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Introduction: Space optimization in architectural planning is a crucial task for

maximizing functionality and improving user experience in built environments.

Traditional approaches often rely on manual planning or supervised learning

techniques, which can be limited by the availability of labeled data and may not

adapt well to complex spatial requirements.

Methods: To address these limitations, this paper presents a novel

architectural planning robot driven by unsupervised learning for automatic

space optimization. The proposed framework integrates spatial attention,

clustering, and state refinement mechanisms to autonomously learn and

optimize spatial configurations without the need for labeled training data.

The spatial attention mechanism focuses the model on key areas within the

architectural space, clustering identifies functional zones, and state refinement

iteratively improves the spatial layout by adjusting based on learned patterns.

Experiments conducted on multiple 3D datasets demonstrate the e�ectiveness

of the proposed approach in achieving optimized space layouts with reduced

computational requirements.

Results and discussion: The results show significant improvements in layout

e�ciency and processing time compared to traditional methods, indicating the

potential for real-world applications in automated architectural planning and

dynamic space management. This work contributes to the field by providing

a scalable solution for architectural space optimization that adapts to diverse

spatial requirements through unsupervised learning.

KEYWORDS

space optimization, architectural planning, unsupervised learning, spatial attention,

clustering

1 Introduction

Optimizing architectural spaces and 3D reconstruction are pivotal challenges in

modern urban planning and building design (Wang et al., 2022). These tasks play a

fundamental role in ensuring the efficient use of spatial resources, improving functionality,

and minimizing costs, while also enabling dynamic reconfiguration to adapt to evolving

demands (Wu et al., 2022). Beyond their direct benefits to building design, advancements

in these domains can significantly enhance energy efficiency and sustainability, making

them critical for addressing global environmental goals. Additionally, the integration of 3D

reconstruction facilitates accurate digital modeling of architectural structures, supporting

detailed analysis, renovation, and automation (Liu et al., 2023). Despite their significance,

the current approaches to architectural space optimization face several key challenges:The

ability to handle diverse and non-standard spatial configurations remains limited. Existing

methods often lack adaptability to dynamic requirements or real-time adjustments. High

computational costs and the lack of transparency in complex models hinder practical

applications (Wang et al., 2021).
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Traditional solutions, such as rule-based and symbolic AI

methods, have long dominated the field (Amice et al., 2022).

These techniques codify expert knowledge into structured systems

that optimize spatial layouts based on predefined criteria. While

these approaches excel in ensuring compliance with architectural

standards, they suffer from rigidity and a lack of scalability (Li et al.,

2022). As spatial configurations grow more complex, symbolic

methods require extensive manual adjustments, reducing their

practicality for large-scale or rapidly evolving scenarios (Kästner

et al., 2023). Machine learning and data-driven approaches

introduced a new paradigm by leveraging statistical models to

identify patterns in spatial data (Liu et al., 2020). Techniques

such as clustering and regression improved the flexibility of layout

optimization, while machine learning models like decision trees

and support vector machines offered predictive capabilities based

on historical data (Xie et al., 2020). However, these methods

still heavily rely on high-quality labeled datasets, which are often

scarce or expensive to obtain. Consequently, their generalization

to unseen or unconventional layouts remains limited (Pan et al.,

2022). To address these gaps, deep learning approaches such as

convolutional neural networks (CNNs; Zheng et al., 2022) and

generative adversarial networks (GANs; Liu et al., 2022) have

been adopted for space optimization and 3D reconstruction. These

models demonstrate significant potential in capturing complex

spatial features and adapting to various tasks through pre-training

(Beach et al., 2023). Despite these advancements, deep learning

methods introduce new challenges, including high computational

demands and limited interpretability. Their black-box nature

restricts their application in domains requiring adherence to

rigorous standards or transparency (Vieira et al., 2022).

In order to enhance the cross-value between this article and

LLM technology, we have added several latest research documents

and compared and combined them with the method of this article.

Chronis et al. (2024) proposed a robot task execution framework

based on LLM and scene graphs, demonstrating the powerful

capabilities of LLM in scene understanding and dynamic task

planning. Chugh et al. (2024) proposed dynamic path planning

for autonomous robots based on dynamic graphs and breadth-first

search, which provides an important reference for applying path

planning optimization in dynamic architectural environments. In

addition, Wang et al. (2023) demonstrated a method of generating

cues through a large language model to guide robot gait task

planning, demonstrating the advantages of LLM in complex task

adaptability and semantic understanding.

Recognizing the limitations of these methods, this paper

proposes a novel framework that leverages unsupervised learning,

modular design principles, and adaptive spatial attention to

address the key issues in architectural space optimization

and 3D reconstruction. Unsupervised learning eliminates

the need for labeled data, enabling the model to generalize

across diverse scenarios. The modular design facilitates the

integration of multiple optimization techniques, ensuring

scalability and adaptability. Finally, the adaptive spatial attention

mechanism dynamically focuses computational resources

on the most relevant spatial features, reducing costs while

improving accuracy.

The contributions of this work include:

• A dynamic system for prioritizing critical architectural

regions, enhancing space utilization efficiency.

• A design that supports adaptation to various contexts,

ensuring high generalizability.

• Experimental results highlight superior performance in layout

optimization and 3D reconstruction compared to state-

of-the-art methods, along with significant reductions in

computational costs.

2 Related work

2.1 Traditional space optimization
techniques

Traditional approaches to space optimization in architectural

planning often rely on manual methods or heuristic algorithms.

Manual methods involve human experts who utilize architectural

principles and spatial requirements to create optimal layouts

(Zhang et al., 2021). While effective for simple projects, these

methods become increasingly impractical as the complexity of

architectural requirements grows. Heuristic algorithms, such as

simulated annealing, genetic algorithms, and particle swarm

optimization, have been used to automate parts of the design

process (Atzori et al., 2016). These algorithms aim to find near-

optimal solutions by iteratively refining the space configuration

based on predefined objective functions. Although they can

improve layout efficiency, heuristic methods still require careful

tuning of parameters and a good understanding of the underlying

problem, which can limit their adaptability to diverse and changing

spatial requirements (Marcucci et al., 2022). Another drawback of

traditional space optimization techniques is their limited ability to

handle real-time or dynamic space modifications (Jin et al., 2024b).

In scenarios where space usage evolves frequently—such as co-

working spaces, hospitals, or smart homes—manual and heuristic

approaches may struggle to adapt quickly enough to meet new

requirements. Furthermore, thesemethods typically do not account

for the spatial relationships and functional interactions between

different regions, which can lead to suboptimal configurations in

complex environments. The emergence of artificial intelligence

(AI) techniques has introduced more sophisticated methods for

addressing these limitations, laying the groundwork for the

integration of machine learning and automated planning in

architectural space optimization (Cauligi et al., 2020).

2.2 Supervised learning for space planning

In recent years, machine learning techniques, particularly

supervised learning, have been applied to architectural space

optimization. Supervised learning methods leverage large datasets

of labeled examples to train models that can predict optimal space

configurations based on input features such as building layouts,

user preferences, and functional requirements. Techniques such

as convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) have been used to process spatial data and

generate layout proposals. These models learn spatial patterns from
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the training data and can be fine-tuned to meet specific objectives,

such as maximizing natural light, improving accessibility, or

minimizing energy consumption (Hu et al., 2023). However,

supervised learning approaches have several limitations in the

context of space optimization. The requirement for large amounts

of labeled data can be a significant drawback, as gathering and

annotating spatial datasets is time-consuming and expensive (Li

et al., 2024). The models trained using supervised learning may not

generalize well to new or unseen architectural scenarios, especially

when the training data does not cover the full range of possible

spatial configurations. As a result, supervised models may perform

poorly in environments with highly variable or unconventional

layout requirements. Furthermore, the reliance on labeled data

makes it challenging for supervised methods to adapt in real-

time to evolving spatial needs, as new training data must be

collected and labeled for the model to remain effective. These

limitations have led researchers to explore unsupervised and semi-

supervised learning techniques for more flexible and adaptive space

optimization solutions (Jin et al., 2024a).

2.3 Unsupervised learning and
self-organizing systems

Unsupervised learning approaches and self-organizing

systems have gained attention in the field of architectural space

optimization as a means to overcome the limitations associated

with supervised learning. Unsupervised learning techniques do not

require labeled data, making them suitable for scenarios where data

collection and annotation are difficult. Methods such as clustering,

dimensionality reduction, and generative models (Zhang et al.,

2024) have been employed to learn underlying patterns in spatial

data and generate optimal configurations. Clustering techniques,

for instance, can be used to identify functional zones within a

space based on user behavior or environmental factors, while

dimensionality reduction can help visualize complex spatial

relationships in a lower-dimensional space (Chang et al., 2023).

Self-organizing systems, inspired by natural processes such as

the growth of biological tissues or the behavior of ant colonies,

offer another approach to space optimization. These systems

utilize local rules or interactions between agents to achieve global

spatial organization without centralized control. For example,

agent-based modeling can simulate the behavior of occupants in a

space to optimize room configurations based on predicted usage

patterns. Similarly, self-organizing maps (SOMs) have been used

to arrange spaces based on similarity criteria, enabling adaptive

and emergent design solutions (Hewawasam et al., 2022). Despite

their potential, unsupervised learning and self-organizing systems

still face challenges in architectural applications. The quality of the

generated solutions heavily depends on the choice of algorithm and

parameters, which may require domain-specific knowledge. The

interpretability of results can be a concern, as the models do not

explicitly learn to optimize for predefined objectives like supervised

methods (Spahn et al., 2021). Nonetheless, these approaches offer

significant advantages in terms of flexibility and adaptability,

making them promising candidates for real-time and dynamic

space optimization tasks (Jin et al., 2023).

3 Methodology

3.1 Overview

The proposed architectural planning robot framework

leverages unsupervised learning for optimizing indoor spatial

layouts, focusing on dynamic space utilization and adaptation to

evolving requirements. The system integrates a Convolutional

Neural Network (CNN) for feature extraction from visual inputs,

such as floor plans, to capture spatial features and functional zones.

Using neural robotics technology, the robot autonomously adjusts

the architectural design in real-time based on user interactions

and environmental changes, allowing for continuous space

optimization. The unsupervised learning approach eliminates the

need for labeled training data, making it suitable for a variety of

planning scenarios where spatial requirements frequently change.

The framework incorporates multiple modules: feature extraction

through CNNs, spatial reasoning based on dynamic attention

mechanisms, and a feedback-driven design refinement process. In

sub-section 3.2, we elaborate on the feature extraction mechanism,

while sub-section 3.3 discusses the design refinement and

optimization strategies. Sub-section 3.6 covers the incorporation of

real-time user and environmental feedback for adaptive planning

(as shown in Figure 1).

This paper introduces unsupervised learning technology to

significantly reduce the need for large-scale annotated data.

Traditional deep learning methods rely on high-quality annotated

data to train models, which is often costly and time-consuming

in complex scenarios. The method in this article automatically

identifies and optimizes the spatial layout by learning latent

spatial patterns in unlabeled data, which not only improves the

adaptability of the model, but also significantly reduces data

requirements. In addition, the modular design allows the system to

flexibly adjust the computing resource allocation of sub-modules,

avoiding the waste of computing that treats the entire scene

equally, thus optimizing computing efficiency. The adaptive spatial

attention mechanism further reduces redundant calculations by

focusing on key areas to ensure efficient use of resources. In

response to the problem of insufficient model interpretability, the

modularization and attention mechanism design of this article

provide higher transparency. The modular design clarifies the

function of each sub-module in the overall optimization of the

model. For example, the spatial attention mechanism points to

key areas that need priority optimization, making the logic of the

model output more interpretable. In addition, the experimental

part further demonstrates the specific functions of these modules

through visual attention distribution and performance analysis,

providing intuitive support for understanding model behavior.

3.2 Preliminaries

The problem of architectural space optimization can be

formulated as a dynamic optimization task, where the goal is to

maximize the utility of an indoor space by adjusting its layout in

response to varying constraints and objectives. Let the architectural

space be represented by a set of spatial regions S = {s1, s2, . . . , sn},
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FIGURE 1

The proposed overall framework. Through the spatial attention model, binary classifier and temporal attention model, the current positive and

negative training samples are generated, and the weights are optimized through historical samples.

where each region si is characterized by its geometric properties

(dimensions, shape), functional requirements, and adjacency

relationships with other regions. The layout configuration at a given

time can be defined by a set of variables X = {x1, x2, . . . , xn}, where

each xi represents the position and orientation of region si.

The optimization task aims to find the optimal configuration

X∗ that maximizes a utility function U(X) subject to a set of

constraints. The utility function is defined as:

U(X) =

n
∑

i=1

wi · fi(xi), (1)

where fi(xi) denotes the utility of region si based on its

configuration xi, and wi represents a weighting factor reflecting the

importance of each region. The utility function can incorporate

various criteria such as accessibility, natural lighting, privacy, and

functionality, which are crucial for achieving an optimal layout.

The constraints in this optimization problem can be divided

into geometric constraints and functional constraints. Geometric

constraints ensure that regions do not overlap and maintain

appropriate distances, while functional constraints ensure

compliance with spatial requirements, such as minimum room

size or specific adjacency relationships. These constraints can be

mathematically expressed as:

gj(X) ≤ 0, j = 1, . . . ,m, (2)

where gj(X) represents a constraint function that the layout

must satisfy.

To solve this optimization problem in a dynamic environment

where spatial requirements may change, the framework employs

a multi-objective optimization approach. The objectives can be

adjusted in real-time based on user feedback and environmental

conditions. The optimization is thus represented as:

max
X

U(X), subject to gj(X) ≤ 0, j = 1, . . . ,m. (3)

To model the changing spatial requirements, we introduce

a time-dependent component X(t) that allows the configuration

to evolve over time. The time evolution of the layout can be

represented using a differential equation:

dX(t)

dt
= F(X(t), t), (4)

where F(X(t), t) denotes the update function that adjusts the

layout based on the current state and external influences.

The unsupervised learning component is employed to learn

spatial patterns from unlabeled data. Given a set of spatial

configurations {X1,X2, . . . ,XT} over time, the learning objective

is to capture the underlying distribution P(X) that characterizes

optimal spatial arrangements. This can be achieved using clustering

techniques or generative models, such as autoencoders, which learn

to represent the data in a lower-dimensional space while preserving

the essential spatial relationships.

The framework also incorporates a feedback mechanism that

continuously refines the learned spatial patterns based on user

interactions and real-time sensor data. The feedback process can

be formalized as:

Xnew = Xprev + α · ∇U(Xprev), (5)

where Xprev is the previous configuration, α is a learning rate,

and ∇U(Xprev) is the gradient of the utility function with respect to

the configuration. This feedback loop enables the system to adapt to

changes in spatial requirements and improve the layout iteratively.

3.3 Feature extraction with spatial
attention

3.3.1 Adaptive visibility mapping
To enhance the robustness of spatial feature extraction,

we introduce an Adaptive Visibility Mapping mechanism. This

method aims to address occlusion and distortion issues that arise

in candidate state representations during real-time architectural

space optimization. By leveraging a multi-stage convolutional

architecture, the method ensures precise visibility estimation and

adaptability to dynamic spatial configurations.

The visibility map V(ym
l
) ∈ R

A×B for a candidate state ym
l

is generated through a hierarchical process designed to capture
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fine-grained spatial features. The visibility estimation is computed

as:

V(yml ) = gvis(8roi(y
m
l );Wvis), (6)

where gvis is a visibility function implemented using a

cascade of convolutional layers with ReLU activation and batch

normalization. The parameter set Wvis includes the weights and

biases of these layers. This setup allowsV(ym
l
) to emphasize regions

with high visibility while suppressing noisy or occluded areas.

To account for the inherent spatial correlations in architectural

layouts, we include a spatial regularization term. This term ensures

that abrupt variations in visibility between neighboring pixels are

minimized, leading to smoother and more coherent visibility maps:

Lreg(V) = λ
∑

i,j

(

(Vi+1,j − Vi,j)
2 + (Vi,j+1 − Vi,j)

2
)

, (7)

where λ is a regularization coefficient that balances the trade-off

between smoothness and feature fidelity. The summation iterates

over all spatial locations (i, j) in the visibility map V.

Furthermore, the adaptive aspect of the visibility mapping is

achieved through a multi-resolution refinement strategy. Initial

visibility maps are generated at a coarse resolution and iteratively

refined to higher resolutions using a learned refinement network:

Vk+1(y
m
l ) = Vk(y

m
l )+ href(Vk(y

m
l );Wref), (8)

where Vk denotes the visibility map at resolution level k, and

href is a refinement function parameterized by Wref. This iterative

process ensures that details missed in the initial estimation are

progressively captured.

To further enhance the interpretability of the visibility maps,

a confidence score c(ym
l
) is computed for each candidate state. The

score is derived by aggregating the visibility values within the region

of interest:

c(yml ) =
1

A× B

A
∑

i=1

B
∑

j=1

Vi,j(y
m
l ). (9)

This confidence score is used as an auxiliary signal in

downstream tasks such as classification and spatial reasoning,

enabling the model to prioritize candidate states with higher

visibility.

3.4 Multi-Scale Spatial Attention
integration

Building upon the visibility maps, we introduce a Multi-Scale

Spatial Attention (MSSA) mechanism designed to capture and

emphasize significant spatial regions across multiple resolutions.

This approach enhances the feature representation by integrating

information from various spatial scales, ensuring that both macro

and micro architectural elements are effectively captured (as shown

in Figure 2).

The attention map A(ym
l
) for a candidate state ym

l
is generated

by aggregating multi-scale feature maps:

A(yml ) =

S
∑

s=1

ws · hatt,s(Vs(y
m
l );Watt,s), (10)

where ws are learnable weights assigned to each scale s, S

denotes the number of scales, and hatt,s is a scale-specific function

parameterized byWatt,s. The use of learnable weights ws allows the

model to dynamically prioritize scales that are most relevant to the

current architectural layout.

To generate the scale-specific feature map Vs(y
m
l
), the input

feature map is processed through a sequence of down-sampling

and up-sampling operations. For a given scale s, the feature map

is obtained as:

Vs(y
m
l ) = fdown,s(8roi(y

m
l );Wdown,s), (11)

where fdown,s is a convolutional down-sampling operation

parameterized by Wdown,s. The feature map is then up-sampled

back to the original resolution using:

V
up
s (yml ) = fup,s(Vs(y

m
l );Wup,s), (12)

where fup,s is an up-sampling operation parameterized by

Wup,s. These operations ensure that spatial information at different

scales is uniformly represented in the attention map computation.

To combine the scale-specific maps, a normalization step is

applied to maintain numerical stability:

Â(yml ) =
A(ym

l
)

∑

i,j Ai,j(y
m
l
)+ ǫ

, (13)

where ǫ is a small constant to prevent division by zero. The

normalized attention map Â(ym
l
) ensures that the attention weights

are bounded and interpretable.

To enhance feature representation further, the computed

attention map is applied to the original feature map using an

element-wise multiplication:

8att(y
m
l ) = 8roi(y

m
l )⊙ Â(yml ), (14)

where ⊙ denotes the element-wise Hadamard product. This

operation amplifies the features in regions of high attention while

suppressing less relevant regions, improving the quality of extracted

features.

To adapt dynamically to varying architectural layouts, a

feedback mechanism is integrated. The feedback adjusts the

attention weights ws based on the classification error of the

downstream task:

wnew
s = wcurrent

s − η ·
∂Lcls

∂ws
, (15)

where η is the learning rate, and Lcls is the classification loss.

This adjustment ensures that the attention mechanism aligns with

the broader objectives of the spatial optimization framework.

The spatial attention module plays a core role in the overall

framework, and its function is reflected by its close connection with

other modules. First, the module receives input features extracted

by the "Features of Candidates Module," which combines the

dynamic information generated by the motion model to represent

the feature expressions of different regions or targets in the scene.

Through the spatial attention mechanism, the module weights the

input features, generates weighted features that reflect the focus
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FIGURE 2

Framework diagram of feature extraction with spatial attention. The candidate state features are extracted from the shared CNN layer, the target state

is estimated by calculating the target-specific CNN branch, and visibility and spatial attention are processed by the feature extraction module, finally

achieving binary classification and loss optimization.

of the model, and passes them to the binary classifier to predict

the target state. At the same time, the weighted features are also

combined with the Temporal Attention Model to use information

from the time dimension to improve the ability to understand

dynamic scenes. In addition, the classification results (Estimated

Target State) are used to update the current positive and negative

training sample sets (Current Positive/Negative Training Samples),

which indirectly affects the adjustment and optimization of the

attention module. The historical positive sample set (Historical

Positive Training Samples) and the weight loss function (Weight

Loss) further enhance the model’s ability to focus on important

features. It can be seen that the spatial attention module forms a

collaborative optimization mechanism with the classifier and the

temporal attention model by dynamically screening and weighting

key features, thereby achieving more efficient classification and

state prediction.

3.5 Dynamic Refinement and Feedback
Mechanism

To adaptively refine attention maps during real-time

optimization, we propose a Dynamic Refinement and Feedback

Mechanism. This mechanism continuously updates spatial

attention weights based on error signals derived from downstream

classification tasks, ensuring that the attention mechanism aligns

with the evolving architectural requirements and model objectives.

The attention refinement process starts by computing the

updated attention map Anew(y
m
l
) for a candidate state ym

l
as:

Anew(y
m
l ) = A(yml )+ γ · ∇ALcls, (16)

where Lcls represents the classification loss, γ is the feedback

learning rate, and ∇ALcls is the gradient of the loss with respect to

the attentionmap. This gradient provides a direct signal for refining

the spatial focus based on the classification task’s performance.

To stabilize the feedback process and prevent over-correction, a

momentum term β is introduced, resulting in a smoothed update:

1A(yml ) = β ·1Aprev + (1− β) · γ · ∇ALcls, (17)

Anew(y
m
l ) = A(yml )+1A(yml ), (18)

where 1Aprev is the update from the previous iteration. The

momentum term ensures smoother transitions in the attention

weights, avoiding abrupt changes that could destabilize the learning

process.

Additionally, the updated attention map is normalized to

maintain interpretability and numerical stability:

Ânew(y
m
l ) =

Anew(y
m
l
)

∑

i,j A
new
i,j (ym

l
)+ ǫ

, (19)

where ǫ is a small constant to prevent division by zero. This

normalization ensures that the attention values remain bounded

within a meaningful range.

To enhance the model’s adaptability to varying spatial

configurations, we incorporate a confidence-weighted feedback

mechanism. Each candidate state is assigned a confidence score

c(ym
l
), computed as:

c(yml ) = σ
(

fconf(8roi(y
m
l );Wconf)

)

, (20)

where fconf is a function parameterized by Wconf, and σ is the

sigmoid function. The confidence score modulates the impact of
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the feedback on the attention map:

Aweighted(y
m
l ) = c(yml ) · Ânew(y

m
l ). (21)

The refined attention map is then used to compute the

attention-weighted feature map:

8att(y
m
l ) = 8roi(y

m
l )⊙ Aweighted(y

m
l ), (22)

where ⊙ denotes the Hadamard product. This operation

ensures that the extracted features emphasize the most relevant

spatial regions identified through the feedback mechanism.

A temporal smoothing strategy is applied to the attention

maps to incorporate historical information and reduce noise. The

smoothed attention map is computed as:

Ã(yml ) = α · Aweighted(y
m
l )+ (1− α) · Ãprev(y

m
l ), (23)

where α is the smoothing factor, and Ãprev is the attention map

from the previous time step. This temporal integration enhances

robustness against short-term variations and improves consistency

in feature extraction.

3.6 Innovative approaches in architectural
planning robotics

3.6.1 Unsupervised learning for spatial feature
extraction

The proposed framework utilizes an unsupervised learning

approach to extract and optimize spatial features, eliminating the

need for labeled data. By leveraging Convolutional Neural

Networks (CNNs) in conjunction with spatial attention

mechanisms, the model dynamically identifies critical architectural

features, such as boundaries, utilities, and structural elements,

from diverse data sources, including 3D scans and blueprints. The

CNN generates feature maps, 8(I), which capture multi-scale

spatial hierarchies crucial for understanding complex layouts:

8(I) = CNN(I), (24)

where I represents the input data. The spatial attention

mechanism then prioritizes significant regions of these feature

maps through dynamically learned weights:

9 = fatt(8(I)), (25)

and the refined feature map is computed as:

8att = 8(I)⊙9 , (26)

where ⊙ denotes element-wise multiplication. The framework

incorporates feedback-driven adjustments to refine 9 , allowing it

to adapt to changing spatial configurations:

9new = 9current + η · ∇9U(8att), (27)

where∇9U(8att) represents the gradient of the utility function,

ensuring dynamic updates. This unsupervised approach provides

flexibility and scalability, making it ideal for architectural planning

in evolving environments.

3.6.2 Adaptive layout adjustment through
clustering

To optimize the spatial layout, the framework employs a

clustering-based strategy to identify functional zones within the

extracted spatial features. This process segments the spatially-

attentive feature map 8att into k clusters, {C1,C2, . . . ,Ck},

corresponding to distinct functional areas such as workspaces,

living areas, or utilities. Each cluster Ci is characterized by a

centroid ci, representing its ideal configuration:

ci =
1

|Ci|

∑

x∈Ci

x, (28)

where |Ci| is the number of elements in Ci, and x denotes a

feature vector. Layout adjustments aim to minimize the distance

between each region’s configuration xi and its centroid:

min
xi

k
∑

i=1

‖xi − ci‖
2. (29)

To address dynamic spatial needs, clustering is periodically

updated to reflect changes in the feature map 8att:

cnewi =
1

|Cnew
i |

∑

x∈Cnew
i

x. (30)

The framework also supports weighted clustering to prioritize

critical zones, such as high-traffic areas:

min
xi

k
∑

i=1

wi · ‖xi − ci‖
2, (31)

where wi represents the importance of region i. Constraints

such as adjacency requirements or minimum separation distances

can be integrated:

min
xi

k
∑

i=1

‖xi − ci‖
2 subject to gj(x) ≤ 0, j = 1, . . . ,m. (32)

This adaptive clustering approach ensures that the layout

remains optimized for functionality and user needs.

3.6.3 Temporal dynamics with sequential
contexts

The framework extends spatial optimization by integrating

temporal dependencies, enabling it to consider historical and

sequential spatial patterns. A Long Short-Term Memory (LSTM)

network (as shown in Figure 3) processes fused featuremaps8fused,

capturing sequential dependencies:

8LSTM = LSTM(8fused). (33)

These sequential features enhance adaptability by allowing the

model to optimize layouts based on usage trends, such as time-of-

day or seasonal variations. The LSTM’s hidden states dynamically

update the attention mechanism:

9temporal = θ(9 ,8LSTM), (34)
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FIGURE 3

The illustration of the LSTM network’s internal operations, showcasing the forget gate, input gate, and output gate interactions at two sequential time

steps t− 1 and t. This mechanism allows the integration of historical spatial dependencies into the feature extraction process, enabling adaptive

layout optimization based on temporal patterns.

where 9temporal represents attention weights modulated by

temporal context. This integration ensures that the spatial layout

remains functional and responsive to long-term user behaviors.

4 Experiment

4.1 Datasets

The experiments in this study utilize four widely recognized

datasets: ShapeNet, ScanNet, DTU, and MegaDepth. ShapeNet

is a large-scale repository of 3D models, containing millions of

3D shapes across various categories, which are commonly used

for tasks such as shape recognition and 3D reconstruction. The

ScanNet dataset provides real-world 3D scan data from indoor

scenes, including RGB-D scans with annotations, making it suitable

for applications like indoor mapping and object segmentation.

The DTU dataset consists of multi-view stereo data captured from

various objects in a controlled environment, offering a diverse

range of viewpoints and lighting conditions that are useful for

testing 3D reconstruction algorithms. The MegaDepth dataset

comprises large-scale outdoor scenes with dense depth maps

generated from Internet photo collections, providing challenging

scenarios for depth estimation in unconstrained environments.

These datasets collectively cover a variety of 3D data acquisition

scenarios, enabling comprehensive evaluation of the proposed

model’s performance across different types of input data.

4.2 Experimental details

The experiments are designed to simulate real-world conditions

by following a rigorous process for training, validation, and

evaluation. The datasets are partitioned into training, validation,

and test sets, with 70% of the data used for training, 15% for

validation, and 15% for testing, ensuring that the model generalizes

well to unseen data. The training is conducted using a deep

learning framework, such as PyTorch, with an initial learning

rate of 0.001. The learning rate is reduced by a factor of 0.1

if the validation accuracy does not improve for five consecutive

epochs. The model is trained for a maximum of 100 epochs,

with early stopping implemented if there is no improvement

in the validation loss for 10 epochs. Batch normalization is

applied to stabilize the training process, and dropout with a

rate of 0.5 is used to prevent overfitting. The Adam optimizer

is employed to optimize the model parameters, with a batch

size of 32 for ShapeNet and DTU, and 16 for ScanNet and

MegaDepth due to memory constraints. During the training phase,

the input data undergoes standard preprocessing steps such as

normalization, resizing, and augmentation. Data augmentation

techniques include random rotations, scaling, and flipping to

make the model robust to various transformations. For 3D data,

additional preprocessing involves converting raw depth maps to

point clouds or voxel grids, depending on the network’s input

requirements. Each dataset has specific preprocessing procedures

that cater to the nature of the data; for instance, ScanNet data

is preprocessed to align the RGB-D scans and annotations for

accurate segmentation tasks, while MegaDepth data requires depth

normalization due to the varying scale of outdoor scenes. The

evaluation metrics used to compare the models include training

time in seconds, inference time per sample in milliseconds, number

of parameters in millions, floating-point operations per second

(FLOPs) in billions, and the metrics for classification accuracy,

recall, and F1 score. Hyperparameter tuning is performed on the

validation set to select the optimal configuration for each model,

including adjusting the depth of the network, the number of

layers, and the size of the convolutional filters. The experiments

are conducted on a system with a high-performance GPU, such

as an NVIDIA Tesla V100, to ensure efficient training and

inference. The final results are averaged over three independent

runs with different random seeds to account for variations in

model initialization.
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The unsupervised learning approach proposed in this article

addresses constrained optimization problems by combining

implicit constraint optimization strategies. During the model

training process, constraints are transformed into differentiable

mathematical forms and embedded into the loss function

as soft constraint terms. This allows the model to satisfy

constraints while optimizing the main objective. By dynamically

adjusting the weights of the constraint terms, a balance between

objective optimization and constraint satisfaction is achieved.

Additionally, gradient-based optimization methods, such as the

Adam optimizer, are used to directly optimize the loss function

containing the constraint terms, ensuring that constraints are

explicitly considered with each parameter update. In terms

of design, the modular constraint handling mechanism allows

each constraint module to be independently optimized and

interact synergistically with the overall framework, enhancing the

model’s convergence speed and interpretability. In experiments,

the method’s implicit modeling of soft constraints effectively

reduces the need for explicit constraint handling, while ensuring

flexibility and computational efficiency in the optimization

process (Algorithm 1).

4.3 Experimental results and analysis

Table 1 and Figure 4 presents the comparison results for

our model and six state-of-the-art (SOTA) methods across the

ShapeNet and ScanNet datasets using metrics such as accuracy,

recall, F1 score, and AUC. The proposed model outperforms the

existing methods across all metrics, demonstrating its superior

performance in 3D shape recognition and scene understanding

tasks. For the ShapeNet dataset, our model achieves the highest

accuracy (96.88%), recall (93.93%), F1 score (93.04%), and AUC

(95.37%), significantly surpassing the closest competitor, NeRF,

which achieves an accuracy of 95.94% and an F1 score of 84.41%.

This improvement can be attributed to the integration of spatial

attention and clustering mechanisms, which allow the model

to focus on the most relevant spatial features while effectively

segmenting different functional regions in the 3D space. The

attention mechanism helps in emphasizing important regions,

thereby improving recall and reducing false negatives. On the

ScanNet dataset, the results are even more pronounced, with our

model achieving an accuracy of 98.02%, recall of 94.28%, F1 score of

94.00%, and AUC of 96.69%. The margin of improvement is wider

compared to other methods, such as DeepVoxels and AtlasNet,

which have F1 scores below 90%. The superior performance

indicates the robustness of ourmodel in complex indoor scenes that

feature cluttered objects and varying lighting conditions. The state

refinement module plays a critical role here by iteratively refining

the estimated states using detections, leading to better classification

performance. Comparatively, methods such as PointNet and SMPL

exhibit lower accuracy and F1 scores, particularly on the ShapeNet

dataset. These methods lack sophisticated mechanisms for spatial

feature extraction and refinement, which limits their ability to

handle complex geometric structures. Our model’s ability to

achieve high F1 scores across both datasets reflects its balanced

Input: Datasets: ShapeNet, ScanNet, DTU, MegaDepth

Output: Trained model parameters θ

1 Initialize model parameters θ randomly;

2 Set initial learning rate α = 0.001;

3 Set batch size B = 32 for ShapeNet, DTU, B = 16

for ScanNet, MegaDepth;

4 Set maximum epochs N = 100;

5 Set dropout rate p = 0.5;

6 Define constraint weights λ1, λ2, . . ., λk;

7 for dataset D ∈ {ShapeNet, ScanNet, DTU, MegaDepth}

do

8 Preprocess dataset D;

9 Split D into training set Dtrain, validation set

Dval, and test set Dtest;

10 for epoch i = 1 to N do

11 for each batch b ∈ Dtrain do

12 Normalize, resize, and augment b;

13 Convert depth maps to point clouds if

required;

14 Compute model output: y = Arch_robot(b; θ);

15 Compute primary loss: Lp =
1
B

∑B
j=1 ℓ(yj, ŷj);

16 Compute constraint losses:

Lc =

K
∑

k=1

λk · Ck(θ),

where Ck(θ) represents the k-th

constraint term;

17 Calculate total loss: L = Lp + Lc;

18 Update parameters: θ ← θ − α∇θL;

19 end

20 if validation accuracy does not improve for 5

consecutive epochs then

21 Reduce learning rate: α← 0.1α;

22 end

23 if validation loss does not improve for 10

epochs then

24 break;

25 end

26 end

27 Evaluate on Dval;

28 Compute Recall: Recall = TP
TP+FN;

29 Compute Precision: Precision = TP
TP+FP;

30 Compute F1 Score: F1 = 2 · Precision·Recall
Precision+Recall

;

31 Compute average inference time per sample in

milliseconds;

32 Compute number of parameters and FLOPs;

33 while Hyperparameter tuning do

34 Adjust network depth d, number of layers l,

filter size f;

35 Re-train and evaluate;

36 end

37 end

38 Output trained model parameters θ;

Algorithm 1. Training arch-robot network with constraint

optimization.
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TABLE 1 Comparison of performance on ShapeNet and ScanNet datasets.

Model ShapeNet dataset ScanNet dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

NeRF (Pumarola et al., 2021) 95.94± 0.03 91.88± 0.03 84.41± 0.03 93.37± 0.03 93.06± 0.03 92.28± 0.03 88.51± 0.03 88.04± 0.03

COLMAP (Bai et al., 2024) 94.26± 0.02 87.06± 0.02 89.84± 0.02 87.90± 0.02 95.17± 0.02 92.93± 0.02 87.74± 0.02 87.20± 0.02

DeepVoxels (Sitzmann et al., 2019) 87.61± 0.02 86.95± 0.02 84.21± 0.02 91.71± 0.02 95.81± 0.02 89.13± 0.02 89.19± 0.02 91.03± 0.02

AtlasNet (Vakalopoulou et al., 2018) 88.48± 0.03 91.35± 0.03 86.85± 0.03 87.77± 0.03 92.87± 0.03 87.33± 0.03 86.39± 0.03 90.43± 0.03

SMPL (Loper et al., 2023) 89.27± 0.03 84.35± 0.03 88.64± 0.03 89.42± 0.03 85.74± 0.03 88.15± 0.03 88.92± 0.03 87.62± 0.03

PointNet (Qi et al., 2017) 86.32± 0.02 83.92± 0.02 86.41± 0.02 84.77± 0.02 91.73± 0.02 83.84± 0.02 86.71± 0.02 89.32± 0.02

Ours 96.88 ± 0.01 93.93 ± 0.01 93.04 ± 0.01 95.37 ± 0.01 98.02 ± 0.01 94.28 ± 0.01 94.00 ± 0.01 96.69 ± 0.01

FIGURE 4

Comparison of di�erent indicators on di�erent datasets.

performance in terms of precision and recall, making it suitable for

real-world 3D recognition tasks.

Table 2 and Figure 5 presents a comparison of our model

against SOTA methods across the DTU and MegaDepth datasets,

focusing on computational efficiency metrics such as parameters,

FLOPs, inference time, and training time. The results demonstrate

that our model is not only more accurate but also computationally

more efficient. For the DTU dataset, our model achieves a

significant reduction in computational cost, with only 221.06

M parameters and 208.44 G FLOPs, compared to NeRF’s

376.05 M parameters and 220.52 G FLOPs. The reduced

number of parameters and FLOPs is indicative of a more

streamlined architecture that achieves high accuracy without

excessive computational resources. The inference time is also the

shortest, at 152.13 ms, compared to other methods such as AtlasNet

(347.24 ms) and DeepVoxels (344.41 ms). This efficiency is largely

due to the integration of clustering and attention mechanisms that

minimize the amount of irrelevant data processed by the model.

The MegaDepth dataset presents a more challenging scenario with

large-scale outdoor scenes and complex depth variations. Despite
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these challenges, our model achieves the lowest FLOPs (101.80

G) and inference time (113.10 ms), demonstrating its robustness

in handling diverse data. The training time is also considerably

reduced to 161.24 s, compared to COLMAP’s 369.11 s. This

indicates that our approach is not only faster in inference but

also in training, making it suitable for scenarios requiring rapid

model updates or real-time applications. The impact of the spatial

attention mechanism is particularly evident in these results, as

it allows the model to focus on depth information and ignore

irrelevant background features. The clustering module further aids

by organizing features into functional zones, which reduces the

burden on subsequent layers. The state refinement module ensures

accurate final state estimation by combining candidate states with

detected results, leading to more reliable predictions.

The results presented in Table 3 and Figure 6 demonstrate

the computational efficiency and performance impact of different

configurations on the ShapeNet and ScanNet datasets. Our method

outperforms the configurations lacking specific components,

indicating that each module contributes significantly to improving

computational efficiency and training speed. The ablation study

reveals that removing the attention module results in the highest

computational cost, with a significant increase in FLOPs (224.38

G for ShapeNet and 259.61 G for ScanNet) and the highest

inference time (371.84 and 324.15 ms, respectively). This suggests

that the spatial attention mechanism is essential for reducing the

complexity of the model by focusing the network’s processing on

the most relevant regions of the input data, thereby lowering the

computational cost. The absence of the clustering module also

degrades performance, with increased FLOPs and inference time

compared to the full model.Without clustering, themodel struggles

to organize spatial features effectively, resulting in inefficient

processing and increased computational load. This is particularly

evident in the inference time, where the model without clustering

exhibits a significant slowdown (215.75ms on ShapeNet and 253.09

ms on ScanNet). This highlights the importance of the clustering

module in effectively segmenting the spatially-attentive featuremap

into distinct regions, which streamlines the network’s processing

by focusing on functional zones. The results further show that

omitting the refinement module leads to a moderate increase in

training time and computational load (343.69 G FLOPs and 243.75

ms inference time for ShapeNet). The refinement step is designed

to fine-tune the state estimation by combining primitive estimates

with detection results, which helps improve the network’s efficiency

in learning and generalization. The increased training time without

refinement (342.21 s for ShapeNet and 320.40 s for ScanNet)

indicates that this step accelerates convergence by reducing noise

in the training process.

Table 4 and Figure 7 provides insights into the impact of

each module on the accuracy, recall, F1 score, and AUC metrics

across the DTU and MegaDepth datasets. The results show that

our full model consistently outperforms the configurations with

missing components, indicating the importance of each module in

achieving optimal performance. The complete model achieves the

highest accuracy, recall, F1 score, and AUC across both datasets,

with improvements of ∼4–9% over the other configurations. The

removal of the attention module leads to the largest drop in

accuracy and recall (90.92% accuracy and 88.49% recall on DTU).

This significant decline can be attributed to the absence of the
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FIGURE 5

Computational e�ciency comparison across DTU and MegaDepth datasets.

attention mechanism, which plays a crucial role in highlighting

important features and suppressing irrelevant ones. Without this

mechanism, the model struggles to focus on key regions in the

input data, leading to decreased classification performance. The

impact is particularly noticeable on challenging datasets such as

MegaDepth, where the absence of attention results in a recall

drop to 91.33%. Similarly, the lack of the clustering module causes

performance degradation across all metrics, with a substantial

decline in F1 score (90.16% on DTU and 89.49% on MegaDepth).

Clustering enhances the model’s ability to identify functional

zones in the spatial features, and its absence makes it harder for

the network to distinguish between different regions effectively.

This manifests as reduced precision and recall, highlighting the

clustering module’s role in spatial organization and accurate

classification. The omission of the refinement module has a less

pronounced but still significant impact on the results. Without

refinement, the model achieves lower AUC values (88.02% on DTU

and 91.02% on MegaDepth), indicating that the state refinement

process helps improve decision boundaries by refining the target

state through combination with detected states. The refinement

process effectively balances the contribution of initial and detected

states, leading to more reliable final state estimation.

Our experiments on the Matterport3D and S3DIS datasets

(Table 5), two real-world architectural settings, validate the

exceptional performance of our method compared to existing

techniques like NeRF (Pumarola et al., 2021), COLMAP (Pumarola

et al., 2021), DeepVoxels (Pumarola et al., 2021), and AtlasNet

(Pumarola et al., 2021). We evaluated metrics including Accuracy,

Recall, F1 score, and Area Under Curve (AUC). On the

Matterport3D dataset, our method achieved an Accuracy of

96.79%, Recall of 94.69%, F1 score of 92.62%, and AUC

of 95.35%, significantly outperforming NeRF and DeepVoxels.

Similarly, on the S3DIS dataset, it excelled with an Accuracy

of 96.86%, Recall of 93.95%, F1 score of 93.29%, and AUC of

95.47%. The strengths of our approach are its efficient spatial

optimization capability, which enhances accuracy through an

adaptive spatial attention mechanism; its robustness, showing

higher stability and adaptability in complex layouts and noisy data;

and its comprehensive performance, surpassing other methods

in geometric reconstruction precision and scene segmentation.

These results underscore the unsupervised learning framework and

modular design of our method, demonstrating its potential for

practical applications.

The spatial attention mechanism and clustering method

proposed in this paper are designed to adapt to diverse architectural

needs. The following is a further description of its specific

implementation and application effects. The spatial attention

mechanism can dynamically adjust the model’s attention to
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different areas and highlight key regional features in a weighted

manner. For example, in a complex space, the model can

automatically focus on entrances, passages, or areas with dense

functional interactions, thereby reducing redundant calculations

and improving resource utilization. Through an independent

modular design, the input of the spatial attention mechanism

is the candidate features of the scene, and the output is a

weighted feature map, which facilitates flexible adjustment of

the adaptation strategy in different scenarios. In addition, in the

experiment, the spatial attention mechanism performed well on the

Matterport3D and S3DIS datasets, successfully identifying high-

priority areas in scenes such as residential and office buildings,

and effectively optimizing layout planning. The clustering method

shows high adaptability in functional area division and dynamic

layout optimization by dividing the building area into multiple

functional areas. The model dynamically adjusts the cluster centers

according to the similarity of spatial features to achieve a reasonable

distribution of functional areas, and continuously updates these

clustering results through gradient optimization during the

training process. For scenes that require dynamic adaptation, such

as office spaces, clustering methods can reallocate functional areas

based on real-time data to meet changing usage needs. At the same

time, when dealing with scenes with high geometric complexity

or diverse functional interactions, the clustering module can also

introduce geometric constraints and functional constraints to

further improve the practical significance of the division results.

In the experiment, the proposed method successfully solved the

scene optimization problem under diverse architectural needs by

combining the spatial attention mechanism and clustering strategy.

For example, in theMatterport3D dataset, the model can effectively

segment complex indoor functional areas such as living rooms,

kitchens, and dining rooms, and optimize the interactive layout of

these areas. In the S3DIS dataset, the model accurately divides the

functions of high-interaction areas such as conference rooms and

corridors, demonstrating its advantages in handling complex layout

requirements. These experimental results show that the proposed

method has significant advantages in adaptability and effectiveness

in actual architectural environments, and provides an innovative

approach to solving diverse architectural needs.

To validate the effectiveness of the soft constraint method

in addressing complex optimization problems, we designed a set

of comparative experiments that thoroughly compared the soft

constraintmethodwith the traditional hard constraintmethod. The

experiments focused on a building space optimization task, using

a simulated dataset with various complex constraints, including

spatial area and adjacency requirements. The soft constraint

method incorporated constraints into the loss function as

penalty terms, dynamically adjusting weights to balance constraint

satisfaction and optimization goals. In contrast, the hard constraint

method strictly restricted the optimization process to ensure all

solutions always met predefined conditions. The experiments

(Table 6) were evaluated using four keymetrics: constraint violation

rate, constraint satisfaction efficiency, final objective value, and

computational cost. The results demonstrated that the soft

constraint method outperformed in terms of objective optimization

and computational efficiency, while the hard constraint method

excelled in absolute constraint satisfaction and rapidity. The

constraint violation rate of the soft constraint method was slightly
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FIGURE 6

Ablation study on ShapeNet dataset and ScanNet dataset.

TABLE 4 Ablation study on DTU dataset and MegaDepth dataset.

Model DTU dataset MegaDepth dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Spatial attention 90.92± 0.02 88.49± 0.02 88.46± 0.02 84.26± 0.02 91.69± 0.02 91.33± 0.02 86.33± 0.02 88.69± 0.02

w/o Clustering 89.53± 0.03 91.10± 0.03 90.16± 0.03 88.66± 0.03 96.25± 0.03 87.25± 0.03 89.49± 0.03 84.74± 0.03

w/o Dynamic refinement 87.43± 0.02 86.89± 0.02 90.21± 0.02 88.02± 0.02 94.36± 0.02 86.47± 0.02 87.56± 0.02 91.02± 0.02

Ours 97.06 ± 0.01 95.09 ± 0.01 93.13 ± 0.01 92.78 ± 0.01 97.53 ± 0.01 94.32 ± 0.01 92.13 ± 0.01 93.72 ± 0.01

higher in the initial training phase but dropped significantly

to 0.5% as training progressed, achieving constraint satisfaction

levels close to those of the hard constraint method. Although the

soft constraint method required more training steps to balance

constraints and objectives, it achieved a final objective value of

0.92, higher than the 0.85 achieved by the hard constraint method,

showcasing its superiority in optimization goals. Additionally, the

computational efficiency of the soft constraint method was higher,

with batch computation time at 120 ms compared to 200 ms for the

hard constraint method, which required projection operations. In

contrast, the hard constraint method completely avoided constraint

violations, maintaining a violation rate of zero throughout and

requiring only 800 steps to satisfy constraints, demonstrating

higher constraint satisfaction efficiency.

5 Conclusion and discussion

In this work, we addressed the problem of efficient 3D

spatial recognition and reconstruction across diverse datasets.

Our proposed model integrates spatial attention, clustering,

and state refinement to enhance feature extraction and

optimize computational efficiency. The spatial attention

mechanism allows the model to focus on relevant regions,

the clustering organizes features into functional zones, and

the state refinement iteratively improves prediction accuracy

by refining estimated states using detected information.

The experiments conducted on four datasets—ShapeNet,

ScanNet, DTU, and MegaDepth—demonstrate the effectiveness

of our approach. Our model consistently outperforms
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FIGURE 7

Ablation study on DTU dataset and MegaDepth dataset.

TABLE 5 Comparison of performance on Matterport3D and S3DIS datasets.

Model Matterport3D dataset S3DIS dataset

Accuracy (%) Recall (%) F1 score (%) AUC (%) Accuracy (%) Recall (%) F1 score (%) AUC (%)

NeRF (Pumarola et al.,

2021)

91.23± 0.01 92.44± 0.03 87.31± 0.02 86.33± 0.01 89.44± 0.02 91.97± 0.01 83.8± 0.03 92.18± 0.02

COLMAP (Bai et al., 2024) 85.56± 0.03 88.25± 0.02 87.86± 0.01 90.98± 0.03 91.51± 0.02 83.78± 0.01 89.08± 0.02 87.89± 0.01

DeepVoxels (Sitzmann

et al., 2019)

93.03± 0.02 85.89± 0.01 85.54± 0.03 93.67± 0.02 91.2± 0.03 89.06± 0.02 88.03± 0.01 90.35± 0.03

AtlasNet (Vakalopoulou

et al., 2018)

92.1± 0.02 86.19± 0.01 86.58± 0.03 89.88± 0.01 91.15± 0.02 87.42± 0.03 89.73± 0.02 87.31± 0.03

SMPL (Loper et al., 2023) 86.41± 0.01 84.74± 0.03 89.22± 0.02 87.13± 0.03 91.47± 0.01 85.12± 0.02 85.26± 0.03 90.79± 0.01

PointNet (Qi et al., 2017) 86.62± 0.02 85.95± 0.01 90.43± 0.03 87.98± 0.02 93.68± 0.03 89.93± 0.01 84.22± 0.02 88.39± 0.03

Ours 96.79± 0.03 94.69± 0.01 92.62± 0.02 95.35± 0.03 96.86± 0.01 93.95± 0.02 93.29± 0.03 95.47± 0.02

TABLE 6 Comparison between soft constraints and hard constraints.

Method Violation rate (%) Constraint satisfaction steps Objective value (↑) Computation cost (ms/batch)

Soft constraints 0.5± 0.1 1,500± 50 0.92 ± 0.02 120 ± 5

Hard constraints 0.0 800 ± 30 0.85± 0.03 200± 10

Bold indicates the best value.
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state-of-the-art methods in terms of accuracy, F1 score, and

computational metrics such as FLOPs and inference time.

On the ShapeNet and ScanNet datasets, our model achieved

the highest accuracy and F1 score, demonstrating superior

feature extraction in indoor scene understanding. Similarly,

the results on the DTU and MegaDepth datasets show

substantial gains in computational efficiency, with reduced

FLOPs and shorter inference times, making the model suitable for

real-time applications.

While the method proposed in this paper has demonstrated

excellent performance in various experiments, there are still some

limitations and potential challenges that need to be addressed in

future research. First, our method may be limited by the quality

of input data in complex real-world environments. For example,

noise, incompleteness, or insufficient sampling density in point

cloud data could lead to reduced precision in the segmentation of

functional areas. Although robustness mechanisms are designed to

cope with some noise, the model may require further optimization

to ensure stability in highly dynamic or frequently changing

environments. Second, the computational efficiency of the model

might be impacted in larger architectural datasets. Although the

modular design and adaptive attention mechanism significantly

reduce redundant computations, the model may still face increased

resource demands for ultra-large-scale buildings or multi-layered

complex structures. Therefore, exploring distributed computing

or lightweight model compression techniques might be future

directions for improvement. While the interpretability of our

method is enhanced by its modular design, there is still room

for improvement in intuitive interaction with real users, such as

architects or designers. For instance, how the model-generated

optimization suggestions visually align with users’ design goals

requires further in-depth study. Lastly, regarding the generalization

capabilities of the model, although it adapts well to the

Matterport3D and S3DIS datasets, additional validation is needed

for cross-domain applications, such as from indoor architecture to

outdoor planning.
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