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Introduction: Object perception, particularly material detection, is

predominantly performed through texture recognition, which presents

significant limitations. These methods are insu�cient to distinguish between

di�erent materials with similar surface roughness, and noise caused by tactile

movements a�ects the system performance.

Methods: This paper presents a straightforward, impact-based approach to

identifying materials, utilizing the cantilever beam mechanism in the UR5e

robot’s artificial finger. To detect object material, an elastic metal sheet was

fixed to a load cell with an accelerometer and a metal appendage positioned

above and below its free end, respectively. After recording the damping force

signal and vibration data from the load cell and accelerometer caused by

the metal appendage’s impact, features such as vibration amplitude, damping

time, wavelength, and force amplitude were retrieved. Three machine-learning

techniques were then used to classify the objects’ materials according to their

damping rates. Data clustering was performed using the deflection of the

cantilever beam to boost classification accuracy.

Results and discussion: Online object materials detection shows an accuracy

of 95.46% in a study of ten objects [metals (steel, cast iron), plastics (foam,

compressed plastic), wood, silicon, rubber, leather, brick and cartoon]. This

method overcomes the limitations of the tactile approach and has the potential

to be used in industrial robots.

KEYWORDS

cantilever beam mechanism, damping force signal and damping vibration, material

detection, vibration amplitude, damping time, wavelength, cantilever beam’s deflection

1 Introduction

Over several decades, robots have replaced humans for greater efficiency and
manipulation of objects in various tasks in diverse environments, such as industrial
automation, repetitive tasks, and social interaction/assistance. Hence, significant steps have
been taken to enhance the skills of robots and bring them closer to human capabilities
(Wei et al., 2023; Chuang, 2024). Robots are typically programmed with the capability to
replicate intricate and multifaceted tasks. To achieve this, researchers define six important
indicators, including kinematic architecture, activation, transmission, sensing, materials,
and construction to enhance their functional dexterity (Controzzi et al., 2014). In line with
sensing, most research efforts have focused on developing surface artificial tactile sensors
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that provide sufficient information for dexterous manipulation.
This development includes the integration of sensors for
detecting materials’ characteristics, such as object edge shape
(Suwanratchatamanee et al., 2007), surface properties like hardness
and texture (Johnsson and Balkenius, 2008; Bok et al., 2021),
and material discrimination (Lee et al., 2021). These sensors use
capacitive (Tavakoli et al., 2017), piezoresistive (Fonseca et al.,
2023; Kappassov et al., 2015), optical (Jiang et al., 2015), and
magnetic (Kim et al., 2018) technologies, all of which are activated
by mechanical stimulation. The ultimate aim is to equip robots
with complex tactile perceptions similar to those of humans (Jamali
and Sammut, 2011).

To assist robots in dexterous manipulation, embedded sensors
must receive sufficient information from the target to effectively
interact with their surroundings. For material detection, the
proposed methods usually rely on sensor rubbing/friction and
acoustic-based tapping on objects (Okamura et al., 1997; Spiers
et al., 2016). For instance, Jamali and Sammut (2011) proposed
an artificial silicon finger consisting of strain gauges and
polyvinylidene fluoride (PVDF) films and embedding it into the
gripper, which was able to classify eight object materials based
on their texture. Friction between the sensor and different object
textures induced vibrations in the silicon. Then, a classification
accuracy of 95% was achieved using a Naive-Bayes tree (NBTree)
classifier by extracting different frequencies. Shuaikang et al.
(2023) embedded two force sensors at the fingertips (index and
thumb) of the RH8D five-fingered robotic hand to measure object
recognition based on hardness and texture through the force
generated via rubbing the fingertips against objects. They classified
seven materials via the support vector machine (SVM) algorithm
using the Fourier transform (FFT) features with an accuracy of
86%. Tanaka et al. (2019) presented an artificial finger with different
horizontal ridges to evaluate the effect of varying roughness on the
vibration sensor output. The researchers rubbed nine objects of
varying roughness with an approximate force of 0.3 N. The results
indicated that various artificial fingers have different responses,
reflecting differences in horizontal ridges. In 1996, Krutkov et al.
introduced a method for finding materials based on their acoustic
properties (Krotkov et al., 1997). To sort four materials into groups,
they tapped the robot’s end-effector into objects. Subsequently,
other researchers presented alternative methods. Sinapov et al.
(2009) used a Barrett WAM robot to create airborne sounds by
performing tapping as an exploratory action on various objects.
Their objective was to classify 36 different household objects using
a self-organizing map (SOM), k-nearest neighbor (KNN), and
support vector machines (SVM). The results showed that it is
possible to identify these objects with an average accuracy of around
73%. The authors used a robotic system that implemented a latent
regularized variational autoencoder (DLR-VAE) in Neumann et al.
(2018). They recorded data by knocking on objects and grasping
them. The encoder thenmapped the input data into the latent space
using a multiple-layer perceptron (MLP). Next, the features were
extracted by transferring from the time domain to the frequency
domain, resulting in the classification of eight materials with 76%
accuracy.

However, the sensors introduced are difficult to replicate or
usually bulky to achieve precise spatial resolution. On the other
hand, commercial sensors, while providing good spatial resolution,

only respond to stimuli that are normal to the sensor surface. To
reduce wiring complexity, they use scanning techniques for data
acquisition, thereby increasing the cost. Furthermore, the thickness
and strength of the ridges influence mechanical stimulation.
Therefore, it relies on tactile parameters that must be tailored
to suit various applications (Agache et al., 1980). Furthermore,
because acoustic-based material recognition necessitates the use
of microphones, it has received less research than tactile-based
material recognition, as soft materials don’t generate sound that the
microphone can record.

Although the presented methods have increased the
performance of robots, the noise caused by tactile movements
affects the system’s performance (Chen et al., 2019). On the other
hand, these methods rely on applying additional mechanical
energy to enhance the perception of surface roughness (Hendriks
and Franklin, 2010). Furthermore, texture-based material
discrimination methods are not sufficient to distinguish between
different materials with similar surface roughness. Consequently,
object material recognition remains an open challenge. Hence,
the primary motivation is to eliminate the influence of texture
and material classification with a similar surface texture via an
artificial finger that can be mounted on a robot. The novelty of
our research is the approach in which, rather than using tactile
methods to identify materials, we use the approach of damping
signals by impacting the objects with a finger to acquire the signals.
Our approach is based on a cantilever beam mechanism in which
a load cell and an accelerometer are embedded in a cantilever
beam made of an elastic metal sheet. Furthermore, we fixed a rigid
metal appendage to impact the object at its free end. This setup
allowed for simultaneous recording of the damping vibration-force
signals when the metal appendage impacts with objects. The
collected signals were then used as input for the classification
model. Additionally, we used a clustering technique to reduce the
machine’s input data, thereby improving system performance. The
presented approach allows machine learning to make an effective
association between the robot and objects.

To summarize, the main contributions of this paper are as
follows: (a) Reducing noise and signal interference compared
to traditional tactile methods through damped vibration signals,
(b) We present a straightforward method for detecting intrinsic
material properties using a cantilever beam, removing the need for
surface features. This design choice makes the system less sensitive
to variations in roughness and more reliable in distinguishing
similar materials, (c) Reducing the amount of data processed
through clustering improves the system’s efficiency, lowering
computational load and increasing the robot’s response speed.

The following section gives an overview of the remaining
work. Section 2 presents the methodology. Section 3 describes the
experiments and results. Then, we detail the discussion in Section
4. The paper concludes with Section 5.

2 Method

Figure 1 describes the flowchart of the material detection of the
objects with the proposed sensor via the UR5e robot, including:
(a) A schematic of the proposed sensor embedded in the UR5e
robot. (b) Acquisition of damping vibration-force signals through
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FIGURE 1

Overview of presented method from receiving signal to object material detection: (A) schematic of the sensor embedded in the robot, (B) acquisition

of vibration-force damping signals by impact approach and clustering using beam deflection value, (C) classification of material based on extracted

features.

an impact approach and then clustering them using the beam
deflection value. (c) Material classification based on the extracted
features. Each section will be detailed separately.

2.1 Sensor design

The proposed material detection sensor is shown in Figure 1A.
It is made up of a 20-mm-wide spring metal sheet that acts as a
cantilever beam, with one end attached to a DYZ-100 miniature
tensile strain sensor that is small, light, and accurate. The load
cell converts the force into a measurable electrical output with
an accuracy of 0.03% to 0.25%. Also, an accelerometer (13-bit
resolution) is placed on its free end. This sensor was embedded in a
wearable artificial finger produced by a 3D printer, which was used
as a finger in the UR5e robot (Figure 2C). Additionally, as shown
in Figure 2A, a rigid metal appendage (length = 20 mm, diameter =
2 mm) was attached to the underside of the free end of the elastic
metal sheet for impacting objects.

2.2 Selected spring steel material

Elastic deformation occurs when the applied stress does not
exceed the yield strength of thematerial. In this case, when the force
is removed, the spring steel returns to its original shape. It’s crucial
to use materials that stay within the elastic range after repeated
compressions To ensure the applied stress remains below the
material’s yield strength, calculations determined an appropriate

spring steel with a higher safety factor (60%) than the required
working range, based on a force of 5.9 N and a deflection (δj) of
16 mm. Therefore, the modulus of elasticity and the maximum
stress developed are calculated according to the dimensions given
in Figures 2A, 3 and Table 1 as follows:

E =
FL3

3δjI
, σmax =

Mmaxc

I
(1)

Where δj and F are the deflection and reaction force at the free
end of the beam, respectively. L is the length of the cantilever beam,
E is the modulus of elasticity of the material, and I is the moment
of inertia of the beam’s cross-section. Also, σmax is yield strength
of the material, Mmax is the maximum bending moment and c is
distance from the neutral axis to the farthest point of the section.

Therefore, spring steel should be selected that meets E ≈

199.8GPa and a yield strength (σy) > σmax = 300MPa. In
this regard, we employed AISI 1074 carbon spring steel (E =

200GPa, yield strength = 385MPa) as the cantilever beam. Since
the cantilever beam design was made with a higher safety factor,
ensuring that the elastic deformation is maintained after multiple
compressions.

2.3 Data acquisition

Signal type and quality significantly affect classification
accuracy. Clear and relevant signals improve feature extraction,
allowing models to better differentiate between classes. They also
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FIGURE 2

Experimental setup (A) schematics and embedded components of the sensor. (B) 3D printing artificial finger. (C) Artificial finger mounted on a UR5e

Robot gripper.

FIGURE 3

Dimensions of the cantilever beam.

assist in identifying key features and boosting model generalization
to unseen data (Asheghabadi et al., 2021). Thus, acquiring
appropriate signals is crucial for reliable and efficient classification
systems, affecting accuracy and performance.Therefore, according
to Figure 1B, three types of data were recorded as follows:

2.3.1 Damping vibration-force signals
The experimental platform was built with a UR5e 6-DOF

collaborative robot and a two-finger gripper. The UR5e is a
collaborative robot arm from the Universal Robots e-Series
(Country: Denmark) that uses a motion planning algorithm offered
by Robotics System ToolboxTM to achieve joint space control, task
space control, and waypoint tracking. Some important features
include an error margin of ± 0.1 mm, a maximum payload of 5
kg, a reach of 850 mm, and a working temperature range of 0 to
50 ◦C.

The proposed finger was replaced with one of the gripper
fingers (Figure 2C). Then, by positioning different objects on a

table, the finger impacts the object vertically at a constant velocity
from a distance of 5 cm, which causes vibration in the free
end of the elastic metal sheet. To ensure robust data collection,
four independent datasets were compiled over different time
intervals, with each material being sampled 100 times per dataset.
This systematic approach resulted in a comprehensive database
comprising 400 samples for each material, thereby facilitating the
evaluation of machine learning methodology. The accelerometer
and load cell simultaneously record the damping vibration signal
and damping force, respectively. The output of the load cell
sensor was first entered into the 24-bit amplifier HX711. Then, the
vibration and force signals were transferred to MATLAB software
(version R2019b) through the data acquisition (DAQ), including an
Arduino microcontroller (ATmega328P) with 16 MHz frequency
and Bluetooth HC-05 with 2.4 GHz frequency. The transient signal,
which the accelerometer records from a distance of 5 cm until the
moment the metal appendage impacts the object, is excluded from
the data set as it does not offer useful information and is constant
across all data sets.
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2.3.2 Deflection of cantilever beam (δj)
In addition to collecting vibration and force data, the cantilever

beam deflection (δj) value was recorded to facilitate data clustering.
Initially, the robotic finger is positioned beside the surface without
making contact. Subsequently, the finger moves to establish contact
with the surface, and the metal appendage presses down until
point D (Figure 2) touches the object’s surface. This pressing
action causes the cantilever beam’s free end to move. This process
was performed for all objects studied and the object’s maximum
reaction force on the metal protrusion was 3.7 N. The value of
δj varies depending on the softness of different objects. After the
measurement, the finger returns to the starting position at each
step. Throughout the test, the total force applied to each material’s
surface and the distance from the finger to the surface remains
constant, ensuring reliable and comparable data.

2.4 Feature extraction

Feature extraction is one of the important steps in the
classification process where the raw data is transformed
into meaningful features (Guyon and Elisseeff, 2006;
Bahrami Moqadam et al., 2018). The feature vector should
be simple, have low dimensions, and be able to create the
highest correlation between the data of one class and the

TABLE 1 Parameters selected in this study.

Symbol Definition Value

L Length of cantilever beam 90 mm

w Width of cantilever beam 25 mm

t Thickness of cantilever beam 0.6 mm

C-D (δjmax ) Maximummovements of metal appendage 10 mm

F Maximum reaction force generated 3.7 N

highest segregation among the classes (Moqadam et al., 2021b;
Asheghabadi et al., 2022). The extracted features are provided as
feed to the classification algorithms, and the accuracy and efficiency
of the classification algorithms are directly affected by the quality
and representation of the features. Improper features will affect
the performance of classification algorithms and will suffer from
overfitting. The feature vector can be considered as doing group
work, in which, in addition to the fact that each component must
perform well, they must also be able to perform the best together.

After recording data (Figure 4), four features were extracted
according to the steps shown in Figure 1C: the maximum vibration
amplitude, the time it took to dampen, the wavelength, and
the average force amplitude. Then, to validate the features and
ensure their relevance and discriminative power for subsequent
processing, we applied the analysis of variance (ANOVA) test and
sequential forward feature selection (SFFS) with a significance level
of 0.01.

Finally, the Davies–Bouldin Index (DBI) (Davies and Bouldin,
1979) was employed to measure the overlap of clusters based on
the ratio of the sum of within-cluster scatter to between-cluster
separation. Table 2 gives a description of each feature and its DBI
values. Low DBI values indicate a high level of feature separability.

TABLE 2 Features and DBI value of features.

Feature Description DBI

Maximum vibration
amplitude

Peak of signal 0.64

Damping time The duration time of stopping the wave
vibrations

0.58

Wavelength The portion of a wave between two
crests or troughs

0.45

Average force amplitude Average signal peaks 0.53

FIGURE 4

(A) Features extracted from damping vibration. (B) Features extracted from damping force.
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TABLE 3 E�ect of the number of neurons on the algorithm accuracy.

Hidden layer Number of neurons Accuracy(%)

2 [30, 30] 64.14

2 [35, 35] 67.73

2 [40, 40] 71.23

2 [45, 45] 74.13

2 [50, 50] 79.64

2 [55, 55] 77.16

2 [60, 60] 75.55

3 [45, 45, 45 84.74

3 [50, 50, 50] 85.88

3 [60, 60, 60] 83.13

3 [60, 55, 50] 84.65

3 [60, 55, 35] 90.17

4 [45, 45, 45, 45] 84.34

4 [55, 55, 55, 55] 82.22

The bold values indicate the best result within the number of layers and neurons.

2.5 Pattern recognition algorithms

Machines can make sense of complex information by using
pattern recognition algorithms to identify patterns and regularities
in data. This study applies three well-known artificial intelligence
(AI) algorithms: linear discriminant analysis (LDA), multilayer
perceptron (MLP), and support vector machine (SVM).

• LDA: is a supervised algorithm that uses linear feature
combinations to optimally classify data and can handle feature
correlation. Despite this, it may struggle in high-dimensional
spaces.

• SVM: creates a hyperplane for high-accuracy classification
in high-dimensional spaces with low memory requirements.
Nevertheless, it struggles with noisy data, specifically when target
classes coincide.

• MLP: is a widely used classifier that excels at nonlinear
statistical modeling and can detect complicated relationships
between variables. Nonetheless, its black-box character makes
it less controllable. The multilayer perceptron (MLP) employed
backpropagation and featured three hidden layers with 60, 55, and
35 neurons. Table 3 shows the sensitivity analysis of theMLP, which
is significantly influenced by the number of neurones and layers.

The holdout method was used to divide the data into
training (70%), and testing (30%) sets without any generation or
augmentation of data. Each training dataset is labeled withmaterial,
allowing for the mapping of features to labels. The classifier’s
accuracy is assessed by testing it on materials with unknown labels.

3 Experiments and results

3.1 Objects

A material specifies the types of substances used and their
combinations. Different compounds and molecular bonds create

various mechanical properties in objects (Zhou et al., 2016),
which can be used to distinguish materials. One of the important
mechanical properties is the object’s degree of softness or hardness,
as well as its ability to dampen force. For instance, while steel and
cast iron belong to the same family, their molecular structure causes
differences in damping and vibrations.

To measure the materials, we prepared ten identical objects
made from various materials, including 10 materials (foam plastic,
compressed plastic, silicon, rubber, leather, steel, cast iron, wood,
brick, cartoon) (Ma et al., 2023) (Figure 5).

In the standard samples, two different types were used for each
family. For example, steel and cast iron are both members of the
iron family. This factor was selected to investigate the performance
of the presentedmethod in the ability to differentiate almost similar
materials.

3.2 Approach A: experiment for material
detection

After setting up the platform, data collection was done by
the impact of the metal appendage on the object. In this way, a
reaction force from the object is transmitted to themetal appendage
that causes vibration on the free end of the elastic metal sheet,
in which damping vibration and damping force are measured by
the accelerometer and load cell, respectively. Figure 6 shows the
principle of material detection in this study. The harder the object,
the greater the reaction force it exerts on the metal appendage.
Consequently, the free head of the elastic metal sheet vibrates
more, leading to an increase in the amplitude and compression
of the damping signal. Figure 7 shows the difference between the
vibration-force damping signals between the two objects. Then the
four mentioned features were extracted from the recorded signals
of ten objects as a feed for the classification algorithms.

3.3 Approach B: experiment for material
detection using object indentation as a
clustering criterion

3.3.1 Define δj as a clustering criterion
The metal appendage head compresses an object until point D

(see Figure 2A) reaches the surface of the object. Then, the reaction
force (F) from the object on the metal appendage of the cantilever
beam is proportional to the beam deflection (δj) according to
Hooke’s law (F=k1 δj), measured by the load cell (Figure 8). In the
elastic region, δj is calculated as follows:

F = kδj → δj =
F

k
=

FL3

3EI
(2)

Where F is the reaction force, k is the beam stiffness, δj is
the beam deflection, L is the length of the cantilever beam, E is
the modulus of elasticity of the material and I is the moment of
inertia of the beam’s cross-section. On the other hand, according to
Figure 8A, the sum of the δj and the object indentation (L2) equals
δjmax , which is 10 mm; therefore, L2=10-δj.
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FIGURE 5

Object materials examined in this study.

FIGURE 6

Working principle of the sensor for vibration-force measurement.

Finally, data is clustered into soft and hard groups based on δj

values as follows:

δj =

{

if 0 ≤ δj < 10 then object is soft

if δj = 10 mm then object is hard
(3)

Hence, the maximum value of δj occurs when the object
is hard and no indentation occurs. In soft objects, part of the
force the metal appendage applies changes the object’s shape. For
instance, although wood is classified as a soft material in the Shore
hardness criteria (Ma et al., 2023), in this study, it was classified as
hard because δj = 10.It is worth noting that we utilized identical
standard objects for this study. Furthermore, since our method
involves single point contact, the data for clustering is received
from one point only once. As a result, irregular deformations

in this study do not affect the method’s performance. Generally,
the investigation of irregular deformations is beyond the scope of
this paper.

3.3.2 Improvement of the system performance
based on δj value

Various factors, such as signal quality, noise, and interference,
can affect the performance of pattern recognition algorithms.
Reducing the input data simplifies the algorithm and decreases
processor load (Asheghabadi et al., 2024). Unlike the regular
approaches where all data is fed to AI, in this study the data is
clustered into two categories based on δj values before being fed
to the machine. According to Figure 9, clustering the vibration-
force damping signals reduces the data input to the system. The
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FIGURE 7

(A) Vibration-force signal from hard material, (B) Vibration-force signal from soft material.

FIGURE 8

Working principle of the proposed sensor for δj measurement (L, length of the cantilever beam; δmax, maximum movements of metal appendage; δj,

cantilever beam deflection; F, reaction force; k, beam sti�ness; L2, object indentation).

percentage reduction of the dataset input to the machine can be
expressed as follows:

R = (1−
|u(i)|

|U(x)|
) ∗ 100 (4)

Where R is the percentage of input data reduction, u(i) is the
number of selected data based on the δj values, U(x) is the total
number of data, and i is the index. This approach enhances the
performance of approach A in the material classification of objects.

Finally, all algorithms were trained on a distinct training set
and evaluated using a test set through the holdout method, which
randomly selects training and testing data. This process is repeated
ten times to acquire the average performance on the test sets.

Figure 10 illustrates the system’s performance in approaches A
and B. In mode B, three classification criteria (accuracy, precision,
and recall) showed improvement across the three classifiers.
Additionally, the standard deviation (SD) decreased in mode B,
indicating higher repeatability and reliability. In fact, material

recognition was conducted in approach B with minimal variance
within an inner class and maximum variance outside the class.
Approach A only relied on the features extracted from the damping
vibration-force signals resulting from the impact of the metal
appendage on the objects. Approach B improved approach A by
clustering data based on δj values. MLP achieved the highest
accuracy at 95.46%.

Table 4 displays the confusion matrix for approach B. The
confusion matrix offers a comprehensive view of the classifier’s
average performance. The majority of misclassifications occurred
between materials that have similar properties. For instance, foam
plastic and compressed plastic are both made of the same material.
Similarly, steel and cast iron belong to the iron family, with
differences in their production processes.

The results showed that most of the misclassifications by the
algorithm are between objects made from the same material family.
To investigate this issue, we trained the algorithm by grouping these
materials as a single class. The following materials were grouped:
(1) foam plastic and compressed plastic, (2) steel and cast iron.
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FIGURE 9

Comparison between approach A and B. Approach A: All data is

input into the AI system, Approach B: Clustered data is input into the

AI system.

FIGURE 10

Comparison between approach A and B in three classifiers.

The total number of samples for each material is 400. To maintain
consistent conditions for all objects, half of the data were randomly
selected from the combined materials for training and testing
(Approach B′). This led to a decrease in misclassifications and an
overall improvement in classification accuracy, achieving 98.75%.
Table 5 summarizes the evaluation indices in three modes among
the classifiers.

TABLE 4 Confusion matrix for material detection.

Soft Class

S
o
ft

MATERIAL F-P C-P Si R L

F-P 380 13 3 2 2 F-P = Foam Plastic

C-P 11 383 1 3 2 C-P = Compressed Plastic

Si 2 2 390 3 3 Si = Silicon

R 2 2 5 388 4 R = Rubber

L 1 1 2 5 391 L = Leather

Hard

H
ar
d

MATERIAL St C-I W B C

St 383 11 2 2 2 St = Steel

C-I 12 381 2 2 3 C-I = Cast Iron

W 2 2 388 5 3 W=Wood

B 3 3 6 385 3 B = Brick

C 3 3 4 6 384 C = Cartoon

The grey shade indicates the highest miss-classification (“C-P” and “C-I” had the highest

classification error in soft and hard objects, respectively).

4 Discussion

Robotics science aims to enhance and extend capabilities
by performing tasks that may be beyond human abilities or
require an exceptional level of precision and consistency without
experiencing fatigue. To achieve this goal, researchers have
developed Human-Computer Interaction (HCI) systems that
facilitate restoring more natural behaviors. The HCI systems are
designed to restore natural behaviors and movements, ultimately
closing the gap between human and robotic functionality. A
robotic system introduces significant noise into the system and
distorts useful information, which can significantly affect the
performance of pattern recognition algorithms. While previous
studies concentrated on external object properties such as texture
and roughness, our analysis centers on intrinsic object features
to provide simple and meaningful information for classifiers.
This study focuses on material detection with minimal sensor-
object contact to minimize contact noise, thereby addressing the
aforementioned problems in the learning process.

In this context, Table 6 compares our proposed material
detection method with other studies’ methods. Gandarias et al.
(2017) employed two distinct AI methodologies to classify
materials using pressure images obtained from high-resolution
tactile sensors. The experimental outcomes revealed that the
classification accuracy achieved using Speed-Up Robust Features
(SURF) was 80%, whereas the classification accuracy obtained using
Deep Convolutional Neural Networks (DCNN) was notably higher
at 91.67%. Liu et al. (2018) introduced a tactile framework for
identifying 10 different materials using an efficient feature extractor
called the linear dynamic systems-based fuzzy c-means method
(LDS-FCM). They then used the vector of locally aggregated
descriptors (VLAD) method to derive the final features from
the data. Their approach achieved an accuracy of 99%. Dai
et al. (2022) created three tactile sensor designs with varying

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1503398
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Saleh Asheghabadi et al. 10.3389/fnbot.2025.1503398

TABLE 5 Evaluation metrics (%) of various classifiers for object material detection with two approaches.

Approach Feature Classifier Accuracy Precision Recall SD

A No clustering MLP 90.17 92.45 89.74 3.4

SVM 87.36 89.63 85.48 4.6

LDA 79.33 77.85 80.94 2.3

B Clustering with δj MLP 95.46 97.87 94.37 1.2

SVM 91.24 93.16 89.38 2.7

LDA 88.86 85.15 90.56 0.9

B′ Clustering with δj + combination MLP 98.75 99.17 100 0.8

SVM 94.54 95.42 92.27 1.8

LDA 91.55 90.67 93.15 0.5

The grey shade indicates the highest classification accuracy among other classifiers and methods.

TABLE 6 Compares the presented method and other techniques.

References Method Sensor No. materials Acc.(%)

Gandarias et al. (2017) SURF + k-mean + SVM/CNN + SVM [28× 50] tactile array 8 80/91.67

Liu et al. (2018) LDS-FCM + VLAD [3× 8] tactile array 10 99

Dai et al. (2022) KNN using time-frequency domain features 3 different superficial tactile sensors designs 6 98.1

Wang et al. (2022) PCA + KNN 16 tactile sensors 8 96

This study MLP using time domain features 1 impact sensor 10/8 95.46/98.75

protrusions. They used a 2-axis Cartesian robot to receive signals
by dragging the sensor on objects’ surfaces. Ultimately, they
could classify six materials based on their texture with 98.1%
accuracy using the KNN algorithm and time-frequency domain
features. Wang et al. (2022) utilized a tactile sensor with 16
small capacitors to capture tactile data from the robot’s finger
sliding across eight different types of fabric material. They were
able to achieve 96% accuracy in classification by reducing the
frequency domain features’ dimensions using principal component
analysis (PCA) and the k-nearest neighbor (KNN) algorithm.
In previous studies, tactile methods have often used an array
of sensors, which increases system noise and leads to more
input data, necessitating more powerful and costly processors
in addition to the problems mentioned earlier. Receiving signals
from multiple sensors leads to signal interference and requires
more complex solutions. Designing a system requires balancing
the number of sensors, speed, user-friendliness, and noise levels.
It’s essential to find an equilibrium between model complexity
and computational cost. Additionally, reducing channels can lower
hardware costs and complexity, decrease controller processing
time, and maintain high classification accuracy. This study
introduced a novel sensor and reduced the number of sensors
to one, enhancing classification accuracy by reducing the input
dimensions. It’s important to note that comparing different
studies typically focuses on the sensor type and feature extraction
algorithms, often neglecting other critical factors like object
standardization, contact pressure, and exploratory measures. As
a result, making valid comparisons between studies is not a
straightforward task.

Researchers have employed tactile and acoustic methods to
enhance robots’ capacity to identify object characteristics. Tactile

methods are susceptible to factors such as unwanted vibrations
and electrical signal interference, resulting in reduced accuracy
and efficiency. Similarly, acoustic methods rely on microphones,
which are not ideal for soft objects, and ambient noise can
significantly degrade signal resolution. Both approaches demand
substantial processing, leading to the creation of complex systems.
However, literature has shown that contact control techniques can
significantly increase the efficiency of robotic systems (Elguea-
Aguinaco et al., 2023). Therefore, in this study, we utilized an
integrated sensor employing the impact technique to minimize
system noise and enable simultaneous measurement of two signals.
The impact technique prevents excess noise transmission by
establishing point contact, allowing the AI to focus on important
information by reducing distracting signals. This approach reduces
the system’s processing load and enhances its detection accuracy
and overall performance. By reducing the amount of processed
data, the system can respond more quickly and accurately to
environmental changes.

On the other hand, the feature space, defined by the type
and number of features, significantly influences processor load
(Asheghabadi et al., 2024). Therefore, minimizing the input data
to the device streamlines the algorithm and lightens the processor
load. Unlike conventional methods where all data is fed to the
machine at once, in this study the data was clustered into two
categories based on δj values before feeding into the AI. Figure 9
shows that clustering the vibration-force damping signals reduces
the data input to the system. This approach enables the algorithm
to utilize only relevant, high-quality data, eliminating complex
feature extraction and unnecessary processing, thereby enhancing
accuracy and processing speed. In particular, δj is a feature that
is not included in the feature vector yet effectively divides the
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data and reduces the machine’s workload. This method enhances
the performance of approach A in object material classification
by minimizing noise and interference, allowing the algorithm
to identify more accurate patterns and improve classification
accuracy. Compared to regular MFCC methods, this strategy
reduced the dataset size by 50% and decreased feature extraction
and classification times by 78% and 48%, respectively. This strategy
significantly reduced the execution time. Ultimately, it optimizes
processing time and boosts the efficiency of AI systems. Also,
in previous studies, researchers classified materials by creating
artificial textures on objects’ surfaces, creating a predictable nature
(Jamali et al., 2009; Edwards et al., 2008; Kim et al., 2005). Our work
successfully classified materials based on intrinsic properties with
the same natural surface. This approach also eliminated overfitting
and enhanced system reproducibility. Features extracted from
clustered data improvedmaterial recognition withminimal in-class
variance, maximal out-of-class variance, and high repeatability. In
this study, we exclusively used the δj value as the data clustering
index (approach B). This index can be integrated with other
methods, such as KNN, that employ Manhattan or Euclidean
distance to create more boundaries for the data, dividing them into
more categories.

The proposed method has some limitations as follows: (1)
Sensitivity to the angle of impact when the sensor interacts
with objects. Variations in the impact angle can affect vibration
and force signal consistency, leading to inaccurate material
classification. A possible solution is to use a mechanism that
stabilizes the sensor’s orientation or algorithms that normalize
data to counteract angle variations, ensuring reliable signal
acquisition. However, achieving this level of realism was beyond
the scope of this study. (2) Reliance on a single-point contact
for signal acquisition, while it reduces noise, might miss certain
material characteristics that could be captured through a broader
interaction. To address this, the sensor could be upgraded to
include multiple points of contact or an array of miniaturized
sensors. This would enable a more comprehensive collection of
data across a larger surface area, providing a richer dataset that
could improve the accuracy and robustness of the classification
process without compromising the simplicity of the original
setup. (3) The signals are often affected by uncertainties and
inaccuracies, such as requiring preprocessing using tools based
on fuzzy logic. To reduce computational load when dealing with
large datasets, it is advisable to merge similar signals in a fuzzy
manner (Versaci et al., 2020, 2022), thereby creating distinct fuzzy
classes for each group and extracting a representative signal from
each group.

It is expected that the proposed method will be used
in other robot types, such as bionic hands (Moqadam
et al., 2021a; Moqadam et al., 2022), where amputees face
challenges interacting with the environment due to loss of
touch sensation. In future work, in line with our previous
studies, we intend to create sensory feedback in amputees
(Moqadam et al., 2023a) with the help of myotome digits
(Moqadam et al., 2023b) by embedding the proposed
sensor in the hand prosthetic finger [which is controlled by
electromyography signal (Bahrami Moqadam et al., 2018)] and
making intelligent grasping to realize automated, robust, and
accurate material detection.

5 Conclusion

This study presented an effective method for identifying
objects’ material by measuring damping vibration and force signals
simultaneously. The direct proportionality between the measured
force and the vibration of the elastic metal sheet led to the objects
clustering into two groups, which reduced the input volume to the
system and consequently improved classification accuracy. In this
study, ten objects were classified using three different classifiers:
MLP, SVM, and LDA, and the highest accuracy was 95.46% with
MLP. Finally, the proposed method shows remarkable versatility,
with potential applications not only in industrial automation
but also in prosthetics, where the ability to recognize materials
accurately can significantly enhance the interaction of robotic
devices with their environment, making the research promising for
future Implementations in various areas of advanced robotics.
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