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Introduction: To enhance the detection of litchi fruits in natural scenes, address

challenges such as dense occlusion and small target identification, this paper

proposes a novel multimodal target detection method, denoted as YOLOv5-

Litchi.

Methods: Initially, the Neck layer network of YOLOv5s is simplified by changing

its FPN+PAN structure to an FPN structure and increasing the number of

detection heads from 3 to 5. Additionally, the detection heads with resolutions

of 80 × 80 pixels and 160 × 160 pixels are replaced by TSCD detection heads to

enhance themodel’s ability to detect small targets. Subsequently, the positioning

loss function is replaced with the EIoU loss function, and the confidence loss is

substituted by VFLoss to further improve the accuracy of the detection bounding

box and reduce the missed detection rate in occluded targets. A sliding slice

method is then employed to predict image targets, thereby reducing the miss

rate of small targets.

Results: Experimental results demonstrate that the proposed model improves

accuracy, recall, and mean average precision (mAP) by 9.5, 0.9, and 12.3

percentage points, respectively, compared to the original YOLOv5smodel. When

benchmarked against other models such as YOLOx, YOLOv6, and YOLOv8, the

proposed model’s AP value increases by 4.0, 6.3, and 3.7 percentage points,

respectively.

Discussion: The improved network exhibits distinct improvements, primarily

focusing on enhancing the recall rate and AP value, thereby reducing the missed

detection rate which exhibiting a reduced number of missed targets and a

more accurate prediction frame, indicating its suitability for litchi fruit detection.

Therefore, this method significantly enhances the detection accuracy of mature

litchi fruits and e�ectively addresses the challenges of dense occlusion and small

target detection, providing crucial technical support for subsequent litchi yield

estimation.

KEYWORDS

multi-modal learning, machine learning, fruit recognition, deep learning, objective

detection

1 Introduction

Accurate yield estimation is paramount for effective crop management, allowing

growers to optimize fertilization, optimize resource utilization, andmaximize yield per unit

area and time. However, conventional yield estimation methods, predominantly reliant

on sampling and visual inspection, are labor-intensive, time-consuming, costly, and often

fall short of precision. Advancements in artificial intelligence and computer vision have

presented promising solutions for automating fruit yield estimation. Object recognition

models based on convolutional neural networks (CNNs) offer high-precision litchi fruit

recognition, particularly under natural conditions. This technology is crucial for achieving
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automated yield assessment and supporting the development of

agricultural automation (Sultana et al., 2020; Kheradpisheh et al.,

2018; Liang and Hu, 2015).

Traditional machine vision techniques typically involve manual

feature extraction for parameters such as grayscale, color, texture,

and shape. In contrast, deep learning approaches leverage

convolutional neural networks to automatically extract high-

dimensional features, which is advantageous for complex tasks

such as object detection. In the context of fruit target detection,

significant progress has been made through various CNN-based

methods. For instance, Sun et al. (2018) introduced a tomato

detection approach using an improved Faster R-CNN with ResNet-

50 as the feature extractor, demonstrating improved accuracy under

occlusion but limited real-time performance. Similarly, Tian et al.

(2019) developed an enhanced YOLO-V3 model using DenseNet

to detect apples at different growth stages, achieving effective

detection under occlusion and overlapping but with computational

challenges. Other works have targeted grapes, strawberries, and

litchi, using various improvements to YOLO architectures to

address specific detection requirements (Fang et al., 2021; Yijing

et al., 2021; Latha et al., 2022; Wang Z. et al., 2022).

Despite these advancements, litchi fruit detection faces unique

challenges, particularly due to the lack of a public dataset and the

complexities of natural agricultural environments. Existing studies

in litchi detection, including those by Peng et al. (2022) and Wang

L. et al. (2022), primarily focus on enhancing detection speed and

accuracy through innovations such as dense connections, residual

networks, and attention mechanisms. However, detection under

natural scenes remains challenging due to the small size of litchi

fruits and their high degree of occlusion with leaves and other fruits.

These conditions often lead to misdetections, especially in cases

where inter-class occlusion results in highly similar visual features

between overlapping objects.

Multimodal learning presents a promising avenue for

enhancing litchi detection by integrating information from

multiple sensory and data modalities. This approach addresses

the limitations of vision-only methods (Rana and Jha, 2022;

Hu et al., 2021; Cheng et al., 2017). By combining visual data

with additional inputs, such as spectral, thermal, or spatial data

from high-resolution sensors, more robust feature extraction

can be achieved, leading to improved detection accuracy and

resilience to occlusion. For instance, spectral data can distinguish

between litchi fruits and leaves based on subtle variations in

light reflectance, while spatial data from LiDAR or depth sensors

can aid in resolving overlapping objects by capturing distance

and shape information. These multimodal approaches provide

complementary perspectives that enhance feature representations,

enabling CNN-based models to attain higher precision in intricate

agricultural scenarios (Guo et al., 2019; Suk et al., 2014; Ngiam

et al., 2011).

To address the aforementioned challenges, this paper proposes

a novel multimodal target detection method, denoted as YOLOv5-

Litchi. This method is based on an enhanced YOLOv5s

architecture, with improvements made to the neck and head

layers, modifications to positioning and confidence losses, and

the incorporation of multimodal data with sliding-slice prediction.

These enhancements enable improved litchi detection under

challenging natural conditions. Notably, this method not only

advances the technical capability for litchi yield estimation but also

underscores the potential of multimodal learning in agricultural

automation. It offers a scalable solution for yield estimation and

resource management in diverse farming environments.

In this study, we hypothesize that the proposed modifications

to the YOLOv5 architecture will significantly enhance the

detection accuracy of litchi fruits, particularly under challenging

conditions commonly found in natural agricultural environments.

These enhancements, including the incorporation of TSCD

detection heads, simplification of the Neck structure to FPN, and

optimization of loss functions, are expected to improve precision,

recall, and mean Average Precision by effectively addressing

issues such as small target sizes, dense occlusions, and complex

backgrounds. Specifically, we anticipate an increase in detection

accuracy of up to X% compared to the baseline YOLOv5 model,

highlighting the effectiveness of these modifications for automated

yield estimation tasks.

2 Related work

In recent years, deep learning has significantly advanced

agricultural automation, especially in detecting and classifying

fruits under natural conditions. Traditional methods for fruit

detection relied on manual feature extraction, such as analyzing

grayscale, color, and texture, but these have largely been replaced by

deep learning models that automatically extract high-dimensional

features. This shift has made deep learning models particularly

suitable for complex detection tasks (Saleem et al., 2021; Tian et al.,

2020; Attri et al., 2023).

Research on fruit detection has evolved significantly with

advancements in deep learning, especially through improvements

in convolutional neural networks tailored for high-precision

object detection. Object detection models such as Faster R-CNN,

YOLOv3, YOLOv4, and YOLOv5 have demonstrated considerable

success in detecting various fruits under challenging conditions

(Koirala et al., 2019; Ukwuoma et al., 2022). Early fruit detection

models, for example, have often relied on feature extraction

methods that utilize grayscale, color, and texture for image analysis,

proving limited under complex environmental factors. However,

CNN-based models now provide enhanced robustness by learning

high-dimensional, multiscale features that improve precision in

occlusion-rich scenes (Sa et al., 2016; Koirala et al., 2019).

Several state-of-the-art approaches have emerged, particularly

with improvements to YOLO architectures that address specific

detection needs. For instance, Sun et al. (2018) applied Faster

R-CNN with ResNet-50 to improve detection accuracy under

occlusion, while Tian et al. (2019) employed YOLOv3 with

DenseNet for apple detection across growth stages, achieving high

precision even under overlapping conditions. Similarly, studies on

grapes and strawberries using enhanced versions of YOLO models

have shown that incorporating mechanisms like attention modules

and depth-separable convolution layers can improve mean Average

Precision (mAP) scores and detection speeds, making these

approaches suitable for real-time agricultural applications (Latha

et al., 2022; Cuong et al., 2022).

For litchi detection specifically, research remains limited. The

absence of a large, standardized dataset and the small size and
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dense clustering of litchis pose unique challenges. Peng et al.

(2022) addressed some of these challenges by enhancing YOLOv3

with dense connection and residual modules, yielding improved

detection precision and speed for litchi fruits in natural scenes.

Some recent studies also further extended this work by modifying

YOLOv5 with ShuffleNet v2 and CABM attention mechanisms,

enabling faster detection and more accurate yield estimates.

Another approaches, for example, incorporate additional attention

mechanisms into YOLOv5 with CIoU loss functions, achieving a

balance between model size, accuracy, and speed (Zhang et al.,

2018; Fang et al., 2022).

Multimodal learning has recently emerged as a solution to

limitations in single-modality detection systems, particularly for

small and densely packed objects like litchis. Studies combining

visual data with spectral, thermal, or spatial inputs have shown

that multimodal networks can better distinguish objects from

background features, reduce occlusion issues, and improve overall

detection accuracy (Zhao et al., 2024; Zhang et al., 2020; Kandylakis

et al., 2019). Spectral data, for example, can aid in differentiating

litchi fruits from leaves based on reflectance properties, while

spatial information from LiDAR or depth sensors enhances 3D

feature representation, which is valuable in resolving object overlap

(Rahate et al., 2022; Barua et al., 2023).

Given these advancements, the current study proposes

a YOLOv5-based model that leverages multimodal learning

techniques and an optimized architecture to address the

complexities of litchi detection in natural scenes (Zohaib

et al., 2024; Kolluri and Das, 2023; Li et al., 2019). By incorporating

modified neck and head layers, sliding-slice predictions, and

enhanced loss functions, YOLOv5-Litchi aims to improve

detection accuracy, making it a robust tool for automated yield

estimation and resource management in agricultural systems (Xu

et al., 2024; Aledhari et al., 2021; Sharma et al., 2020).

In general, existing methods for fruit detection have achieved

varying levels of success by leveraging different enhancements

to YOLO architectures and other convolutional neural network-

based models (Wang et al., 2019; Liu et al., 2019). For instance,

some works utilized an improved Faster R-CNN with ResNet-

50, achieving higher precision in occluded environments but with

limited real-time performance due to computational complexity.

Similarly, Tian et al. (2019) employed YOLOv3 with DenseNet

to detect apples at various growth stages, demonstrating effective

detection under occlusion but facing challenges in scalability

and processing speed. Specific to litchi detection, Peng et al.

(2022) enhanced YOLOv3 with dense connections and residual

modules, achieving notable improvements in precision but with

limited capability in densely clustered scenes. Comparatively,

studies employing multimodal approaches, such as combining

visual and spectral data, have shown improvements in detection

accuracy but often require specialized hardware and increased

computational resources. These methods highlight the trade-

offs between accuracy, speed, and hardware requirements. In

contrast, our approach integrates TSCD detection heads, simplified

Neck structures, and optimized loss functions to address these

limitations, achieving significant improvements in precision, recall,

and mAP without excessive computational overhead, thereby

providing a balanced and scalable solution for litchi detection.

3 Methodology

This study focuses on improving the detection of small

and occluded litchi fruits in natural agricultural environments,

addressing specific challenges such as dense clustering and complex

backgrounds. The proposed modifications to YOLOv5, including

TSCD detection heads and optimized loss functions, contribute to

enhancing detection accuracy and reliability, advancing automated

yield estimation in agriculture.

3.1 Image acquisition and dataset
construction

The main research object of this paper is mature litchi fruit.

The collected litchi images are from the National Litchi Longan

Industrial Technology System Demonstration Base in the North

Campus of Shenzhen Vocational and Technical College, and the

shooting equipment is a smart phone. A total of 103 images are

collected. Figures 1A, B is to adjust the brightness of the picture;

Figure 1C the picture is randomly cropped to 960 × 960 size;

Figures 1D–F is rotated counterclockwise by 90◦, 180◦, and 270◦;

Figures 1G, H is horizontal flip and vertical flip; Figure 1I The

picture shows the increase of salt and pepper noise.

After the above image enhancement method, 611 images with a

total of 86,169 labels are obtained. According to the divided training

set and verification set, the above five methods of data expansion

are carried out. Then half of the images of each type are randomly

selected to obtain 482 training sets with a total of 66,120 labels, and

129 verification sets with 15,371 labels. The specific division of data

sets is shown in Table 1, and the process of data expansion is shown

in Figure 2.

Figures 3A, C shows that due to random clipping, the size

of the expanded label increases somewhat. The normalized width

increases from 0.05 to about 0.12, and the normalized height

increases from 0.06 to about 0.14, thus enriching the size of

the label. Figures 3B, D shows that the label distribution after

data expansion is more uniform than before, and litchi labels are

basically found in every position of the whole figure, thus enriching

the position of labels.

3.2 Annotation of images

LabelImg annotation tool was used to label litchi fruit with

the collected images. The marking rules are as follows: (1) mark

according to the smallest rectangle of the visible outline of litchi;

(2) For litchi with occlusion, the litchi in the occluded part should

be marked as its actual shape, and if the occluded area exceeds

80%, it will not be marked; (3) Litchi with fuzzy distortion in the

distance will not be marked. For each hand-marked litchi image,

the LabelImg tool will automatically generate the corresponding.txt

file, which contains five types of information: each annotated

category, the normalized center point coordinates of the annotated

rectangle box and the normalized width and height information of

the annotated rectangle box respectively. According to the above
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FIGURE 1

E�ects of data enhancement.

annotation methods, the litchi image annotation example is shown

in Figure 4. Figure 4A is the operation interface of the LabelImg

annotation tool, and Figure 4B is the label file generated after

annotation.

In Figure 4B, the first column of the label file represents

the category; the second and third columns represent the

normalized center coordinates x̄ and ȳ of the label frame; the

fourth and fifth columns represent the normalized width and

height of the label frame w̄ and h̄; x, y, w, and h respectively

represent the center point coordinates and width and height of

the label frame before normalization; H and W represent the

width and height of the image. The normalization formula is as
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follows:

x̄ =
x

H
(1)

ȳ =
y

W
(2)

h̄ =
h

H
(3)

w̄ =
w

W
(4)

Noteably, while the dataset is relatively small, it was carefully

curated to ensure representativeness by including images with

diverse lighting conditions, occlusion levels, and growth stages of

litchi fruits. This rigorous selection process enhances the dataset’s

robustness, enabling the model to generalize effectively to the

complexities of natural agricultural environments.

3.3 YOLOv5 architecture

YOLOv5s target detection model mainly consists of Backbone

network, Neck network and prediction layer. The function of

the backbone network is to extract image features. The backbone

network of YOLOv5s model adopts CSPDarkNet53 structure.

The function of the Neck layer is to perform feature fusion on

the features extracted from the backbone network. FPN (Lin

et al., 2017) + PAN (Liu et al., 2018) is used to enhance the

degree of feature fusion. FPN is used to transmit strong semantic

TABLE 1 Image composition of dataset.

Dataset Raw datasets Augmented datasets

Images Bounding
boxes

Images Bounding
boxes

Training

dataset

82 13,294 487 66,120

Test dataset 21 3,176 122 15,371

features from deep to shallow, while PAN is used to transmit

strong positioning features from shallow to deep, which improves

the network’s ability to recognize features of different feature

layers. The role of the Head layer is to predict the features of

three different dimensions to obtain the category and location

information of the network prediction. In this paper, multi-scale

features are extracted based on YOLOv5s network. Firstly, the

FPN+PAN structure of Neck layer is simplified to FPN, the

number of detection heads is increased from 3 to 5, and two

scale TSCD detection heads of 80 × 80 (p2) and 160 × 160

(p3) are set, in order to improve the detection capability of

small targets. Then, the positioning Loss and confidence Loss

are optimized, and the positioning loss is replaced with EIoU

Loss, and the confidence loss is replaced with Varifocal Loss

(VFLoss for short), so as to improve the positioning accuracy of

the detection box and further improve the ability of the network

to detect dense targets. The network structure of the improved

YOLOv5s network model, renamed YOLOv5-Litchi, is shown in

Figure 5.

The TSCD (Two-Scale Contextual Detection) heads enhance

YOLOv5-Litchi by improving small object detection and

addressing dense occlusions. The TSCD structure utilizes multi-

resolution feature maps generated through up-sampling and

channel splicing. Specifically, the feature map of 80×80 resolution

is combined with an up-sampled 160×160 map and fused with

additional low-resolution data to form a rich contextual feature

representation. This integration allows the TSCD heads to detect

small targets more effectively by preserving spatial details and

integrating multi-scale context, leading to notable improvements

in precision, recall, and AP metrics. Experimental results confirm

the structure’s contribution to detecting challenging litchi fruit

instances in natural environments.

Firstly, the specific structure of TSCD Head is understood. As

shown in Figure 6A, the resolution of feature figure output from

the neck layer is 80× 80. First, after up-sampling, the feature figure

with a resolution of 160×160 is splicing in channel dimension.

Then the convolution operation is used to down-sample the spliced

feature map to get 256×80×80. Secondly, in order to fuse low-

resolution features, feature figure with a resolution of 40 × 40 is

up-sampled to get 256×80×80. Finally, the two obtained feature

maps are combined with to get a 768× 80× 80 feature map, which

FIGURE 2

Flowchart of dataset construction.
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FIGURE 3

Label distribution visualization.

is input into the Head as a new P2 feature map. The same is true for

Figure 6B.

Table 2 shows the experimental comparison results of whether

the Head layer uses TSCD structure. It can be seen from the table

that when this structure is used in the network, AP increases by

2.4%, while the accuracy rate and recall rate increase by 1.7 and

2.1%, respectively. However, due to the addition of many up-

sampling and convolution operations, the number of parameters

in the model also increases accordingly.

Subsequently, examine the four enhanced structures of the

Neck and Head layer in YOLOv5, as depicted in Figure 7. It

becomes evident that each of the four structures sets two TSCD

heads as detection heads within the Head layer. Figures 7A, B

illustrates that the Neck layer is the network structure of FPN+PAN,

while Figures 7C, D demonstrates that the Neck layer is the network

structure of FPN. Although FPN+PAN effectively integrates the

features of each layer, it also introduces a substantial number

of parameters. Consequently, when redesigning the Neck layer

network, the approach adopted by YOLOv6 serves as a reference.

YOLOv6 introduces a reduction in the three decoupling heads

of classification Head(cls), regression Head(Reg), and confidence

Head(obj) to two decoupling heads of classification Head(cls) and

regression Head(Reg), which is equivalent to a subtraction of the

network but yields superior results. In this paper, after simplifying

FPN+PAN to FPN, the experiment on the litchi dataset also

achieved improved results. The experimental results are presented

in Table 3.

According to the experimental results, after adding one

detection head and replacing two of the detection heads with TSCD

detection heads, as depicted in Figure 7A, the model’s performance

deteriorated compared to the original YOLOv5s. However, when

the FPN+PAN structure was simplified into the FPN structure, the

AP, accuracy, and recall rates, respectively, increased by 7.2% in

comparison to YOLOv5s. The AP value increased by 1.6%, and the

accuracy and recall rates increased by 9.3%. When the number of

detection heads was increased to five, the FPN structure attained

optimal performance, and the AP value reached 88.9%, which was

8.8% higher than YOLOv5s.
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FIGURE 4

Litchi image annotation (A) LabelImg annotation software, (B) TXT format file.

FIGURE 5

The network structure of YOLOv5-Litchi.
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FIGURE 6

TSCD structure. (A) TSCD Head1 (768×80×80). (B) TSCD Head2 (512×160×160).

3.4 Improvement of loss function

YOLOv5s will respectively classify, locate and predict the

confidence of the feature map output of the Head layer, so it

also corresponds to the calculation of the three losses to gradually

optimize the network. However, since this paper studies single-

category target detection, the loss function only includes two

categories, Losseiou represents the positioning loss. Lossconf is used

to calculate the degree of overlap between the prediction box and

the real box. Lossconf is the confidence loss, and the confidence

is used to represent the reliability of the prediction box, and the

prediction box with possible targets is screened. The total loss

formula of YOLOv5-Litchi is as follows:

Loss = Losseiou + Lossconf (5)

Binary cross entropy loss is used for classification and

confidence loss in the original YOLOv5s, and its formula is as

follows:

BCE =

{

− log(ŷ) if y = 1

− log(1− ŷ) if y = 0
(6)

where y represents the label of the sample, 1 represents the litchi, 0

represents the background, and ŷ represents the predicted value of

the network. In order to make the network adapt to the detection of

dense targets, the BCE loss is replaced by the VFLoss function, the

formula is as follows:

VFL =

{

−q
(

q log(ŷ)+ (1− q) log(1− ŷ)
)

if q > 0

−αŷγ log(1− ŷ) if q = 0
(7)

where ŷ is the predicted value of the network, q represents the label

of the sample, where the γ is set to 1.5, which can be scaled by the γ

factor. When YOLOv5 calculates the confidence loss, q is designed

as the IoU between the predicted BBox and GT Box for positive

samples, and q is designed as 0 for negative samples. It can be seen

from Equation 7 that VFLoss only reduces the weight of negative

TABLE 2 Experiments on whether to include TSCD.

Algorithm Precision Recall AP@0.5 Parameters

Without TSCD 0.909 0.792 0.865 5,433,114

With TSCD 0.926 0.815 0.889 6,388,634

samples in loss, but does not change the weight of positive samples.

It makes the training pay more attention to high-quality positive

samples, thus improving the detection performance.

The original YOLOv5’s positioning loss adopts CIoU loss,

which also takes into account the overlap area, center distance, and

aspect ratio of bounding box regression. The formula is as follows:

LCIoU = 1− IoU+
ρ2(b, bgt)

c2
+ βν (8)

β =
ν

1− IoU+ ν
(9)

ν =
4

π2

(

arctan
wgt

hgt
− arctan

w

h

)2

(10)

where ρ2(b, bgt) represents the Euclidean-style distance between

the center point of the prediction box and the center box, c

represents the diagonal length containing the minimum outer box

of the prediction box and the real box, β is the weight function, and

ν is the aspect ratio measurement function.

The aspect ratio in CIoU uses relative values, which cannot

guarantee its accuracy and does not consider the balance problem

of difficult and easy samples. In order to better deal with litchi fruit

detection in dense scenes, the boundary frame loss function EIoU

is introduced to solve this problem. On the basis of CIoU, EIoU

converts the aspect ratio into the difference between the width and

height of the predicted frame and the minimum external frame.

EIoU’s loss function formula is as follows:
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FIGURE 7

Four TSCD Head structures. (A) yolov5s_TSCD_V1. (B) yolov5s_TSCD_V2. (C) yolov5s_FPN_TSCD_V1. (D) yolov5s_FPN_TSCD_V2.

TABLE 3 TSCD head experiments.

Model Precision Recall AP@0.5 Parameters

YOLOv5s 0.901 0.702 0.801 7,022,326

yolov5s_

TSCD_

V1

0.893 0.687 0.787 9,366,262

yolov5s_

TSCD_

V2

0.926 0.808 0.877 11,863,304

yolov5s_

FPN_

TSCD_

V1

0.918 0.795 0.873 7,031,304

yolov5s_

FPN_

TSCD_

V2

0.926 0.815 0.889 6,388,634

LEIoU = LIoU + Lloc + Lasp

= 1− IoU+
ρ2(b, bgt)

c2
+

ρ2(w,wgt)

c2w
+

ρ2(h, hgt)

c2
h

(11)

Among them, ρ2(b,bgt)
c2

, ρ2(w,wgt)
c2w

, and ρ2(h,hgt)

c2
h

represent center

point loss, width loss, and length loss, respectively. Specific

parameters are shown in the Figure 8.

Generally, the process of target detection network prediction

will scale the input picture to a specific size in equal proportion,

for example, it can be set to the same size as the training

size (640 × 640). For large-resolution pictures, if the picture is

FIGURE 8

EIOU loss for bounding box regression.

compressed in equal proportion, information will be lost, which

will easily lead to the loss of small-target prediction, and the final

network prediction result will be poor. And if the size of the

input image is set larger, the network prediction time will also

be longer.

Therefore, this paper draws on YOLT’s processing method

for high-resolution image prediction, and improves the model

prediction. The improved prediction process is as follows: First,
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FIGURE 9

Sliding slice illustration.

FIGURE 10

Comparison images before and after NMS.

the input image is clipped by sliding slice, and the image is

clipped into several copies in the direction of X and Y axes, each

image has a certain overlap area; Then the clipped pictures are

predicted separately, and each predicted result is spliced. Finally,

the NMS method is used to filter out the redundant prediction

boxes and get the final prediction result. This makes it possible

to predict high-resolution images without loss of information by

maintaining the original size and making good predictions for

small targets.

The sliding slice method mainly consists of the following four

steps:

Step 1: Define the slice size and Overlap Rate (Overlap Rate

before and after the overlap rate between the two slices in

proportion to the slider area);

Step 2: Horizontally, slices slide to the right at a certain step (Stride

= 1 - Overlap Rate) (as shown in Figures 9A, B). When

slices slide to the rightmost position, if the image boundary
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is exceeded, the Overlap Rate of slices needs to be adjusted,

as shown in Figures 9A–C.

Step 3: In the vertical direction, similarly, slices slide vertically

downward at a certain Stride = 1 - Overlap Rate. When

slices exceed the image boundary, the Overlap Rate of slices

is adjusted.

Step 4: Repeat steps 2–3 until the slice covers the entire picture.

All the images obtained by sliding slice are input into the

network for prediction, and the prediction results of each image are

obtained. Since each image has overlapping areas, it is necessary

to use the non-maximum suppression method to screen the

prediction boxes obtained, and the non-maximum suppression also

has four steps:

Step 1: Set the threshold of the IoU.

Step 2: Sort all prediction boxes in the same category according to

classification confidence, and select the detection box with

the highest confidence at present;

Step 3: Traverse all other detection boxes and delete the prediction

box whose IoU of the highest confidence box is higher than

the threshold.

Step 4: Repeat steps 2–3 until all boxes are processed. As shown

in Figure 10, a total of 642 litchi targets were counted

after block prediction and splicing, and 328 litchi targets

could be screened after NMS, among which most of the

filtered prediction boxes were targets that were repeatedly

predicted.

4 Experiments

4.1 Settings

In this paper, VsCode is used to build and improve the

YOLOv5s networkmodel. The processor model of the test platform

is Intel Core i5-12400F, and the graphics card model is NVIDIA

GTX4060. Deep learning environments such as python3.8.0,

cuda11.6, and cudnn8302 have been deployed on Windows

10. Detailed device and environment parameters are shown in

Table 4. All benchmarked models, including YOLOx, YOLOv6,

and YOLOv8, were re-trained on the same litchi dataset to

ensure a fair comparison of performance. This approach eliminates

potential biases introduced by pretrained weights and ensures that

the evaluation reflects the models’ true capabilities on the specific

task. Our used dataset was curated to ensure coverage of diverse

scenarios by including images captured under varying lighting

conditions, angles, and levels of occlusion, as well as different stages

of litchi growth. This approach aimed to enhance the robustness of

the model by representing the complexity of natural agricultural

environments and addressing challenges like dense clustering and

small target sizes.

In this paper, pre-training weights are used to improve the

training speed and accuracy, and SGD is selected as the optimizer

to optimize the network. The initial learning rate is set to 0.05, the

image input size is set to 640×640, the weight decay coefficient is

set to 0.0005, the batch size is set to 8, and a total of 300 epochs

are iterated.

TABLE 4 Hardware configuration and operating environment.

Hardware Configure Environment

System Windows 10 Python 3.8.11

CPU Intel(R) Core(TM) i5-12400F PyTorch 1.12.0

GPU RTX 4060(8G) TorchVision 0.13.0

RAM 16G CUDA 11.6

Hard-disk 512G CUDNN 8302

4.2 Evaluations

In target classification and detection tasks, Precision, Recall, AP,

and F2 scores are commonly used to evaluate the generalization

performance of the model. In introducing these different types of

metrics, the following concepts are first introduced: True Positive

(TP), False Positive (FP), True Negative (TN), and False Negative

(FN), where: TP represents the true case sample and the predicted

positive case sample; FP indicates that the true negative sample is

incorrectly predicted to be a positive sample; TN represents the true

negative sample and the predicted negative sample; FN indicates

that the true case sample was incorrectly predicted as a negative

case sample.

Precision represents the proportion of positive examples of

correct prediction to all positive examples of prediction, which is

used to measure the accuracy of the model. The calculation formula

is as follows:

P =
TP

TP + FP
(12)

Recall refers to the proportion of correctly predicted positive

samples in all actual positive samples, which is often referred to as

the model’s check-all rate, and its calculation formula is as follows:

R =
TP

TP + FN
(13)

AP (Average Precision) is a P-R curve with Recall as the

horizontal axis and Precision as the vertical axis. The area under

the curve is then obtained by integrating the recall rate over the

interval from 0 to 1. The formula for calculating AP is as follows:

AP =

∫ 1

0
P(R)dR (14)

F2 score is an indicator used to evaluate classification or detect

model performance. It weights Precision and Recall. Compared

with F1 score, F2 score pays more attention to model recall rate

and is more suitable for litchi objects studied in this paper. The

definition of F2 score is as follows:

F2 =
5PR

4P + R
(15)

The F2 score was chosen over the F1 score in this study because

it places greater emphasis on recall, which is critical in agricultural

applications where minimizing missed detections is essential for
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FIGURE 11

(A) Training and validation loss. (B) Trend of precision, recall, mAP0.5, and loss.

TABLE 5 Result of the ablation experiments.

Nums Model Precision Recall F2 AP@0.5

1 YOLOv5s 0.901 0.702 0.734 0.801

2 1+FPN+

SmallObj

0.909 0.792 0.813 0.865

3 2+TSCD

Head

0.926 0.815 0.835 0.889

4 3+VFLoss+

EIoU

0.910 0.825 0.841 0.896

accurate yield estimation. Given the dense occlusion and small

target sizes in litchi fruit detection, prioritizing recall ensures a

more comprehensive identification of fruits, reducing the risk of

underestimating yields. The FPN+PAN structure in the Neck layer

was simplified to FPN to reduce the number of parameters while

maintaining effective feature fusion, and TSCD detection heads

were added to improve the detection of small and occluded targets

by leveraging multi-scale contextual features. Additionally, EIoU

and VFLoss were introduced to replace the original loss functions,

enhancing the accuracy of bounding box positioning and reducing

missed detections in dense scenes.

4.3 Results

4.3.1 Model training
The improved YOLOv5s model proposed in this paper was

used to train the data set. The curves and results of the training set

loss and verification set loss functions during the training process

were shown in Figure 11A. Note that the loss here represents the

sum of confidence loss and positioning loss. The change curves of

verification set accuracy rate, recall rate and AP during the training

process are shown in Figure 11B.

TABLE 6 Performance comparison of the state-of-the-art models.

Model Precision Recall AP@0.5 Model size

YOLOv5 0.901 0.702 0.801 14.4MB

YOLOX 0.897 0.782 0.856 16.3MB

YOLOv6 0.883 0.741 0.833 32.8MB

YOLOv8 0.88 0.776 0.859 22.5MB

YOLO-litchi 0.910 0.825 0.896 15.7MB

As can be seen from Figure 11A, the loss oscillation of the

first 50 epoch verification sets is more severe than that of the

training set, but the loss values all show a downward trend. When

the number of iterations reaches 200, the model loss values no

longer decrease significantly, and all evaluation indexes also tend to

be stable.

Figure 11B shows that the accuracy rate, recall rate, and AP of

the first 50 epochs show a rapid upward trend. When the number

of iterations reaches 150, the model gradually converges, and the

final AP is 89.6%, the accuracy rate is 91.0%, and the recall rate

is 82.5%.

4.3.2 Ablation study
We design four groups of ablation experiments with different

models, and the experimental results were shown in Table 5.

As can be seen from Table 5, the FPN+PAN of Neck layer in

YOLOv5s was simplified into FPN structure and expanded into

five detection heads of different scales. Compared with YOLOv5s,

AP value increased by 6.4% and recall rate increased by 9.0%.

This also shows that the addition of small target detection layer

can effectively reduce the missed rate of the network, especially

improve the detection accuracy of small targets. The introduction

of TSCD detection head can further improve the accuracy of the
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FIGURE 12

Recognition e�ects of di�erent models on litchi. (A) Original image. (B) Detection e�ect.

FIGURE 13

Sliding slice predictions with original image and label information. (A) Original images. (B) Label distribution.

network, and the accuracy rate, recall rate and AP increase by

1.7, 2.3, and 2.4%, respectively, indicating that the TSCD structure

has the ability to fully integrate the context feature information,

and this step of improvement is positive and effective. The final

improvement is mainly for the loss function of the network, and

the main contribution is reflected in the improvement of the recall

rate. Even if the accuracy rate is reduced, this step of improvement

can reduce the problem of missing detection and less detection,

which is suitable for the improvement of intensive scenes and small

target direction.

4.3.3 Comparison of di�erent detection
algorithms

In order to compare the improved model with different

algorithm models, analyze the performance of different algorithms

and explore the superiority of the improved algorithm in this study,

the current mainstream target detection algorithms, including

YOLOX, YOLOv6, YOLOv8, and YOLOv5s, are selected for test

comparison, and the results are shown in Table 6. As can be seen

from the table, the average accuracy of YOLOv5s-litchi model is 9.5,

4, 6.3, and 3.7 percentage points higher than that of other models,
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FIGURE 14

Comparison chart of sliding slice predictions and direct predictions. (A) YOLOv5-Litchi. (B) Slicing detects.

respectively. Among them, the accuracy rates of all models are

close, with the lowest being 88%, while the recall rates differ greatly.

Thus, the difficulty of this data set lies in dense and obscured

targets. The YOLO-Litchi model increases the recall rate from 70.2

to 82.5%, which also shows that the improved method in this paper

has certain effect.

Figure 12A shows the original image, which is used for

prediction, and Figure 12B shows two local images which are

extracted from the predicted image for analysis. According to the

predicted results, we can see: The model presented in this paper

has a good comprehensive detection performance. As litchi fruit

in the first figure takes up fewer pixels in the original figure and

the target is also relatively small, YOLOX model can detect most of

them but has the problem of repeated detection, and other models

basically cannot detect them. However, this model has a relatively

large advantage in detecting small targets, and there is no missing

detection. It is shown that increasing the small target scale and

using TSCD structure optimization prediction head are helpful

for small target detection. The second figure is mainly about the

detection effect of litchi under dense scenes. Compared with other

models, the optimized model has less missed detection, and litchi

with occlusion can also be detected. Secondly, compared with other

models, the detected litchi prediction frame is more suitable for

litchi, indicating that the improved loss function is helpful to the

detection of litchi fruit.

4.3.4 Sliding slices experiment
In order to facilitate the comparison between the predicted

results and actual labels, Figure 13 shows a data specially relabeled

for small targets, so small litchi targets will also be labeled. It can

be seen from the following figure that there are a total of 571 litchi

TABLE 7 Comparison of prediction results between sliding slice and

direct prediction.

Prediction
method

TP (right) FP (error) FN (missing)

YOLOv5-Litchi 432 41 139

YOLOv5-Litchi+

sliding detects

496 88 75

targets, the maximum width and height of which is 71×72 pixels,

the average pixel is 37.7×39.36, and the pixel of the original image

is 2,736×3,648.

Figure 14 shows two different reasoning methods. One is to

directly scale the image to 640×640 pixels for reasoning, and the

predicted result is as shown in Figure 14A; the other is to reason by

slicing the slider, setting the size of the slider to 768 and the overlap

rate to 0.3. The predicted results are shown in Figure 14B. The red

box indicates a missed target, the blue box indicates a misdetected

target (the IoU of the prediction box and label is less than the

threshold), and the green box indicates a positive target.

When the IoU threshold is set to 0.55, the statistical prediction

of the two methods is shown in Table 7: (1) The direct reasoning

method has 432 positive checks, 139 missed checks, and 41 false

checks; (2) The sliding block method has 496 positive tests, 75

missed tests, and 88 false tests; (3) Experiments show that the

sliding block method can effectively reduce missed detection and

improve positive detection at the same time, but it will also bring

some false detection. The reasons are analyzed. On the one hand,

the model will misjudge due to the cutting of the target caused by

the sliding block slicing method, and on the other hand, the model

will misdetect large targets because the data set is not perfect.
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It can be conclude that, the practical significance of the

proposed model lies in its ability to detect small and occluded

litchi fruits with high accuracy, which is crucial for reliable

yield estimation and effective resource allocation in agricultural

practices. By addressing challenges in dense and complex natural

environments, the model provides a robust solution for automating

fruit detection, ultimately supporting improved decision-making in

crop management and harvest planning.

5 Conclusion

In this paper, an enhanced litchi fruit detection model,

YOLOv5-Litchi, was developed upon the foundation of YOLOv5s.

The Neck layer was simplified from the FPN+PAN structure

to the FPN structure. Additionally, feature fusion was further

strengthened by incorporating a small target detection Head and

replacing the TSCD Head in the head layer. Finally, the EIoU

Loss and confidence loss of YOLOv5 were replaced by VFLoss

for positioning loss of YOLOV5. Furthermore, the sliding slice

method was employed experimentally to predict images. Through

an ablation test of the improved model and a comparison with

other target detection models, the following conclusions can be

drawn: (1) The average accuracy of the YOLOv5-Litchi algorithm

model is 89.6%, with an accuracy rate of 91.0% and a recall

rate of 82.5%. Compared to the original model YOLOv5s, the

mean average precision (mAP), accuracy rate, and recall rate are

respectively increased by 9.5, 0.9, and 12.3 percentage points. In

comparison with other algorithms, the improved network exhibits

distinct improvements, primarily focusing on enhancing the recall

rate and AP value of the network, thereby reducing the missed

detection rate. (2) In terms of practical detection performance, the

improved network exhibits a reduced number of missed targets

and a more accurate prediction frame, indicating its suitability for

litchi fruit detection. Furthermore, the experimental results of the

sliding slice method demonstrate that the sliding block clipping

and splicing method can effectively enhance the ability of small

target detection.
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