot, and mobile robot path planning
experiments are designed under the ROS Gazebo simulator, which
verifies that the improved algorithm is feasible in the real world.
However, since this paper only studies static obstacle avoidance and
does not consider the presence of dynamic obstacles, the direction of
future research is to add dynamic obstacles in the environment so that
it can still obtain a better path in a more complex environment.

FIGURE 19

Comparison of planning paths for simulation environments. (a) ERDDQN algorithm; (b) BilSTM-D3QN algorithm.

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang et al. 10.3389/fnbot.2025.1512953

Frontiers in Neurorobotics 17 frontiersin.org

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

ZW: Funding acquisition, Resources, Supervision, Writing – review
& editing. SS: Investigation, Methodology, Software, Writing – original
draft. SC: Data curation, Validation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work was

supported by the Natural Science Research Project of Anhui Province
Universities (Grant No. 2022AH050977).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Chen, L., Wang, Q., Deng, C., Xie, B., Tuo, X., and Jiang, G. (2024). Improved double

deep Q-network algorithm applied to multi-dimensional environment path planning of
hexapod robots. Sensors 24:2061. doi: 10.3390/s24072061

Chuanbo, W., Wangneng, Y., Guangze, L., and Weiqiang, L. (2023). Deep
reinforcement learning with dynamic window approach based collision avoidance path
planning for maritime autonomous surface ships. Ocean Eng. 284:115208. doi: 10.1016/j.
oceaneng.2023.115208

Debnath, D., Vanegas, F., Boiteau, S., and Gonzalez, F. (2024). An integrated geometric
obstacle avoidance and genetic algorithm TSP model for UAV path planning. Drones
8:302. doi: 10.3390/drones8070302

Deguale, A. D., Yu, L., Sinishaw, L. M., and Li, K. (2024). Enhancing stability and
performance in Mobile robot path planning with PMR-dueling DQN algorithm. Sensors
24:1523. doi: 10.3390/s24051523

Guo, S., Zhang, X., Zheng, Y., and du, Y. (2020). An autonomous path planning model
for unmanned ships based on deep reinforcement learning. Sensors 20:426. doi: 10.3390/
s20020426

Huiyan, H., Jiaqi, W., Liqun, K., Xie, H., and Hongxin, X. (2023). Improved robot path
planning method based on deep reinforcement learning. Sensors (Basel, Switzerland) 23.
doi: 10.3390/s23125622

Jinduo, Z., Zhigao, G., Jiakai, L., Chao, W., Keqiang, Y., and Wenjun, L. (2022). Path
planning research of a UAV Base station searching for disaster victims’ location
information based on deep reinforcement learning. Entropy 24:1767. doi: 10.3390/
e24121767

Junli, G., Weijie, Y., Jing, G., and Zhongjuan, L. (2020). Deep reinforcement learning for
indoor Mobile robot path planning. Sensors (Basel, Switzerland) 20:5493. doi: 10.3390/
s20195493

Kong, X., Zhou, Y., Li, Z., and Wang, S. (2024). Multi-UAV simultaneous target
assignment and path planning based on deep reinforcement learning in dynamic
multiple obstacles environments. Front. Neurorobot. 17:171302898. doi: 10.3389/
fnbot.2023.1302898

Lei, W., Xiaodong, H., Junguo, C., Chao, L., and Wensheng, X. (2023). Modified
adaptive ant colony optimization algorithm and its application for solving path planning
of mobile robot. Expert Syst. Appl. 215:119410. doi: 10.1016/j.eswa.2022.119410

Li, Q., and Geng, X. (2023). Robot path planning based on improved DQN algorithm.
Comput. Eng. 49, 111–120. doi: 10.19678/j.issn.1000-3428.0066348

Lin, Y., and Wen, J. (2023). Improved duelling deep Q-networks based path planning
for intelligent agents. Int. J. Veh. Des. 91, 232–247. doi: 10.1504/IJVD.2023.131056

Meetu, J., Vibha, S., Narinder, S., and Satya Bir, S. (2022). An overview of variants and
advancements of PSO algorithm. Appl. Sci. 12:8392. doi: 10.3390/app12178392

Meng, X., Jiachen, Y., Jiabao, W., Zhengjian, L., Wen, L., and Xinbo, G. (2023). An
information-assisted deep reinforcement learning path planning scheme for dynamic
and unknown underwater environment. IEEE Trans. Neural Netw. Learn. Syst. 36,
842–853. doi: 10.1109/TNNLS.2023.3332172

Sha, L., Mingyue, Z., Yongbo, Z., Cheng, M., and Qingdang, L. (2023). A survey of
path planning of industrial robots based on rapidly exploring random trees. Front.
Neurorobot. 17:171268447. doi: 10.3389/fnbot.2023.1268447

Shen, X., and Zhao, T. (2023). UAV regional coverage path planning strategy based on
DDQN. Electron. Meas. Technol. 46, 30–36. doi: 10.19651/j.cnki.emt.2211675

Tang, J., Liang, Y., and Li, K. (2024). Dynamic scene path planning of UAVs based on
deep reinforcement learning. Drones 8:60. doi: 10.3390/drones8020060

Wang, X., Zhong, W., Wang, J., Xiao, L., and Zhu, Q. (2024). UAV path and radio
mapping based on deep reinforcement learning. J. Appl. Sci. 42, 200–210. doi: 10.3969/j.
issn.0255-8297.2024.02.002

Yan, Y., Zhiyu, C., Gang, L., and Jianwei, G. (2023). A Mapless local path planning
approach using deep reinforcement learning framework. Sensors 23:2036. doi:
10.3390/s23042036

Yu, X., Yang, L., Yubo, T., et al. (2024). A* algorithm based on adaptive expansion
convolution for unmanned aerial vehicle path planning. Intell. Serv. Robot. 17:521. doi:
10.1007/s11370-024-00536-3

Yuan, S., Zhang, L., Gu, Q., Zhang, F., and Lv, J. (2023). Research on D3QN path
planning method of Mobile robot priority sampling. J. Chin. Comput. Syst. 44, 923–929.
doi: 10.20009/j.cnki.21-1106/TP.2021-0713

Yuwan, G., Zhitao, Z., Jidong, L., Lin, S., Zhenjie, H., and Shoukun, X. (2022). DM-
DQN: dueling Munchausen deep Q network for robot path planning. Complex Intell.
Syst. 9, 4287–4300. doi: 10.1007/S40747-022-00948-7

Zhang, Y., Liu, K., Gao, F., and Zhao, F. (2023). Research on path planning and path
tracking control of autonomous vehicles based on improved APF and SMC. Sensors
23:7918. doi: 10.3390/s23187918

Zhao, W., Zhang, Y., and Xie, Z. (2024). EPPE: an efficient progressive policy
enhancement framework of deep reinforcement learning in path planning.
Neurocomputing 596:127958. doi: 10.1016/j.neucom.2024.127958

Zhou, X., Yan, J., Yan, M., Mao, K., Yang, R., and Liu, W. (2023). Path planning of
rail-mounted logistics robots based on the improved Dijkstra algorithm. Appl. Sci.
13:9955. doi: 10.3390/app13179955

TABLE 4 Path planning method results comparison.

Algorithm Target
reached

Path length
(m)

Planning
time (s)

ERDDQN Yes 30.1 4.37

BiLSTM-D3QN Yes 28.3 3.19

https://doi.org/10.3389/fnbot.2025.1512953
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.3390/s24072061
https://doi.org/10.1016/j.oceaneng.2023.115208
https://doi.org/10.1016/j.oceaneng.2023.115208
https://doi.org/10.3390/drones8070302
https://doi.org/10.3390/s24051523
https://doi.org/10.3390/s20020426
https://doi.org/10.3390/s20020426
https://doi.org/10.3390/s23125622
https://doi.org/10.3390/e24121767
https://doi.org/10.3390/e24121767
https://doi.org/10.3390/s20195493
https://doi.org/10.3390/s20195493
https://doi.org/10.3389/fnbot.2023.1302898
https://doi.org/10.3389/fnbot.2023.1302898
https://doi.org/10.1016/j.eswa.2022.119410
https://doi.org/10.19678/j.issn.1000-3428.0066348
https://doi.org/10.1504/IJVD.2023.131056
https://doi.org/10.3390/app12178392
https://doi.org/10.1109/TNNLS.2023.3332172
https://doi.org/10.3389/fnbot.2023.1268447
https://doi.org/10.19651/j.cnki.emt.2211675
https://doi.org/10.3390/drones8020060
https://doi.org/10.3969/j.issn.0255-8297.2024.02.002
https://doi.org/10.3969/j.issn.0255-8297.2024.02.002
https://doi.org/10.3390/s23042036
https://doi.org/10.1007/s11370-024-00536-3
https://doi.org/10.20009/j.cnki.21-1106/TP.2021-0713
https://doi.org/10.1007/S40747-022-00948-7
https://doi.org/10.3390/s23187918
https://doi.org/10.1016/j.neucom.2024.127958
https://doi.org/10.3390/app13179955

	Path planning of mobile robot based on improved double deep Q-network algorithm
	1 Introduction
	2 Related work
	2.1 Q-Learning algorithm
	2.2 DQN algorithm
	2.3 DDQN algorithm

	3 BiLSTM-D3QN path planning algorithm
	3.1 Design of reward function
	3.2 Adaptive action selection mechanism
	3.3 Adaptive reprioritization of experience replay based on frequency penalty function
	3.4 Dueling Network
	3.5 Bidirectional long short-term memory network
	3.5.1 Long short-term memory network
	3.5.2 Bidirectional long short-term memory network
	3.6 BiLSTM-D3QN algorithm path planning overall process
	ALGORITHM 1 Main program of BiLSTM-D3QN (Path planning pseudocode of mobile robot based on BiLSTM-D3QN)

	4 Experimental results and analysis
	4.1 Environment setup and parameter configuration
	4.2 Analysis of training results
	4.2.1 Comparison with traditional DRL algorithms in simple environment
	4.2.2 Comparison with improved deep reinforcement learning algorithms in complex environment
	4.3 Analysis of ROS simulation results

	5 Conclusion

	References

