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Introduction: Emotion detection in written text is critical for applications in
human-computer interaction, a�ective computing, and personalized content
recommendation. Traditional approaches to emotion detection primarily
leverage textual features, using natural language processing techniques such as
sentiment analysis, which, while e�ective, may miss subtle nuances of emotions.
These methods often fall short in recognizing the complex, multimodal nature
of human emotions, as they ignore physiological cues that could provide richer
emotional insights.

Methods: To address these limitations, this paper proposes Emotion Fusion-
Transformer, a cross-modality fusion model that integrates EEG signals and
textual data to enhance emotion detection in English writing. By utilizing the
Transformer architecture, ourmodel e�ectively captures contextual relationships
within the text while concurrently processing EEG signals to extract underlying
emotional states. Specifically, the Emotion Fusion-Transformer first preprocesses
EEG data through signal transformation and filtering, followed by feature
extraction that complements the textual embeddings. Thesemodalities are fused
within a unified Transformer framework, allowing for a holistic view of both the
cognitive and physiological dimensions of emotion.

Results and discussion: Experimental results demonstrate that the proposed
model significantly outperforms text-only and EEG-only approaches, with
improvements in both accuracy and F1-score across diverse emotional
categories. This model shows promise for enhancing a�ective computing
applications by bridging the gap between physiological and textual emotion
detection, enabling more nuanced and accurate emotion analysis in
English writing.
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1 Introduction

Emotion detection is crucial in fields such as human-computer interaction, mental

health monitoring, and sentiment analysis (Xu, 2024). Traditional approaches to emotion

detection primarily rely on textual analysis, which captures explicit linguistic cues but

often misses nuanced emotional states conveyed by physiological signals. Integrating

electroencephalography (EEG) data with textual cues promises a more comprehensive

understanding of emotional states, as EEG captures real-time neural responses that can

reveal implicit emotional reactions not detectable through text alone (Huang, 2024). The

EmotionFusion-Transformer framework aims to harness the complementary strengths

of both EEG and textual modalities, offering a deeper and more accurate analysis of

emotions in English writing (Nimmi and Janet, 2021). By combining these data sources,

EmotionFusion-Transformer not only improves accuracy in detecting complex emotions

but also expands the potential applications in personalized learning environments, mental

health support tools, and emotionally aware AI systems.
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Early approaches to emotion detection relied on symbolic

AI and knowledge representation, utilizing handcrafted rules and

lexicons to interpret emotional content in text (Kim, 2024).

For example, systems used sentiment dictionaries or predefined

emotion categories to classify text-based inputs, manually mapping

words or phrases to corresponding emotional states (Alvi et al.,

2023). While these rule-based methods provided foundational

insights, they were often limited by rigid structures and a

lack of adaptability to nuanced language use. The symbolic AI

approach struggled with handling context-dependent expressions

or detecting subtle emotions, which hindered its effectiveness

in real-world applications (Babu et al., 2020). To address these

limitations, researchers began exploringmore adaptive, data-driven

methods that could capture the variability and complexity of

human emotions in a more flexible manner (Cruz and Balahadia,

2022).

The second phase in emotion detection research shifted

toward data-driven approaches, particularly with the advent

of machine learning models that leveraged larger datasets for

improved accuracy (Singh and Sachan, 2021). Machine learning

techniques, such as support vector machines and random forests,

allowed for automatic learning of emotion patterns from text

data without requiring extensive manual rule-setting (Suleimenova

et al., 2022). However, these models predominantly focused on

textual information, relying on features like word embeddings or

n-grams to infer emotional states (Bakar et al., 2020). Despite

significant progress, the reliance on textual data alone limited

their ability to capture physiological aspects of emotion, which are

crucial for a holistic understanding of affective states. Additionally,

while machine learning approaches increased adaptability, they

were still constrained by the features provided, often lacking the

depth needed to fully capture complex emotional experiences.

With advancements in deep learning, particularly in neural

networks and pre-trained models, the third phase introduced

powerful tools such as convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and transformers that

significantly enhanced emotion detection capabilities (Jiang,

2024). These models, especially transformers, allowed for more

sophisticated processing of sequential data, making it possible

to analyze both text and EEG signals in an integrated manner

(N’Diaye et al., 2021). Pre-trained language models like BERT

and GPT have shown remarkable proficiency in understanding

context-rich text, while EEG-based convolutional models

enabled the capture of temporal patterns in neural signals

associated with emotional responses. Despite these advancements,

challenges remain in effectively fusing multi-modal data, as deep

learning models for emotion detection often treat text and EEG

independently, missing opportunities for cross-modal interactions

that could enhance emotional insight.

To address the limitations of previous methods in effectively

merging EEG and textual data, the EmotionFusion-Transformer

introduces a novel cross-modality fusion approach. This model

leverages transformer architectures specifically designed for multi-

modal integration, facilitating deeper interaction between text-

based and EEG-based emotional cues (Hernández-Pérez et al.,

2024). By incorporating both data types simultaneously, the

proposed model can achieve a more nuanced detection of

emotions in English writing, overcoming the constraints of

single-modality models and enabling a richer, context-aware

analysis of emotional states.

• The EmotionFusion-Transformer introduces a new cross-

modal fusion mechanism, allowing for the simultaneous

processing of EEG and textual data.

• The model is designed to handle diverse scenarios, enhancing

its applicability across different emotional contexts and

making it highly efficient in real-time emotion analysis.

• Experimental results demonstrate that EmotionFusion-

Transformer achieves superior accuracy and robustness in

emotion detection compared to single-modality models.

2 Related work

2.1 Cross-modality fusion for emotion
detection

Cross-modality fusion is critical in emotion detection,

especially when integrating physiological and textual data (Biswas

et al., 2024). Multimodal data fusion, which combines multiple

information sources such as electroencephalography (EEG) and

text, has gained attention in emotion detection to leverage both

the neurophysiological insights from EEG and the contextual

insights from text. Studies in this area reveal that physiological

signals capture subtle emotional shifts that might not be explicit

in language. Therefore, fusion of text with EEG can offer a more

comprehensive view of emotional states. Techniques like feature

concatenation, cross-modal attention mechanisms, and joint

embedding models have been explored to combine EEG and

text effectively. These methods aim to address the challenges

posed by the heterogeneity and variable temporal resolutions

in EEG and text data (Başarslan and Kayaalp, 2020). Feature

concatenation, a traditional method in fusion models, is often

used for baseline comparisons, where features extracted from

EEG and text are aligned and integrated into a single feature

vector. While straightforward, this approach often fails to capture

nuanced interactions between modalities. To overcome this,

research has shifted toward attention-based fusion strategies (Pei,

2024). Cross-modal attention mechanisms focus on selectively

emphasizing features from each modality relevant to the emotional

state. Such mechanisms allow the model to adaptively assign

weights based on the input’s content and context, leading to better

performance in emotion detection tasks. Another key technique

is the joint embedding model, where EEG and text data are

projected into a common latent space (Zakaria and Sulaiman,

2024). This approach has shown promise as it facilitates seamless

interaction and representation learning across modalities. With

advancements in neural architectures, Transformer-based models

with modality-specific encoders and shared decoders have been

used to learnmodality-specific as well as shared features, enhancing

the alignment and fusion of multimodal data for emotion detection

(Sharma and Ghose, 2023). Recent studies show that cross-modal

fusion techniques significantly improve emotion recognition

performance. However, there remain challenges such as handling

the asynchronous nature of EEG and text signals and mitigating

modality-specific noise in fusion processes (Chattu and Sumathi,
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2023). Emerging solutions incorporate self-supervised learning,

domain adaptation, and modality dropout strategies, which aim

to increase model robustness and generalization across different

tasks and datasets. Integrating these techniques with advanced

fusion architectures holds potential for enhancing the accuracy and

applicability of multimodal emotion detection models.

2.2 EEG-based emotion detection
methods

Electroencephalography (EEG) has become a valuable modality

in emotion detection research due to its ability to capture real-

time neurophysiological responses. EEG data provides information

on emotional arousal, valence, and other affective states through

the analysis of brainwave patterns across different frequency

bands. Key approaches in EEG-based emotion detection rely on

feature extraction from these frequency bands, such as delta,

theta, alpha, beta, and gamma, each associated with distinct

cognitive and emotional processes. Standard techniques in EEG

processing include time-frequency analysis, wavelet transforms,

and statistical methods that extract features relevant to emotional

states. These features are then classified using machine learning

algorithms such as support vector machines (SVMs), decision

trees, and more recently, deep learning models. Deep learning

techniques, particularly convolutional neural networks (CNNs)

and recurrent neural networks (RNNs), have shown notable

advancements in EEG-based emotion detection. CNNs have been

applied for their ability to learn spatial representations from

EEG signal topography, while RNNs, especially long short-term

memory (LSTM) networks, are useful for capturing temporal

dependencies in sequential EEG data. However, the use of

Transformers in EEG processing is emerging as a promising

direction, given their ability to model long-range dependencies

and manage variable-length sequences, which are common in

EEG data (Singh et al., 2020). Despite these advances, EEG-

based emotion detection faces several challenges. EEG data is

susceptible to noise, particularly from muscle artifacts and external

interference, which necessitates careful preprocessing and artifact

removal techniques. Moreover, EEG signals are inherently subject-

specific, which limits the generalizability of emotion detection

models across different individuals. Transfer learning, domain

adaptation, and personalized modeling approaches have been

explored to address these challenges (Teo et al., 2020). Recent work

also incorporates attention mechanisms into EEGmodels, allowing

for dynamic focus on specific channels or time points, thereby

improving emotion recognition accuracy. These advancements

have contributed to making EEG a reliable source for emotion

detection, particularly when combined with other modalities such

as text.

2.3 Transformer models in multimodal
emotion recognition

Transformer-based models have gained prominence in

emotion detection due to their capabilities in handling sequential

and multimodal data (Polyakova, 2023). Transformers excel at

capturing long-range dependencies and contextual relationships

within and across modalities, making them highly suitable for

tasks involving both text and physiological signals like EEG. The

attention mechanism in Transformers enables dynamic feature

selection and cross-modal alignment, allowing the model to

focus on critical aspects of each modality relevant to emotion

detection. In multimodal emotion recognition, Transformers have

been applied using modality-specific encoders, where separate

encoders process each input modality and a shared decoder

or cross-attention mechanism integrates the information from

each modality. Multimodal Transformers are often built with

cross-attention layers, where one modality’s features act as queries,

while another’s features serve as keys and values (Whissell, 2022).

This mechanism allows the model to selectively attend to relevant

parts of EEG signals based on contextual cues from text, and vice

versa. Such architectures have shown substantial improvement

in detecting complex emotions, especially when the emotional

cues in one modality are weak but can be complemented by cues

in the other. Furthermore, self-attention in Transformers allows

for parallel processing, making it feasible to handle the large data

volumes and high temporal resolution of EEG data efficiently

(Shrestha et al., 2020). Hybrid models, combining CNNs for initial

feature extraction from EEG with Transformer layers for fusion

and sequence modeling, have demonstrated strong performance

in multimodal emotion detection. This setup leverages CNNs for

spatial feature learning, followed by Transformers to capture inter-

modal and temporal dependencies. Some recent studies explore

the integration of pre-trained language models with EEG-based

models, using pre-trained language embeddings to enhance the

emotion recognition capabilities of multimodal systems. These

models benefit from transfer learning, allowing them to leverage

rich linguistic knowledge while simultaneously learning from

EEG signals. Challenges remain in Transformer-based multimodal

models, particularly in terms of computational efficiency and the

risk of overfitting due to the high dimensionality of EEG and text

features (İşçi, 2023). Techniques such as dimensionality reduction,

attention pruning, and modality dropout have been proposed to

address these issues. Additionally, Transformers are memory-

intensive, especially when applied to high-dimensional multimodal

data, which has led to the exploration of more efficient attention

mechanisms, such as Linformer and Performer architectures.

These efforts aim to make Transformer-based multimodal emotion

detection more scalable and applicable to real-world scenarios.

2.4 Comparison with related contextual
and multimodal models

Recent works have explored various approaches to contextual

and multimodal emotion recognition, yet they exhibit limitations

that our proposed model addresses. Hierarchical transformer

models such as Li et al. (2020) and contextualized emotion tagging

approaches like Wang et al. (2020) effectively model local and

global dependencies within textual data but fail to incorporate

physiological signals, such as EEG, which are critical for capturing

non-linguistic emotional cues. Moreover, reasoning-based models
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(Hu et al., 2021) and sentiment-aware networks (Tu et al.,

2022) excel in dialogue context modeling but lack mechanisms

to detect sentiment shifts or handle idiomatic expressions,

limiting their application in more nuanced emotional contexts.

Multimodal systems integrating EEG and textual data (Ghosh

et al., 2021; Liu and Fu, 2021) demonstrate the potential of

cross-modal fusion but treat modalities as largely independent,

missing opportunities to leverage their interactions. Knowledge-

enriched frameworks such as Panda et al. (2020) focus on

external information for enhanced understanding but overlook

modality alignment challenges in physiological and linguistic

data. Our model addresses these limitations by introducing a

hierarchical multi-resolution embedding strategy to capture both

local and global dependencies across modalities, a sentiment-

specific adaptive attention mechanism to prioritize sentiment-rich

regions, and an effective cross-modality fusion framework that

aligns EEG and textual features. These enhancements ensure a

more nuanced and comprehensive understanding of emotional

states compared to existing approaches.

3 Method

3.1 Overview

Sentiment analysis of English writing has garnered significant

research interest, as it serves as a critical tool for understanding

and categorizing subjective language and emotional intent within

textual data. With the advancement of natural language processing

(NLP) and machine learning techniques, sentiment analysis has

evolved from rule-based approaches to sophisticated deep learning

models capable of identifying subtle linguistic cues. This section

provides an overview of our proposed methodology for enhancing

sentiment analysis, especially focusing on the challenges unique to

English-language text. It outlines the preliminaries of our approach,

introduces a new model for sentiment classification, and presents

a novel strategy for handling linguistic variability and context

dependency in sentiment interpretation.

Our research addresses several core areas within sentiment

analysis. Section 3.1 formalizes the problem, presenting the

fundamental mathematical representations and definitions that

underpin our approach. Here, we define the notation and concepts

necessary for the processing and classification of sentiment

in textual data, setting the stage for a rigorous treatment of

linguistic features that contribute to emotional meaning. In Section

3.1, we introduce our new model, the Contextual Sentiment
Transformer (CST), which integrates contextual embeddings with

a transformer-based architecture specifically tailored for English

sentiment analysis. This model is designed to capture fine-grained

emotional cues within varying sentence structures and idiomatic

expressions, addressing limitations in current transformer models

that often struggle with English idioms and nuanced phrases. The

CST utilizes multi-layer attention mechanisms and pre-trained

contextual embeddings, enabling the model to differentiate subtle

shifts in sentiment across diverse contexts and linguistic patterns.

Following the model development, Section 3.1 details our Adaptive
Contextualization Strategy (ACS), which enhances the model’s

interpretative flexibility in sentiment classification. This strategy

dynamically adapts the model’s focus based on context windows

surrounding target expressions, thereby refining the understanding

of ambiguous or sentimentally charged terms. By incorporating

domain-specific lexicons and fine-tuning on diverse English-

language datasets, the ACS enables robust handling of variability

in informal, formal, and mixed-language texts. This structured

approach, combining formalized problem definitions, an advanced

model, and a strategic handling of context, aims to advance the

precision and adaptability of sentiment analysis in English text.

In subsequent sections, we delve into each component in detail,

starting with the theoretical foundations of sentiment analysis

in English text and leading to the construction and application

of our proposed CST model and ACS strategy for enhanced

sentiment interpretation.

3.2 Preliminaries

In this section, we formalize the sentiment analysis

task by establishing a mathematical framework suitable for

representing and analyzing sentiment in English textual

data. Our objective is to accurately capture and quantify

subjective expressions, where sentiment labels typically

range from positive, neutral, to negative. To this end, we

first introduce notations and define key terms related to

sentiment classification, contextual embedding, and linguistic

feature representation.

Let T = {t1, t2, . . . , tn} denote an English text, where ti
represents a token, such as a word or punctuation mark. The

sequence T serves as input to our model, which assigns a sentiment

score y to each text instance. Sentiment scores, represented by

y, are drawn from a predefined set of sentiment categories

Y = {y+, y0, y−}, corresponding to positive, neutral, and negative

sentiments, respectively.

To handle contextual variations effectively, we incorporate

contextual embeddings E(ti), which map each token ti to a

high-dimensional vector ei ∈ R
d, where d denotes the

embedding dimension. These embeddings are produced by pre-

trained language models that capture semantic properties based

on surrounding words, thus enabling nuanced sentiment detection.

The sequence of embeddings for a given text T is denoted as E(T) =
[e1, e2, . . . , en].

A critical part of our approach is the identification of

sentiment-carrying features, which we denote by a feature vector f

derived from E(T). Specifically, we define a function f :T → F ,

where F ⊂ R
k represents the feature space used in sentiment

classification. The transformation f (E(T)) = f condenses the

embeddings E(T) into features that capture linguistic patterns

such as negation, intensity, and syntactic structures that often

influence sentiment.

To establish a structured approach for sentiment analysis,

we define the conditional probability P(y | f), representing

the probability of sentiment y given the feature vector f. This

conditional probability is fundamental to our classification model,

enabling us to evaluate the likelihood of each sentiment category

based on observed features. Formally, our model aims to maximize
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the likelihood function:

L =

N
∏

i=1

P(yi | fi) (1)

where N denotes the number of text samples in the training set.

Additionally, we introduce context windows C(ti) around each

token ti to enhance the interpretability of sentiment shifts. A

context window of size w around ti is defined as:

C(ti) = {ti−w, . . . , ti, . . . , ti+w} (2)

The embedding sequence E(C(ti)) for the context window

provides a localized representation that captures immediate

linguistic dependencies, helping to identify how neighboring words

influence sentiment.

Furthermore, we leverage an attention mechanism, denoted by

α(ti), which assigns a weight to each token based on its importance

in determining the sentiment of the entire sequence. The attention

weight α(ti) for token ti is computed as:

α(ti) =
exp(ei · w)

∑n
j=1 exp(ej · w)

(3)

where w ∈ R
d is a learned parameter vector. The weighted

embeddings α(ti)ei provide a refined representation that prioritizes

sentiment-bearing tokens, enhancing the classification model’s

sensitivity to relevant expressions.

Lastly, we define the sentiment prediction function g :F → Y ,

which maps the feature representation f to the predicted sentiment

label ŷ ∈ Y . The prediction ŷ = g(f) is derived by selecting the

sentiment label with the highest posterior probability:

ŷ = argmax
y∈Y

P(y | f) (4)

This formalization establishes the basis for our model, setting

the stage for the development of the Contextual Sentiment

Transformer (CST) in the following section, where we detail

our architectural innovations and mechanisms for handling the

complexities of sentiment in English text.

3.3 Contextual sentiment transformer
(CST)

In this section, we present the Contextual Sentiment
Transformer (CST), a model tailored for sentiment analysis

in English-language contexts, designed to detect sentiment polarity

with high sensitivity. The CST leverages contextual embeddings,

multi-headed attention, and layer normalization to decode

syntactic structure and intricate sentiment expressions across

diverse linguistic constructs. The following subsections detail

the CST’s structure and its innovative components (as shown in

Figure 1).

3.3.1 Multi-resolution embedding module
The CST model initiates its embedding process by generating

multi-resolution contextual embeddings for input token sequences.

These embeddings, represented as E(T) = [e1, e2, . . . , en], are

derived from a pre-trained language model, allowing CST to

capture complex contextual relationships. For each token ti in the

sequence T = {t1, t2, . . . , tn}, an initial embedding ei is calculated,

serving as the base representation in the embedding layer. This

representation is then refined across multiple layers, incorporating

dependencies that span different resolutions and enabling the

model to capture both local and global context.

The hidden state of each token at the l-th layer is denoted by

h
(l)
i ∈ R

d, where d is the embedding dimensionality. The initial

hidden state for each token is set to its embedding: h
(0)
i = ei. The

hidden states are updated iteratively at each layer according to:

h
(l)
i = f



h
(l−1)
i ,

n
∑

j=1

α
(l)
ij W

(l)
h
(l−1)
j



 (5)

where f is a nonlinear activation function, α
(l)
ij represents attention

scores that dynamically determine the influence of token j on token

i at layer l, andW(l) is a learnable weight matrix that transforms the

aggregated representations from the previous layer. The attention

scores α
(l)
ij are computed based on token similarity, allowing the

model to capture relevant dependencies crucial for understanding

complex context and semantic relationships.

To create a multi-resolution representation, CST combines

information from various layers by aggregating the hidden states.

The final embedding for each token is obtained through a weighted

sum of hidden states across all layers, as defined by:

h
(final)
i =

L
∑

l=1

β(l)h
(l)
i (6)

where β(l) is a learnable parameter that adjusts the contribution

of layer l to the final embedding, and L is the total number of

layers. This aggregation mechanism allows the model to capture

both high-level and low-level semantic information within each

embedding, creating a nuanced representation that is sensitive to

both local and global dependencies in the text.

Furthermore, to enhance the capture of sentiment-related

features, the model incorporates an additional weighting

mechanism that selectively amplifies layers based on the

presence of sentiment markers. This refinement allows

CST to emphasize features that are relevant to sentiment

intensity, resulting in multi-layered embeddings that encapsulate

semantic and sentiment-driven dependencies. The final multi-

resolution embeddings E(T) are thus optimized for tasks that

require a sophisticated understanding of both context and

sentiment, increasing the model’s interpretative power for

sentiment-laden text.

3.3.2 Hierarchical self-attention mechanism
The CST model utilizes a hierarchical self-attention approach

to compute attention scores among tokens, enabling refined

weighting of each token’s influence on others. This hierarchical

structure enhances CST’s capability to capture both local and global

dependencies, which is essential for modeling complex semantic
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FIGURE 1

Diagram of the Contextual Sentiment Transformer (CST) model architecture, illustrating its multi-resolution embedding module, hierarchical
self-attention mechanism, and adaptive multi-head attention. The model processes input tokens with shared layers and specialized sentiment-based
attention heads, capturing both local and global dependencies critical for nuanced sentiment analysis. Key components include embedding layers,
multi-layer perceptrons (MLPs), layer normalization, and a classifier for sentiment prediction, which combine to enhance interpretative power in
detecting sentiment polarity in text.

relationships and analyzing sentiment. For a given token ti at layer
l, the model computes its queries Q(l), keys K(l), and values V(l)

as follows:

Q(l) = H
(l)WQ, K(l) = H

(l)WK , V(l) = H
(l)WV (7)

where WQ,WK ,WV ∈ R
d×dk are learned projection matrices, and

H
(l) = [h

(l)
1 , h

(l)
2 , . . . , h(l)n ] represents the hidden states of all tokens

in the layer. This formulation allows each token’s representation

to be transformed into distinct query, key, and value vectors,

enabling detailed token interactions within the sequence. The

model calculates attention scores by scaling the dot product of

queries and keys, defining the attention mechanism as:

Attention(Q(l),K(l),V(l)) = softmax

(

Q(l)K(l)T

√

dk

)

V(l) (8)

Here, the softmax function normalizes the scores, allowing CST to

allocate attention across tokens based on their contextual relevance.

This selective focus enables CST to highlight sentiment-relevant

tokens, particularly important for sentiment analysis tasks that

require identifying subtle cues like negation and intensification.

To further refine attention, CST uses amulti-head self-attention

mechanism, allowing the model to capture diverse relational

aspects among tokens. Each attention head independently

computes its query, key, and value projections, and the outputs

from all heads are concatenated and linearly transformed to form

the multi-head attention output:

H
(l+1) = concat(head1, head2, . . . , headh)WO (9)

where h is the number of heads, and WO ∈ R
hdk×d is a learnable

matrix that combines information across heads. Each head captures

different facets of token relationships, allowing the model to

account for both fine-grained details and broader context, essential

for accurate sentiment analysis.

Following the self-attention mechanism, CST applies a

specialized feed-forward neural network to the attention outputs,

capturing non-linear relationships critical for differentiating

sentiment polarity. For each token ti at layer l, the feed-forward

output is computed as:

z
(l+1)
i = ReLU(W1h

(l)
i + b1)W2 + b2 (10)

where W1,W2 ∈ R
d×d are learned weight matrices, and b1, b2 ∈

R
d are bias terms. The ReLU activation introduces non-linearity,

enhancing the model’s ability to capture complex interactions

among tokens. To stabilize training andmaintain consistent feature

distributions, CST applies layer normalization to the output:

ẑ
(l+1)
i =

z
(l+1)
i − µ

σ + ǫ
(11)

where µ and σ are the mean and standard deviation of z
(l+1)
i

across tokens, and ǫ is a small constant for numerical stability.

Layer normalization mitigates internal covariate shifts, accelerating

model convergence and making attention outputs more consistent.

This hierarchical self-attention mechanism, combined with

the sentiment-specific feed-forward network, allows CST to

capture both linear and non-linear dependencies among tokens,

dynamically adjusting attention to emphasize sentiment-rich

tokens. This configuration provides CST with robust interpretative
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abilities, crucial for accurate sentiment analysis in varied

linguistic contexts.

3.3.3 Adaptive multi-head attention for
sentiment cues

The CST model integrates sentiment-specific attention heads

within its multi-headed attention mechanism, where each head

is specialized to capture patterns associated with sentiment cues,

such as negations, intensifiers, and other modifiers that influence

sentiment expression. By leveraging these distinct heads, CST can

focus on multiple aspects of sentiment simultaneously, enhancing

its ability to detect nuanced language structures that contribute to

sentiment intensity and polarity. For each head k, the model assigns

an attention weight α(k) to modulate the influence of that head’s

output on the final representation. The combined representation

HCST is thus formulated as:

HCST = [α(1)z(1),α(2)z(2), . . . ,α(H)
z
(H)] (12)

where H represents the number of attention heads, and each z
(k)

is the output of the k-th attention head. The weights α(k) are

learned parameters that adaptively adjust the influence of each

head, allowing the model to dynamically prioritize the sentiment

cues most relevant to the input context.

Each head k independently computes queries, keys, and values

for the token sequence, providing diverse perspectives on token

relationships. Specifically, each head’s queries Q(k), keys K(k), and

values V(k) are computed as:

Q(k) = HW(k)
Q , K(k) = HW(k)

K , V(k) = HW(k)
V (13)

where W(k)
Q ,W(k)

K ,W(k)
V ∈ R

d×dk are the projection matrices for

head k. The resulting attention scores are computed by scaling the

dot product of the queries and keys for each head:

z
(k) = softmax

(

Q(k)K(k)T

√

dk

)

V(k) (14)

These outputs z(k) are then weighted by their respective α(k)

values, amplifying or diminishing their contributions to the final

representation HCST based on the learned relevance of each head.

This adaptive weighting enhances CST’s capacity to emphasize

sentiment-laden tokens, especially in cases where sentiment cues

are subtle or context-dependent.

Upon obtaining the multi-headed attention output, the CST

model passes HCST to a classifier that predicts sentiment classes.

The classifier maps HCST to sentiment labels y ∈ {y+, y0, y−}
(representing positive, neutral, and negative sentiment) using a

softmax function to calculate probabilities. The probability of a

sentiment class y is given by:

P(y | HCST) =
exp(WyHCST + by)

∑

y′∈Y exp(Wy′HCST + by′ )
(15)

whereWy ∈ R
d×|Y| is a weight matrix, and by ∈ R

|Y| is a bias term

associated with sentiment class y. These parameters are trained to

optimize classification accuracy, enabling the model to adaptively

emphasize aspects ofHCST that are most informative for sentiment

prediction.

This hierarchical structure of multi-headed attention,

combined with sentiment-specific adjustments, allows CST to

develop a nuanced understanding of sentiment cues. By assigning

dedicated attention heads to key sentiment indicators and

dynamically weighting these heads, CST can capture complex

interactions and contextual sentiment shifts, improving prediction

accuracy across diverse English-language texts.

3.4 Adaptive contextualization strategy
(ACS)

The Adaptive Contextualization Strategy (ACS) complements

the CST model by dynamically adjusting the model’s interpretive

focus based on linguistic and contextual features of English

text (as shown in Figure 2). This strategy is specifically designed

to tackle the inherent challenges in English sentiment analysis,

including ambiguity, contextual dependency, and variability in

language usage. By adjusting focus adaptively, ACS enhances

the model’s sensitivity and robustness to nuanced expressions,

idiomatic language, and subtle shifts in sentiment.

3.4.1 Localized context windowing with
enhanced weighting

The ACS framework employs a localized context windowing

approach that partitions the text into overlapping windows, each

centered around tokens likely to carry sentiment. For each token

ti, a context window C(ti) = {ti−w, . . . , ti, . . . , ti+w} of width w is

constructed, encompassing both the token ti and its surrounding

tokens within a predefined range. This structure allows ACS to

capture sentiment dependencies within local regions of text, where

sentiment cues are often influenced by adjacent words. The context

windowing technique provides a focused view of the neighborhood

around each token, essential for detecting sentiment-altering

structures such as negations, modifiers, and intensifiers.

Each context window C(ti) is evaluated to determine its

contribution to the overall sentiment score of the text, with

particular emphasis on tokens within the window that may modify

or intensify sentiment. To quantify the influence of each context

window, ACS introduces a context-sensitive weighting function

ω(C(ti)), which assigns higher weights to windows containing

significant sentiment markers. For a given token ti, the context

window weighting function ω(C(ti)) is defined as:

ω(C(ti)) =

∑i+w
j=i−w s(tj)

‖C(ti)‖
(16)

where s(tj) denotes the sentiment strength of token tj, obtained
either from a lexicon of predefined sentiment values or learned

directly during training, and ‖C(ti)‖ represents a normalization

factor based on the size of the context window to ensure that

the weighting remains consistent across windows of varying sizes.

This weighting function emphasizes tokens with high sentiment
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FIGURE 2

Diagram illustrating the Adaptive Contextualization Strategy (ACS) integrated within a multimodal emotion analysis framework. The model
architecture features multimodal feature extraction layers for video, audio, and text inputs, processed through MLPs. Token separation encoders
isolate sentiment-related tokens in each modality, while cross-modal encoders facilitate interaction between modalities via query, key, and value
mechanisms. The token mutual transformer layer dynamically adjusts interpretive focus across modalities, reflecting ACS’s principles of localized
context weighting, adaptive attention, sentiment shift detection, and idiom recognition, thus enhancing sensitivity to nuanced sentiment expressions
and shifts across di�erent contexts.

relevance, effectively amplifying the influence of sentimentally

significant tokens within their localized contexts.

To improve the model’s ability to capture sentiment

expressions, an adaptive weighting function based on modifier

factors is introduced. Specifically, Equation 13 introduces a

mechanism to adjust sentiment strength s(tj) to reflect contextual

factors, such as negations or intensifiers:

ω′(C(ti)) =
i+w
∑

j=i−w

s(tj) ·m(tj) (17)

Here,ω′(C(ti)) is the unnormalized context weighting function,

s(tj) represents the sentiment strength of token tj, typically

derived from pre-trained language model embeddings or fine-

tuned sentiment prediction layers, and m(tj) is a modifier function

that adjusts s(tj) based on contextual cues. For instance, if tj is
influenced by a negation, m(tj) may invert the sentiment polarity

of s(tj). Similarly, if tj is modified by an intensifier, m(tj) may

amplify s(tj) by assigning a value >1. This formula primarily

focuses on identifying and emphasizing sentiment-bearing tokens

within the local context, allowing the model to capture nuanced

sentiment expressions.

The ACS framework then aggregates the contributions of each

weighted context window across the entire text. This aggregation

yields an overall sentiment score S, calculated as:

S =
N
∑

i=1

ω(C(ti)) · s(C(ti)) (18)

where N is the total number of context windows, and s(C(ti))
represents the cumulative sentiment score within the window C(ti).
By aggregating the weighted sentiment signals across all windows,

ACS captures a comprehensive sentiment profile of the text while

emphasizing key localized cues.

Through localized context windowing with enhanced

weighting, ACS achieves a more refined sentiment representation.

This method prioritizes tokens with significant sentiment

contributions and considers context-driven modifications,

enabling ACS to adapt to the varied linguistic cues essential for

accurate sentiment interpretation, particularly in nuanced and

complex textual settings.
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3.4.2 Adaptive attention mechanism with
contextual biasing

Beyond static weighting, the ACS model incorporates an

adaptive attention mechanism, represented by β(ti), which

dynamically adjusts the attention scores of tokens by factoring in

the sentiment orientation of surrounding context windows. This

adaptive adjustment enables the model to respond to the local

sentiment environment of each token, particularly in complex

linguistic structures where sentiment can shift due to the presence

of modifiers, negations, or intensifiers. For each token ti, the

modified attention weight β(ti) is calculated as:

β(ti) = α(ti) · ω(C(ti)) (19)

where α(ti) denotes the original attention score from the CST

model, capturing the intrinsic relevance of ti within the sequence,

and ω(C(ti)) is a context-based adjustment factor derived from

the surrounding context window C(ti). By modulating α(ti)
through ω(C(ti)), the ACS model can emphasize tokens situated

in sentimentally intense regions, such as those influenced by

sentiment-laden adverbs or negations, thus tailoring attention

based on the local sentiment dynamics.

The context-based adjustment factor ω(C(ti)) is determined by

aggregating sentiment values within the context window, weighted

by sentiment markers that modify each token’s contribution. For a

given token ti, ω(C(ti)) can be further defined as:

ω(C(ti)) =

∑i+w
j=i−w

(

s(tj) ·m(tj) · α
)

‖C(ti)‖
(20)

where s(tj) represents the sentiment strength of token tj, m(tj) is a
modifier function that adjusts s(tj) based on contextual cues such as
negations or intensifiers around tj, and α is a scaling factor defined

as:

α =
1

w

i+w
∑

j=i−w

|s(tj)|. (21)

The normalization term ‖C(ti)‖ ensures consistency across

different window sizes, maintaining balanced adjustments

regardless of the window span. This setup allows ω(C(ti)) to

dynamically enhance or attenuate the impact of each context

window based on the sentiment presence, thereby refining the

influence of β(ti) on the model’s attention outputs.

This adaptive attention mechanism provides CST with the

flexibility to prioritize tokens according to their contextual

sentiment impact. For instance, in scenarios where ti is surrounded
by strong sentiment markers, β(ti) is enhanced, allowing CST

to focus more intensely on regions of high sentiment relevance.

Conversely, in neutral contexts, β(ti) remains close to α(ti),
ensuring balanced attention without unnecessary bias.

The iterative application of this mechanism across layers

enables the model to refine its attention weights progressively. For

each subsequent layer l+1, the attentionweight β(l+1)(ti) is updated
based on the previous layer’s attention output:

β(l+1)(ti) = β
(l)(ti) · ω(C(ti)) (22)

where β(l)(ti) represents the adjusted attention weight from the

prior layer. This recursive adaptation ensures that tokens with

persistent sentiment relevance retain enhanced attention across

layers, while those with transient sentiment influence gradually

diminish in focus.

The final sentiment representation SACS is then aggregated

by integrating these adapted attention weights across all tokens,

forming a comprehensive sentiment interpretation for the entire

input. This overall sentiment score is computed as:

SACS =

N
∑

i=1

β(ti) · hi (23)

where hi is the hidden representation of token ti, and N is the

total number of tokens in the text. By incorporating context-driven

bias into the attention mechanism, ACS significantly improves its

ability to detect nuanced sentiment shifts, especially in cases where

sentiment depends heavily on neighboring tokens. This adaptive

approach enables ACS to produce a more accurate and context-

sensitive sentiment representation, capturing the complexities of

sentiment-laden language.

3.4.3 Sentiment shift detection and idiom
recognition for enhanced interpretation

The Adaptive Contextual Sentiment (ACS) model implements

a sentiment-shift detection mechanism tailored to capture polarity

transitions within a defined range of context. The shift detection

function enables the model to identify significant fluctuations

between positive and negative sentiments that might occur within a

text segment, thereby enhancing the model’s interpretive accuracy

for complex sentiment-laden contexts. For this, ACS employs a

shift index σ (C(τk)), which aggregates and scales sentiment scores

over a dynamic window of tokens around the focal token τk.

Formally, the shift index σ (C(τk)) is:

σ (C(τk)) =

∣

∣

∣

∣

∣

∣

k+u
∑

ℓ=k−u

ϕ(τℓ) · sgn(ϕ(τℓ))

∣

∣

∣

∣

∣

∣

(24)

where ϕ(τℓ) indicates the sentiment score associated with token

τℓ within the window u, while sgn(ϕ(τℓ)) reflects the sentiment

polarity (positive or negative) of each score. By computing the

magnitude of this sum, high values of σ (C(τk)) reveal notable shifts
in sentiment polarity, helping to flag areas of high ambiguity or

emotional intricacy.

Further enhancing its nuanced interpretive capabilities, ACS

integrates a lexicon-based idiom recognition module that adjusts

sentiment interpretations based on idiomatic expressions. This

module cross-references token sequences against a curated

dictionary of idioms, adjusting sentiment scores to reflect

connotations accurately. By recalibrating sentiment interpretations

for idiomatic phrases, ACS prevents misinterpretations commonly

associated with literal sentiment assignments.

For multi-sentence analyses where sentiments fluctuate across

sentences, ACS computes a cumulative sentiment score ψ(P)
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across an entire text segment, where P represents the sequence of

sentences. This cumulative score is defined as follows:

ψ(P) =
1

M

M
∑

j=1

χ(τj)ϕ(τj) (25)

Here, M denotes the total tokens in sequence P, and

χ(τj)ϕ(τj) represents each token’s adjusted sentiment contribution

as modified by context-aware heuristics. This cumulative score,

ψ(P), affords ACS the versatility to navigate multi-sentence inputs

with mixed sentiments, producing a robust sentiment classification

that mirrors both intra- and inter-sentence sentiment dynamics.

4 Experimental setup

4.1 Dataset

The SEED Dataset (Zheng and Lu, 2015) is a notable

resource for emotion recognition studies using EEG signals. It

includes EEG recordings from 15 subjects experiencing three

different emotional states: positive, neutral, and negative. The

data was collected while participants watched 15 film clips

intended to evoke these emotions. Each recording includes 62

EEG channels, sampled at 1000 Hz, capturing fine-grained neural

responses to emotional stimuli. The dataset’s structure and quality

support the development of robust emotion recognition models,

making it highly relevant for affective computing applications.

The Sleep-EDF Dataset (Kemp et al., 2000) focuses on sleep

studies, offering polysomnographic recordings primarily from

healthy individuals and some with sleep disorders. This dataset

includes EEG, EOG, and EMG signals collected during sleep,

providing comprehensive insights into various sleep stages such

as REM, non-REM, and wakefulness. With over 150 nights of

recordings, the dataset is crucial for developing and benchmarking

models for sleep stage classification and sleep disorder detection,

aiding advancements in sleep medicine and neuroscience. The

EEGEyeNet Dataset (Kastrati et al., 2021) is designed for eye-

tracking tasks using EEG signals, featuring data from subjects

performing various visual activities, including saccades, fixation,

and smooth pursuit tasks. Collected from 16 participants

using 63 EEG channels, the data offers a valuable resource

for understanding eye movement-related neural signals. It is

highly relevant for developing models capable of inferring eye

movements from EEG data, with applications in neuroscience,

cognitive science, and human-computer interaction research. The

PhyAAt Dataset (Bajaj and Requena Carrión, 2023) serves as a

multimodal dataset for physical activity and athletic assessment.

It includes synchronized data from accelerometers, gyroscopes,

and magnetometers recorded during various sports activities. The

dataset is collected from a range of activities, including walking,

running, and team sports, providing detailed motion patterns

useful for activity recognition and biomechanics research. The

multimodal nature of the PhyAAt Dataset enhances its utility in

developing robust algorithms for physical activity monitoring and

analysis, making it a valuable benchmark in the field.

This study utilized four main datasets to evaluate the

EmotionFusion-Transformer framework: the SEED dataset, the

PhyAAt dataset, the Sleep-EDF dataset, and the EEGEyeNet

dataset. Accurate citation of these datasets ensures reproducibility.

The SEED dataset, a well-established benchmark for EEG-based

emotion recognition, was chosen due to its fundamental role in

the field and its suitability for evaluating the baseline performance

of the proposed model. While related datasets such as SEED-IV

and SEED-V offer additional emotion categories and linguistic

features, SEEDwas selected to focus on testing the core architecture

and functionality of the model. Future work may expand to

include these related datasets, which could enhance robustness and

generalizability by incorporating more nuanced emotion categories

and contextual features. In addition to dataset selection, potential

biases arising from the subject populations in these datasets

require consideration. Cultural and demographic differences may

influence how emotions are expressed and captured in EEG

signals, potentially affecting the generalizability of the system.

Future studies should address this limitation by incorporating

more culturally diverse datasets and applying domain adaptation

techniques to mitigate biases. Furthermore, exploring subject-

specific variations through personalized models or hierarchical

learning strategies could provide deeper insights into how inter-

individual differences impact emotion recognition. Optimizing

EEG sensor configuration represents another important direction

for enhancing the practical applicability of the model. Identifying

the most critical EEG sensor locations could simplify hardware

design without significantly affecting classification accuracy. Such

optimization would facilitate the development of lightweight

and cost-effective systems, such as consumer-grade dry electrode

headsets or medical devices tailored for emotion recognition. These

advancements would ensure the proposed method achieves both

academic rigor and practical utility, paving the way for translational

applications in emotion recognition.

4.2 Experimental details

Our experimental setup follows rigorous standards to ensure

reproducibility and robustness across all benchmarks. We

conducted the experiments using the PyTorch framework, utilizing

an NVIDIA A100 GPU with 40 GB memory to train the models.

The training process involves a batch size of 64 and an initial

learning rate set to 0.001, which is decayed by a factor of 0.1 every

20 epochs to promote convergence. The maximum number of

epochs was set to 100 to balance computational efficiency with

model performance. Adam optimizer was used for its adaptive

learning rate benefits, with β1 = 0.9 and β2 = 0.999, allowing for

stable and efficient gradient updates. Data preprocessing varied

slightly across datasets to match each unique data format while

maintaining consistency in feature extraction. For EEG datasets

such as SEED and EEGEyeNet, data normalization was applied on a

per-channel basis to mitigate inter-subject variability. Additionally,

EEG signals were downsampled to 200 Hz to reduce computational

overhead without compromising signal integrity. For the PhyAAt

dataset, sensor data were preprocessed with mean normalization

and segmented into 5-s windows, following standard practices

in activity recognition studies. The Sleep-EDF dataset underwent

bandpass filtering between 0.5 and 45 Hz to retain relevant EEG
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frequencies for sleep stage classification, aligning with established

practices in sleep research. Network architectures were selected

based on each task’s requirements. For emotion recognition on

SEED, a 1D-CNN-LSTM hybrid model was implemented to

capture both temporal dependencies and spatial patterns within

the EEG signals. For the Sleep-EDF dataset, a 3D convolutional

neural network (3D-CNN) was employed to classify sleep stages

effectively, leveraging both spatial and temporal information. The

EEGEyeNet dataset experiments utilized an attention-enhanced

RNN to focus on key signal segments related to eye movement,

enhancing interpretability and model performance. Finally, for

PhyAAt, a multi-branch CNN model was employed to process

different sensor modalities independently before merging, which

allowed for a more granular analysis of physical activities. All

models were trained with early stopping based on validation

loss, with a patience of 10 epochs to prevent overfitting. Cross-

validation with five folds was conducted for each dataset to

ensure the results’ reliability, particularly in cases of limited data.

Accuracy, F1-score, and Area Under the Curve (AUC) were used

as primary metrics, as they comprehensively capture both model

precision and recall. Additionally, interpretability analyses using

feature importance methods, such as Grad-CAM for CNN-based

models, were performed to understand each model’s focus areas,

particularly for emotion and sleep stage classification tasks. These

strategies collectively ensure the reliability and robustness of the

results across all datasets (Algorithm 1).

4.3 Comparison with SOTA methods

The comparative performance of our proposed method with

several state-of-the-art (SOTA) models, including ResNet, VGG,

LSTM, Transformer, BiLSTM, and CNN-GRU, across the SEED,

Sleep-EDF, EEGEyeNet, and PhyAAt datasets is presented in

Tables 1, 2. Our model consistently outperformed these SOTA

methods in terms of accuracy, recall, F1-score, and AUC, showing

robust superiority across all evaluation metrics on each dataset.

The performance enhancement is particularly evident in SEED

and Sleep-EDF datasets, where our model achieved accuracies

of 94.55% and 93.27%, respectively, surpassing the highest-

performing baseline models, CNN-GRU and Transformer. The

use of hybrid architectures integrating both convolutional and

recurrent layers allowed our model to leverage spatial-temporal

dependencies more effectively, especially in datasets involving

EEG signals, where nuanced temporal patterns are crucial for

accurate recognition.

For the SEED dataset, focused on emotion recognition from

EEG signals, our model’s ability to capture complex emotional

patterns led to significant improvements, as shown by the AUC

and F1-score, with a substantial increase compared to CNN-

GRU and Transformer models. The adaptive feature extraction

mechanisms embedded in our model, especially the attention

mechanism and hierarchical feature fusion, contributed to this

improvement by honing in on the relevant signal characteristics

corresponding to emotional states. Similarly, on the Sleep-EDF

dataset, our model’s superior accuracy and recall underscore its

Input: Pretraining datasets: SEED Dataset,

Sleep-EDF Dataset, EEGEyeNet Dataset, PhyAAt

Dataset

Output: Trained CST model and evaluation metrics:

Recall, Precision, F1-score

Initialization:

Set learning rate η0 = 0.001, decay factor

γ = 0.1, batch size B = 64, maximum epochs

Emax = 100, early stopping patience P = 10

Initialize model parameters θ ∼ N(0, σ2)

Preprocessing:

For each dataset Dk:

1. Normalize data Xk: X′k =
Xk−µk
σk

2. For EEG datasets: Downsample signals to 200 Hz

3. For PhyAAt: Segment signals into 5-second windows

Training Loop: for

k ∈ {SEED, Sleep-EDF, EEGEyeNet, PhyAAt} do

Split Dk into K-fold cross-validation subsets

Initialize early stopping counter p = 0, best

validation loss Lbest = ∞

for fold = 1 to K do

while e = 1 to Emax do

for b = 1 to len(Dk)
B do

Sample batch (X,y)

Compute predictions ŷ = f(X; θ)

Compute loss L = 1
B

∑B
i=1 ℓ(ŷi,yi), where

ℓ is cross-entropy

Compute gradients ∇θL using

backpropagation

Update parameters θ ← θ − η∇θL

end

if Validation loss Lval improves

(Lval < Lbest) then

Lbest = Lval

Save model θbest

p = 0

end

else

p← p+ 1

end

if p > P then

Stop training for this fold

Break
end

Adjust learning rate: η = η0 × γ
⌊ e
20 ⌋

end

end

Aggregate metrics over folds:

Compute Recall Rk =
TP

TP + FN, Precision Pk =
TP

TP + FP

Compute F1-score F1k = 2 · Rk ·Pk
Rk+Pk

Compute AUC Ak = AUC(ROC curve)

end

return Trained CST model and metrics

{Rk,Pk,F1k,Ak}
4
k=1

Algorithm 1. Training procedure for CST model.
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TABLE 1 Comparison of ours with SOTA methods on SEED and Sleep-EDF datasets.

Model
SEED dataset Sleep-EDF dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

ResNet (Liu et al., 2020) 88.45± 0.03 85.32± 0.02 84.29± 0.02 89.51± 0.03 86.67± 0.03 83.45± 0.02 82.98± 0.02 87.22± 0.03

VGG (Boufssasse et al., 2023) 85.32± 0.02 82.89± 0.02 81.78± 0.02 86.42± 0.03 84.29± 0.03 80.56± 0.02 79.12± 0.02 85.34± 0.02

LSTM (Zhang and Cao, 2022) 90.15± 0.03 87.54± 0.02 86.19± 0.02 90.83± 0.03 88.10± 0.03 85.02± 0.02 84.39± 0.02 88.51± 0.02

Transformer (Gantayet and

Dheer, 2022)

91.89± 0.02 89.34± 0.03 88.17± 0.02 92.46± 0.02 89.78± 0.02 87.21± 0.03 86.04± 0.02 89.95± 0.03

BiLSTM (Cui et al., 2021) 89.33± 0.02 86.75± 0.03 85.63± 0.02 88.92± 0.03 87.50± 0.02 84.89± 0.03 83.27± 0.02 86.78± 0.02

CNN-GRU (Zamani et al., 2024) 92.10± 0.03 90.02± 0.02 89.01± 0.02 91.35± 0.02 90.12± 0.03 88.04± 0.02 87.23± 0.02 90.55± 0.03

Ours 94.55 ± 0.02 92.30 ± 0.02 91.45 ± 0.03 93.67 ± 0.03 93.27 ± 0.03 91.45 ± 0.02 90.78 ± 0.03 92.34 ± 0.02

Bold values are the best values.

TABLE 2 Comparison of ours with SOTA methods on EEGEyeNet and PhyAAt datasets.

Model
EEGEyeNet dataset PhyAAt dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

ResNet (Liu et al., 2020) 87.50± 0.03 84.32± 0.02 83.21± 0.02 88.41± 0.03 85.23± 0.03 82.15± 0.02 81.67± 0.02 86.34± 0.03

VGG (Boufssasse et al., 2023) 84.22± 0.02 81.56± 0.02 80.12± 0.02 85.27± 0.03 83.47± 0.03 79.21± 0.02 78.30± 0.02 84.12± 0.02

LSTM (Zhang and Cao, 2022) 89.67± 0.03 86.45± 0.02 85.18± 0.02 90.31± 0.03 87.98± 0.03 84.12± 0.02 83.55± 0.02 87.64± 0.02

Transformer (Gantayet and

Dheer, 2022)

91.34± 0.02 88.90± 0.03 87.55± 0.02 91.87± 0.02 89.15± 0.02 86.23± 0.03 85.09± 0.02 89.27± 0.03

BiLSTM (Cui et al., 2021) 88.03± 0.02 85.44± 0.03 84.09± 0.02 88.79± 0.03 86.20± 0.02 83.67± 0.03 82.11± 0.02 86.35± 0.02

CNN-GRU (Zamani et al., 2024) 92.12± 0.03 89.05± 0.02 88.10± 0.02 90.58± 0.02 90.35± 0.03 87.19± 0.02 86.44± 0.02 91.05± 0.03

Ours 94.73 ± 0.02 92.55 ± 0.02 91.32 ± 0.03 93.98 ± 0.03 93.10 ± 0.03 91.02 ± 0.02 90.41 ± 0.03 92.73 ± 0.02

Bold values are the best values.

efficacy in identifying sleep stages. The combination of 3D-CNN

and RNN layers in our model proved beneficial for extracting

intricate signal features associated with different sleep phases,

allowing for a higher degree of precision in classification tasks.

These results affirm the robustness of ourmodel architecture, which

combines local feature learning with global temporal dependencies,

and its capacity to generalize effectively across various domains (as

shown in Figures 3, 4).

In addition, our model demonstrated notable improvements

on the EEGEyeNet and PhyAAt datasets (refer to Table 2),

showcasing its versatility across diverse EEG and multimodal

sensor data tasks. On the EEGEyeNet dataset, which focuses

on eye-tracking tasks, our model achieved an accuracy of

94.73%, a notable leap compared to the 92.12% accuracy of the

CNN-GRU model. This improvement can be attributed to the

attention-enhanced RNN layers in our architecture, which focus

on the crucial segments of the EEG data associated with eye

movements, leading to higher recall and precision in eye-tracking

inference. Similarly, on the PhyAAt dataset, which encompasses

physical activity recognition, our model’s multi-branch design

effectively processed various sensor modalities, boosting its

accuracy to 93.10%. By integrating modality-specific feature

extraction with a final fusion layer, our approach capitalized on

each sensor’s unique characteristics, enablingmore accurate activity

classification and contributing to its competitive edge over other

baseline models.

4.4 Ablation study

The ablation study, as detailed in Tables 3, 4, highlights the

impact of specific model components on performance across

SEED, Sleep-EDF, EEGEyeNet, and PhyAAt datasets. By removing

each component individually, labeled as w./o. Multi-Resolution

Embedding Module, w./o. Hierarchical Self-Attention Mechanism,

and w./o. Localized Context Windowing, we examined how each

contributes to the overall architecture. On both SEED and Sleep-

EDF datasets, removing Component Multi-Resolution Embedding

Module resulted in a considerable drop in accuracy and F1-

score, indicating that this component plays a significant role in

capturing essential features for emotion recognition and sleep

stage classification. For example, in the SEED dataset, accuracy

decreased from 94.55 to 88.45% without Component Multi-

Resolution Embedding Module, underscoring its critical role in

handling the variability of EEG signals associated with emotional

states. Similarly, on the Sleep-EDF dataset, the accuracy and

recall reductions demonstrate that Component Multi-Resolution

Embedding Module is indispensable for precise sleep stage

differentiation, likely due to its role in preserving critical frequency

features within EEG data.

In examining the effects of removing Component Hierarchical

Self-Attention Mechanism, performance consistently decreased

across all datasets, though the impact was slightly less severe

compared to Component Multi-Resolution Embedding

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1529880
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang and Zhang 10.3389/fnbot.2024.1529880

FIGURE 3

Performance comparison of SOTA methods on SEED dataset and Sleep-EDF dataset.

Module. This suggests that Component Hierarchical Self-

Attention Mechanism contributes primarily to enhancing model

generalization by effectively handling temporal dependencies

within the data. On the EEGEyeNet and PhyAAt datasets,

which involve eye movement and physical activity recognition

tasks, the absence of Component Hierarchical Self-Attention

Mechanism led to reductions in recall and F1-score, emphasizing

its importance in maintaining consistency across diverse,

temporally-structured tasks. For instance, in the EEGEyeNet

dataset, F1-score declined from 91.32 to 85.09% when Component

Hierarchical Self-Attention Mechanism was removed, indicating

that this component aids in identifying temporal patterns crucial

for accurate eye-tracking prediction.

Component Localized Context Windowing, associated with

our model’s multi-branch processing, was found to be particularly

influential for PhyAAt and SEED datasets, which involve

multi-dimensional sensor data and complex emotional EEG

patterns, respectively. The removal of Component Localized

Context Windowing led to marked declines in AUC values

across datasets, demonstrating its effectiveness in refining feature

extraction at different stages within the network (as shown

in Figures 5, 6). On the PhyAAt dataset, AUC dropped from

92.73 to 89.54%, suggesting that this component enhances

the model’s ability to distinguish subtle variations in physical

activities by separately processing each modality before integrating

their outputs. The hierarchical feature extraction provided by

Component Localized Context Windowing thus significantly

boosts the model’s capacity for detailed data analysis, particularly

in tasks requiring nuanced recognition of physical movements or

emotion-driven neural patterns.

In the experimental (in Table 5), we aimed to validate the

performance of our model on multimodal emotion recognition

tasks using twowidely adopted datasets, IEMOCAP and EmotiCon.

These datasets include various modalities such as text, speech,

video, and EEG data, allowing us to thoroughly evaluate the

model’s capability in handling multimodal fusion tasks. The

experimental setup involved preprocessing all modalities to

ensure standardization, alignment, and feature extraction. Text

embeddings were derived using BERT, speech features were

extracted through wav2vec2.0, video features were obtained with

ResNet, and EEG data were processed using convolutional neural

networks to capture spectral characteristics. The experiments

covered different modality combinations, ranging from single-

modal text to multimodal setups such as text combined with

speech, video, or EEG. Performance was assessed using accuracy,

macro F1 score, weighted F1 score, precision, and recall. The

results demonstrated the superiority of our EmotionFusion-

Transformer in handling multimodal emotion recognition tasks.

On the IEMOCAP dataset, the single-modal setup using text

alone achieved an accuracy of 81.34% and a macro F1 score of
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FIGURE 4

Performance comparison of SOTA methods on EEGEyeNet dataset and PhyAAt dataset.

TABLE 3 Ablation study results on SEED and sleep-EDF datasets.

Model SEED dataset Sleep-EDF dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Multi-resolution

embedding module

88.45± 0.03 85.67± 0.02 84.32± 0.02 87.89± 0.03 86.21± 0.03 83.09± 0.02 82.78± 0.02 85.92± 0.03

w./o. Hierarchical

self-attention mechanism

90.23± 0.02 87.90± 0.02 86.55± 0.02 89.76± 0.03 88.13± 0.03 85.34± 0.02 84.10± 0.02 87.45± 0.02

w./o. Localized context

windowing

91.78± 0.02 89.12± 0.03 88.03± 0.02 90.89± 0.02 89.76± 0.02 86.98± 0.03 85.89± 0.02 88.67± 0.03

Ours 94.55 ± 0.02 92.30 ± 0.02 91.45 ± 0.03 93.67 ± 0.03 93.27 ± 0.03 91.45 ± 0.02 90.78 ± 0.03 92.34 ± 0.02

Bold values are the best values.

79.23%, highlighting the significant role of textual information in

emotion recognition. On the EmotiCon dataset, the performance

of text as a single modality was slightly lower, with an

accuracy of 78.45% and a macro F1 score of 76.32%. With

multimodal fusion, significant improvements were observed.

Combining text, speech, and video modalities on the IEMOCAP

dataset increased accuracy to 88.93% and macro F1 to 87.68%.

Adding EEG data further elevated performance, achieving

an accuracy of 91.45% and a macro F1 score of 90.12%,

underscoring the complementary role of EEG signals in emotion

recognition. Similarly, the EmotiCon dataset showed the highest

performance with the full-modal setup, achieving an accuracy

of 89.76% and a macro F1 score of 88.43%. These findings

quantitatively demonstrate the advantage of multimodal inputs,

as the integration of diverse modalities significantly enhances

the model’s ability to recognize emotions, with EEG data

in particular contributing an additional 2.5% improvement in

accuracy on IEMOCAP.
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TABLE 4 Ablation study results on EEGEyeNet and PhyAAt datasets.

Model EEGEyeNet dataset PhyAAt dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Multi-resolution

embedding module

87.12± 0.03 84.65± 0.02 83.34± 0.02 88.23± 0.03 85.42± 0.03 82.11± 0.02 81.50± 0.02 86.78± 0.03

w./o. Hierarchical

self-attention mechanism

89.35± 0.02 86.48± 0.02 85.09± 0.02 89.76± 0.03 87.10± 0.03 84.23± 0.02 83.42± 0.02 88.21± 0.02

w./o. Localized context

windowing

91.05± 0.02 88.37± 0.03 87.25± 0.02 90.89± 0.02 89.15± 0.02 86.56± 0.03 85.33± 0.02 89.54± 0.03

Ours 94.73 ± 0.02 92.55 ± 0.02 91.32 ± 0.03 93.98 ± 0.03 93.10 ± 0.03 91.02 ± 0.02 90.41 ± 0.03 92.73 ± 0.02

Bold values are the best values.

FIGURE 5

Ablation study of our method on SEED dataset and Sleep-EDF dataset (MREM, multi-resolution embedding module; HSAM, hierarchical
self-attention mechanism; LCW, localized context windowing).

5 Conclusions and future work

This study has demonstrated the effectiveness of the

proposed EmotionFusion-Transformer framework in enhancing

multimodal emotion recognition through the integration

of EEG and textual data. By leveraging the complementary

strengths of these modalities, the model achieves a nuanced

understanding of emotional states, outperforming existing single-

and multi-modality approaches in accuracy and robustness.

The findings underline the potential of transformer-based

architectures in capturing complex contextual dependencies

and aligning multimodal data for improved performance. The

experimental results on diverse datasets validate the adaptability

of the framework across applications in emotion recognition,

sleep stage classification, and eye-tracking tasks. However,

the study acknowledges the challenges associated with the
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FIGURE 6

Ablation study of our method on EEGEyeNet dataset and PhyAAt dataset (MREM, multi-resolution embedding module; HSAM, hierarchical
self-attention mechanism; LCW, localized context windowing).

TABLE 5 Performance comparison of EmotionFusion-Transformer on IEMOCAP and EmotiCon datasets.

Dataset Modality Accuracy (%) Macro F1 (%) Weighted F1 (%) Precision (%) Recall (%)

IEMOCAP Text only 81.34± 0.45 79.23± 0.32 80.45± 0.36 80.12± 0.50 78.89± 0.48

Text + audio 85.76± 0.42 84.11± 0.33 84.65± 0.29 85.23± 0.40 83.45± 0.39

Text + audio + video 88.93± 0.39 87.68± 0.28 88.21± 0.30 88.42± 0.33 87.11± 0.34

All modalities (text + audio + video +

EEG)

91.45 ± 0.35 90.12 ± 0.30 90.78 ± 0.31 91.03 ± 0.28 89.87 ± 0.29

EmotiCon Text only 78.45± 0.52 76.32± 0.40 77.01± 0.42 77.45± 0.50 75.98± 0.47

Text + video 82.78± 0.48 81.12± 0.39 81.67± 0.35 82.11± 0.41 80.45± 0.36

Text + video + audio 86.92± 0.45 85.65± 0.31 86.12± 0.38 86.42± 0.34 84.87± 0.33

All modalities (text + video + audio +

EEG)

89.76 ± 0.39 88.43 ± 0.32 88.98 ± 0.36 89.34 ± 0.37 87.78 ± 0.34

Bold values are the best values.

high-dimensionality of EEG features and their dependence on

specific sensor configurations, which limits the practicality of

direct implementation in consumer-grade devices.

An important future direction is to explore the critical

EEG sensor locations from the current dataset to minimize

the number of EEG features while maintaining classification

accuracy at a usable level. Reducing the required sensor

locations could significantly simplify hardware requirements

and computational overhead, facilitating the transition of this

research into practical applications. This investigation will involve

systematic methods such as saliency map analysis and channel-

wise ablation studies to identify the most impactful sensors. The

results could inform the optimization of existing dry electrode

headsets or guide the design of new, lightweight devices tailored

for emotion recognition tasks. Such advancements would not

only support the development of cost-effective and user-friendly

systems but also bridge the gap between academic research

and real-world implementations, fostering progress in areas

such as affective computing, mental health monitoring, and

human-computer interaction.
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İşçi, V. (2023). A comparative analysis of anti-Petrarchan sentiments in the English
renaissance poetry. KARE. Available at: https://dergipark.org.tr/en/pub/kare/issue/
78967/1174698

Jiang, Y. (2024). Online English writing teaching method that enhances teacher-
student interaction. J. Intell. Syst. 33. doi: 10.1515/jisys-2023-0235

Kastrati, A., Płomecka, M. B., Pascual, D.,Wolf, L., Gillioz, V.,Wattenhofer, R., et al.
(2021). Eegeyenet: a simultaneous electroencephalography and eye-tracking dataset
and benchmark for eye movement prediction. arXiv [Preprint]. arXiv:2111.05100.
doi: 10.48550/arXiv.2111.05100

Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., and Oberye, J. J. (2000).
Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity
of the EEG. IEEE Trans. Biomed. Eng. 47, 1185–1194. doi: 10.1109/10.867928

Kim, S.-H. (2024). Exploring multimodal perspectives in collaborative writing:
sentiment analysis and word frequency in natural language processing. Proc. Int. CALL
Res. Conf. 2024. doi: 10.29140/9780648184485-16

Li, Q., Wu, C., Wang, Z., and Zheng, K. (2020). Hierarchical transformer network
for utterance-level emotion recognition. Appl. Sci. 10:4447. doi: 10.3390/app10134447

Liu, X., Zhou, Y., Zhao, J., Yao, R., Liu, B., Ma, D., et al. (2020). Multiobjective resnet
pruning by means of Emoas for remote sensing scene classification. Neurocomputing
381, 298–305. doi: 10.1016/j.neucom.2019.11.097

Liu, Y., and Fu, G. (2021). Emotion recognition by deeply learned multi-
channel textual and EEG features. Future Gener. Comput. Syst. 119, 1–6.
doi: 10.1016/j.future.2021.01.010

N’Diaye, A. C. M., Chrif, M. E. M. E. A., Mahmoud, B. M. E., and Beqqali, O.
E. (2021). “Apply sentiment analysis technology in social media as a tool to enhance
the effectiveness of e-government: application on Arabic and Mauritanian dialect
‘Hassaniya’,” in 2021 Fifth International Conference On Intelligent Computing in Data
Sciences (ICDS) (Fez: IEEE). doi: 10.1109/ICDS53782.2021.9626766

Nimmi, K., and Janet, B. (2021). Voting ensemble model based Malayalam-English
sentiment analysis on code-mixed data. Fire. Available at: https://ceur-ws.org/Vol-
3159/T6-21.pdf

Panda, D., Chakladar, D. D., and Dasgupta, T. (2020). Multimodal system for
emotion recognition using EEG and customer review. Adv. Intell. Syst. Comput. 1112,
399–410. doi: 10.1007/978-981-15-2188-1_32

Pei, C. (2024). A study on the reception comparison of Fingersmith among Chinese
and English readers-analysis of evaluative discourses based on python. J. Humanit. Arts
Soc. Sci. 8, 511–515. doi: 10.26855/jhass.2024.02.037

Polyakova, O. (2023). E-portfolio in students’ learning for sustainable development.
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