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Introduction: In recent years, Unmanned Aerial Vehicles (UAVs) have increasingly

been deployed in various applications such as autonomous navigation,

surveillance, and object detection. Traditional methods for UAV navigation and

object detection have often relied on either handcrafted features or unimodal

deep learning approaches. While these methods have seen some success, they

frequently encounter limitations in dynamic environments, where robustness

and computational e�ciency become critical for real-time performance.

Additionally, these methods often fail to e�ectively integrate multimodal inputs,

which restricts their adaptability and generalization capabilities when facing

complex and diverse scenarios.

Methods: To address these challenges, we introduce NavBLIP, a novel visual-

language model specifically designed to enhance UAV navigation and object

detection by utilizing multimodal data. NavBLIP incorporates transfer learning

techniques along with a Nuisance-Invariant Multimodal Feature Extraction

(NIMFE) module. The NIMFE module plays a key role in disentangling relevant

features from intricate visual and environmental inputs, allowing UAVs to

swiftly adapt to new environments and improve object detection accuracy.

Furthermore, NavBLIP employs a multimodal control strategy that dynamically

selects context-specific features to optimize real-time performance, ensuring

e�ciency in high-stakes operations.

Results and discussion: Extensive experiments on benchmark datasets such

as RefCOCO, CC12M, and Openlmages reveal that NavBLIP outperforms

existing state-of-the-art models in terms of accuracy, recall, and computational

e�ciency. Additionally, our ablation study emphasizes the significance of

the NIMFE and transfer learning components in boosting the model’s

performance, underscoring NavBLIP’s potential for real-time UAV applications

where adaptability and computational e�ciency are paramount.

KEYWORDS

UAVnavigation, object detection,multimodal learning, transfer learning, computational

e�ciency

1 Introduction

Unmanned Aerial Vehicles (UAVs) have become increasingly prominent in tasks such

as autonomous navigation and object detection, owing to their vast range of applications

in both civilian and military domains. Not only can UAVs efficiently perform aerial

surveillance and reconnaissance, but they also play a pivotal role in search and rescue
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missions, environmental monitoring, and agricultural operations

(Wang et al., 2024). However, UAV navigation and object

detection remain challenging due to the complexities of dynamic

environments, where changes in lighting, weather, and terrain can

hinder performance (Nicora et al., 2021). Moreover, the ability

to detect and track objects in real-time is crucial for the safe

and effective deployment of UAVs in real-world scenarios. These

tasks not only demand high accuracy and robustness but also

computational efficiency, making the development of sophisticated

methods necessary for overcoming these challenges.

To address the limitations of early approaches, researchers

initially explored symbolic AI and knowledge-based methods for

UAV navigation and object detection (Evjemo et al., 2020). These

methods relied on predefined rules and symbolic representations

of the world, allowing UAVs to reason about their environment

and plan paths accordingly. One of the key strengths of symbolic

AI was its interpretability, as human knowledge could be directly

incorporated into the system. This transparency made it easier to

understand and analyze the decision-making process, which was

particularly valuable in scenarios that required clear explanations of

the system’s behavior. For instance, in search and rescue operations,

being able to explain the decision logic of a UAV can help human

operators better understand its actions and make appropriate

adjustments. As a result, symbolic AI provided a direct pathway for

integrating human knowledge into the decision-making processes

of UAVs. However, despite the significant advantages of symbolic

AI in terms of interpretability, it faced substantial limitations.

One major drawback was its rigidity. Because these systems

relied on explicit representations and manually defined rules, they

struggled to cope with the variability and uncertainty inherent

in real-world environments (Tao et al., 2020). This limitation

became especially problematic in unpredictable scenarios, where

adaptability was crucial. For example, in complex or constantly

changing environments, predefined rule-based systems often fail to

adjust their behavior effectively, leading to suboptimal performance

in navigation and object detection tasks. Furthermore, as the

complexity of tasks and the amount of data grew, symbolic AI’s lack

of scalability became increasingly apparent. These systems were not

well-suited to handling large-scale, dynamic environments, where

the number of variables and environmental changes can overwhelm

rule-based approaches. Additionally, maintaining and updating

such systems required extensive human intervention, as new rules

had to be manually defined and adjusted to reflect changes in the

environment. As a result, symbolic AI became less practical for

real-time, large-scale operations, and was gradually phased out in

favor of more adaptable, data-driven approaches that could learn

and generalize more effectively in complex environments.

In response to the limitations of knowledge-based methods,

the research community began shifting toward data-driven and

machine learning approaches (Wang X. et al., 2023). Machine

learning techniques, especially those rooted in statistical models,

allowed UAVs to identify patterns from data without the need

for explicitly programmed rules (Arinez et al., 2020). This shift

represented a significant improvement in the flexibility and

adaptability of UAVs, particularly in dynamic environments. For

example, Support Vector Machines (SVMs) (Bazi and Melgani,

2018) and Random Forests (Deng et al., 2024) were widely adopted

for object detection tasks, while reinforcement learning models

(Xi et al., 2024) allowed UAVs to learn from experience through

trial and error. The ability to improve performance based on

experience was particularly useful in uncertain environments,

where fixed rule-based systems would otherwise struggle to adapt.

Despite the potential of these machine learning methods, they

were still constrained by certain limitations. A key challenge

was the reliance on hand-crafted features, which required human

intervention to extract relevant information from raw data.

This need for feature engineering increased the complexity of

developing such systems and limited their autonomy. Additionally,

machine learning models often required large labeled datasets,

which posed a challenge in scenarios where data was scarce or

difficult to label (Sampieri et al., 2022). For instance, in hazardous

or highly complex environments, acquiring enough high-quality

labeled data might be infeasible, limiting the practical application

of these models. As a result, while machine learning approaches

were more flexible than symbolic AI, their dependence on feature

engineering and labeled data revealed their limitations in handling

more complex tasks autonomously.

As deep learning gained traction, the focus shifted toward

neural network-based approaches and the use of pre-trained

models. Deep learning fundamentally transformed UAV navigation

and object detection by enabling the automatic extraction of

complex, high-dimensional features directly from raw data.

Convolutional Neural Networks (CNNs) (Barrios et al., 2024)

and Recurrent Neural Networks (RNNs) (Jiandong et al.,

2024) became standard tools for these tasks, showing notable

improvements in accuracy and adaptability. CNNs, in particular,

excelled at image-based object detection tasks, while RNNs proved

effective in handling sequential data for tasks such as time-series

prediction and trajectory planning. More recently, Transformer-

based architectures (Ma Z. et al., 2024) have demonstrated even

greater potential in managing complex scenarios. These models,

which originated in natural language processing, have shown

impressive performance in various vision-based tasks due to

their ability to capture long-range dependencies and contextual

information. Another major advancement in deep learning was

the introduction of pre-trained models, particularly those trained

on large datasets like ImageNet. These models leveraged transfer

learning, enabling them to generalize more effectively with fewer

task-specific datasets. For UAVs, this approach proved valuable in

situations where obtaining large labeled datasets was challenging.

By fine-tuning pre-trained models on smaller, domain-specific

datasets, UAV systems could achieve high performance without the

need for extensive data collection. However, despite the significant

advances in deep learning, these methods come with considerable

computational costs. Neural networks, particularly deep models

with many layers, typically require substantial processing power

and memory. This poses challenges for real-time operations in

UAVs, particularly in resource-constrained environments, where

onboard processing capabilities may be limited. Additionally, the

black-box nature of neural networks has raised concerns regarding

interpretability. In safety-critical applications, such as autonomous

navigation in crowded airspaces, it is crucial to understand the

decision-making process. The lack of transparency in neural

network models makes it difficult to trust their outputs, especially
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when errors or unexpected behavior occur. Consequently, while

deep learning has revolutionized UAV navigation and object

detection, challenges remain in terms of computational efficiency

and the need for greater interpretability, particularly in scenarios

where transparency is critical.

To overcome the limitations of previous methods, we introduce

NavBLIP, a novel multimodal approach designed to enhance

UAV navigation and object detection by integrating both visual

and contextual information. NavBLIP is engineered to meet

the demands of real-time performance, providing computational

efficiency without sacrificing accuracy or adaptability in dynamic

environments. A key feature of NavBLIP is its use of transfer

learning, which enables the model to leverage knowledge from pre-

trained networks, significantly reducing the need for large, task-

specific datasets. Additionally, NavBLIP incorporates a Nuisance-

Invariant Multimodal Feature Extraction (NIMFE) module, which

disentangles relevant features from noisy or complex inputs. This

allows the system to generalize effectively across a variety of

environments and scenarios, making it more robust in real-world

applications. By combining visual data with contextual information

and optimizing feature selection in real-time, NavBLIP ensures

high performance even in unpredictable conditions. Through

this approach, we address the challenges of both scalability and

efficiency, offering amore versatile solution for UAVnavigation and

object detection tasks.

• NavBLIP introduces a new module, NIMFE, which

disentangles relevant features from nuisance variables,

ensuring more robust performance in diverse operational

conditions.

• The method excels in adaptability, enabling UAVs to

perform well across multiple scenarios and conditions while

maintaining computational efficiency, making it suitable for

real-time applications.

• Experimental results demonstrate that NavBLIP outperforms

state-of-the-art models in terms of accuracy, recall, and

computational efficiency, especially on benchmark datasets

such as RefCOCO and OpenImages.

2 Related work

2.1 Multimodal learning for UAV systems

Multimodal learning has recently gained significant traction

as a means to enhance the capabilities of Unmanned Aerial

Vehicles (UAVs) in tasks such as navigation and object detection.

Traditional UAV systems typically rely on unimodal inputs,

such as RGB images or sensor data, which can limit their

decision-making abilities, particularly in complex and dynamic

environments (Chen et al., 2024). This limitation has led to a

shift toward integrating multiple data modalities to improve

UAV performance. By combining different types of data, such

as visual information with text, metadata, or sensor readings,

UAVs can make more informed and context-aware decisions in a

wider range of conditions. For instance, VisualBERT (Tong et al.,

2024) demonstrates the advantages of multimodal learning by

combining visual and textual inputs to enhance object recognition

capabilities. In UAV operations, multimodal learning can be

applied to fuse visual data with GPS coordinates, environmental

metadata, and other contextual information, improving the

accuracy of navigation and object detection tasks. However,

despite the potential benefits, existing multimodal methods

often face challenges such as modality collapse, where one data

modality is overemphasized, while others are underutilized. This

imbalance can lead to suboptimal system performance, especially

in scenarios requiring the comprehensive integration of diverse

data sources. To overcome these challenges, we introduce the

Nuisance-Invariant Multimodal Feature Extraction (NIMFE)

module. NIMFE effectively disentangles task-relevant features

from nuisance factors, enhancing the robustness and adaptability

of UAVs in varied operational environments (Zacksenhouse, 2011).

By isolating the relevant information from different modalities,

NIMFE ensures that UAVs can make more reliable decisions

even in unpredictable conditions. NavBLIP expands on this idea

by dynamically adjusting the weighting of each modality based

on the specific environmental context. This allows for a more

balanced and effective integration of all available data streams,

ensuring that no single modality dominates the decision-making

process. The dynamic adjustment of modalities enables UAVs to

optimize their performance in real-time, leveraging the strengths

of each input source according to the needs of the task at hand.

This leads to improved decision-making capabilities, making

NavBLIP particularly suited for real-time UAV operations,

where flexibility, robustness, and computational efficiency

are essential.

2.2 Transfer learning for UAV adaptability

Transfer learning has become a crucial technique in machine

learning, particularly for applications like UAV navigation, where

data collection is expensive or time-consuming (Zhang et al.,

2023). Traditional UAVmodels typically require large, task-specific

datasets and considerable computational resources for training,

making it difficult for these models to quickly adapt to new

environments. Transfer learning addresses these challenges by

allowing models to leverage knowledge from previously learned

tasks and apply it to new, unseen tasks with minimal retraining

(Zacksenhouse et al., 2010). In the UAV domain, models can

be pre-trained on large-scale datasets such as ImageNet or

OpenImages, and then fine-tuned for specific tasks like object

detection, terrain navigation, or obstacle avoidance. Techniques

such as fine-tuning convolutional layers or freezing earlier layers

during training have demonstrated improvedmodel generalization,

helping UAVs perform better in novel situations . However, most

current transfer learning approaches in UAV systems either ignore

multimodal data or are not optimized for real-time adaptation.

NavBLIP advances the field by embedding transfer learning within

a multimodal framework, allowing UAVs to adapt more effectively

to new environments using both visual and contextual data. Our

experimental results highlight that this approach reduces the

need for extensive retraining, significantly improving accuracy and

computational efficiency across a variety of environments (Ma F.

et al., 2024). By integrating transfer learning with multimodal data,
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NavBLIP offers a more scalable and efficient solution for real-time

UAV operations.

2.3 Computational e�ciency in real-time
UAV operations

Real-time processing is essential for UAVs, particularly in high-

stakes applications like search-and-rescue missions, environmental

monitoring, and autonomous navigation. These scenarios demand

fast, accurate decision-making, but as deep learning models grow

more complex, balancing computational efficiency with high

performance has become increasingly challenging (Qiu et al.,

2023). Advanced models, such as transformers and ResNet-based

architectures, typically deliver superior accuracy due to their ability

to handle large-scale data and extract complex features. However,

they come with significant computational overhead, making them

less feasible for real-time UAV operations where resources like

processing power and energy are often limited (Zacksenhouse

et al., 2014). This limitation is critical in UAVs, which must

operate efficiently in constrained environments. To address these

challenges, several optimization techniques have been explored.

Model pruning reduces the number of parameters, trimming

the network without sacrificing much in terms of performance.

Quantization reduces the precision of the weights and activations,

thereby decreasing the computational load. Knowledge distillation

allows smaller, simpler models to learn from larger models,

maintaining performance while being more resource-efficient (Liu

et al., 2023). In addition to these techniques, efficient network

architectures like MobileNet and EfficientNet have been specifically

designed for resource-constrained environments. Although these

architectures significantly reduce resource consumption, they often

underperform in terms of accuracy when compared to larger

models, making them less ideal for applications requiring high

precision. Zhang et al. (2024) NavBLIP takes a more balanced

approach by integrating these efficiency-enhancing techniques into

a multimodal framework. This enables the model to maintain

high performance while avoiding excessive resource consumption.

Furthermore, NavBLIP leverages transfer learning, allowing the

model to adapt quickly to new environments with minimal

retraining. This not only cuts down on the computational cost but

also improves adaptability and speed, both crucial for real-time

UAV operations. By combiningmultimodal learning with advanced

transfer learning, NavBLIP ensures robust performance across

a variety of environments without compromising on accuracy

or efficiency (Zereen et al., 2024). This makes it particularly

well-suited for dynamic, real-time UAV applications, where both

adaptability and computational efficiency are paramount.

3 Methodology

3.1 Overview of our network

Our research introduces a groundbreaking model, NavBLIP,

designed to tackle the complexities faced by Unmanned Aerial

Vehicles (UAVs) in dynamic environments. The core of NavBLIP

lies in its ability to seamlessly integrate multiple data modalities,

such as images, metadata, and text, for robust object detection

and navigation tasks. This model leverages the power of

pre-trained vision-language frameworks, similar to the BLIP-

Diffusion architecture, augmented by an advanced object detection

mechanism analogous to the NDFT framework. By combining

these elements, NavBLIP is tailored to UAV operations where

environmental variables, such as weather conditions, altitude

changes, and viewing angles, impose significant challenges. The

architecture processes UAV-captured imagery and corresponding

metadata (such as altitude, weather, and view angles), allowing

the system to generate disentangled feature representations.

These representations are passed into two parallel modules:

an object detection pipeline and a metadata-driven control

system, facilitating a coordinated output. Through this multimodal

interaction, NavBLIP enhances the UAV’s ability to detect objects

while simultaneously adjusting its navigation based on real-time

metadata inputs.

The data flow in NavBLIP begins when a UAV captures

images that are first passed through a feature extraction unit,

which generates domain-specific representations. These are further

split into distinct streams for object detection and control. The

disentanglement of features ensures that challenging factors, such

as environmental variability, are processed without compromising

detection accuracy. This dual-branch architecture equips the UAV

with the ability to handle complex environmental variations

while maintaining consistent performance in object detection.

In the following sections, we provide a detailed exploration

of the model. Subsection 3.2 covers the preliminaries, offering

formal definitions and problem formulation. Subsection 3.3 delves

into the architectural innovations, presenting the mathematical

foundations and specific modules of NavBLIP. Lastly, subsection

3.4 explores the integration of prior knowledge and environmental

cues into the model, demonstrating how domain knowledge

strengthens the UAV’s adaptive capabilities. Through these

sections, we aim to offer a comprehensive understanding of the

novel aspects and the overall design of the NavBLIP system.

3.2 Preliminaries

To formalize the problem of UAV-based navigation and object

detection, let us define the basic components involved. UAVs

operate in complex, dynamic environments where the task is to

detect objects from aerial imagery while simultaneously navigating

through these environments. Let X represent the set of UAV-

captured images, and Y represent the corresponding object labels.

Our goal is to map each image x ∈ X to its corresponding object

class and bounding box coordinates y ∈ Y , while maintaining

robustness to various nuisances such as altitude, weather, and view

angles. We formalize the object detection task as a function fobj,

which, given an input image x, produces a detection result fobj(x) =

ŷ, where ŷ includes both the predicted object class and bounding

box. The detection performance can be evaluated by a loss function:

Lobj(fobj(x), y), (1)
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FIGURE 1

The overall framework diagram of the proposed method. The data flows from observation through various representations (visual, semantic, spatial)

to the agent. Actions are predicted using an encoder, and optimal actions are derived through backpropagation.

which typically involves a combination of classification loss and

localization loss.

In addition to object detection, UAV navigation requires

processing metadata that describes the flight conditions. Let M =

{A,V ,W} represent metadata attributes, whereA denotes altitude,

V denotes view angle, andW represents weather conditions. These

metadata are used to adjust the detection process to improve

robustness. Specifically, we model the nuisance disentanglement

process by introducing a transformation function fnd that maps

the raw image and metadata (x,m) to a nuisance-invariant feature

space. The goal of fnd is to extract task-relevant features z =

fnd(x,m) that are invariant to changes in altitude, view angle,

and weather. To mathematically capture the disentanglement of

nuisances, we minimize a joint loss function Ljoint, which combines

the object detection loss Lobj with a nuisance penalty term Lnuis,

aimed at minimizing the effect of nuisance attributes on the

detection task:

Ljoint = Lobj(fobj(x), y)+ λ · Lnuis(fnd(x,m),m), (2)

where λ is a weighting factor that balances the importance of the

two objectives.

To handle varying nuisances, we also define a set of nuisance-

specific transformations f
(i)
nd

for each type of nuisance i ∈

{A,V ,W}, such that:

z = f
(A)
nd

(x,A) or z = f
(V)
nd

(x,V) or z = f
(W)
nd

(x,W), (3)

depending on the specific metadata available. These

transformations allow the model to learn robust, domain-

invariant features that are less sensitive to the nuisance factors

while retaining high object detection accuracy.

In UAV operations, the navigation system requires a model fnav
that processes both the image features z andmetadatam, generating

control signals for navigation ĉ = fnav(z,m). The navigation system

can be trained using a similar loss function that ensures the control

outputs are robust to environmental factors:

Lnav = E(x,m)

[

ℓ(fnav(fnd(x,m),m), c)
]

, (4)

where c denotes the ground-truth control signals for UAV

navigation and ℓ is an appropriate error function (e.g., squared

error).

By defining these components and relationships, we have a

unified formalization of the UAV object detection and navigation

problem. This structure lays the foundation for the development

of our NavBLIP model, which will be described in the following

subsections.

3.3 Nuisance-invariant multimodal feature
extraction

The Nuisance-Invariant Multimodal Feature Extraction

(NIMFE) module serves as the central mechanism of our model,
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engineered to isolate task-relevant information from UAV-

captured images while mitigating the influence of environmental

nuisances such as altitude, view angle, and weather conditions.

This multimodal architecture extends beyond conventional visual

processing by incorporating metadata from the UAV’s flight

context, facilitating a more robust and adaptive system. In this

section, we detail the core design of NIMFE, elaborating on its role

in extracting disentangled, nuisance-invariant representations

that feed into downstream object detection tasks and

navigational systems (Figure 1).

The input to the NIMFE module consists of two primary

components: the UAV image x and metadata m. The metadata

includes environmental and contextual information, specifically

altitude A, view angle V , and weather conditions W , which

are critical factors influencing image perception but considered

nuisances for consistent object detection. To handle these

nuisances, our approach leverages separate transformation

networks for each type of metadata, ensuring that the visual

features extracted from the image are disentangled from the

nuisance factors without losing crucial information for the task

at hand.

Initially, the UAV image x is processed through a visual feature

extractor fT(x), generating a raw feature map fT(x) ∈ R
h×w×d,

where h, w, and d represent the height, width, and depth of

the feature map, respectively. Simultaneously, each metadata

component is processed through its respective transformation

network: altitude A, view angle V , and weather W are passed

through transformation networks fA(mA), fV (mV ), fW (mW ),

yielding nuisance-specific embeddings zA, zV , zW .

These embeddings capture the influence of each nuisance

but are designed to be processed separately from the

visual features.

Once the feature extraction process is complete, the metadata

embeddings are integrated with the visual feature map through

a cross-modal attention mechanism. The cross-modal attention

mechanism ensures that the nuisance-related embeddings

are appropriately incorporated into the feature space, while

minimizing their direct impact on the object detection task. This

interaction is formalized as:

zcombined = CrossAttention(fT(x), zA, zV , zW ), (5)

where CrossAttention fuses the image-derived featuremap with the

nuisance-specific embeddings zA, zV , zW , generating a combined

feature map zcombined that is robust to changes in altitude, view

angle, and weather. This disentangled representation is critical for

ensuring that object detection remains unaffected by the changing

flight conditions.

The goal of the NIMFE module is to extract a feature

representation that is both relevant for the primary task of

object detection and invariant to the nuisance factors. This is

achieved through an adversarial learning approach, where the

system is trained to maximize object detection accuracy while

simultaneously minimizing the system’s ability to predict the

nuisance attributes from the extracted features. The adversarial

loss ensures that the learned features are robust and invariant

to environmental changes. The adversarial training objective is

defined as:

Ladv = −
∑

i∈{A,V ,W}

γi · Lnuis(f
(i)
nuis(zcombined),mi), (6)

where Lnuis is the nuisance prediction loss, γi is a balancing

coefficient for each nuisance type i, and f
(i)
nuis represents the

prediction network for nuisance i. This loss term encourages

the NIMFE module to generate feature maps that minimize the

influence of nuisances on the final object detection output.

The total loss function for the NIMFE module integrates

the object detection loss Lobj, the adversarial loss Ladv, and

a regularization term Lreg, which encourages smoothness and

consistency in the learned feature space. The overall objective is

expressed as:

LNIMFE = Lobj + λadv · Ladv + λreg · Lreg, (7)

where λadv and λreg are hyperparameters controlling the trade-

offs between object detection accuracy, nuisance suppression,

and regularization. During training, the model alternates between

optimizing the object detection task and minimizing the influence

of nuisances, ensuring that the final feature map is disentangled

from the environmental variables.

Once the disentangled feature map zcombined is produced, it

is fed into the object detection network fobj, which generates

bounding boxes and class labels for the detected objects. The

adversarial mechanism ensures that this feature map is robust

to altitude, view angle, and weather variations, resulting in

more accurate object detection across different flight conditions.

This robustness allows the NIMFE module to not only enhance

object detection but also improve UAV navigation and situational

awareness. By integrating both visual and metadata inputs, the

NIMFE module ensures high adaptability to diverse environmental

conditions, enabling UAVs to perform effectively in real-world

scenarios. The module’s ability to isolate task-relevant information

while suppressing nuisances makes it a powerful tool for improving

the performance and robustness of UAV-based systems in complex,

dynamic environments.

3.4 Prior-guided multimodal adaptation
strategy

In UAV-based object detection and navigation tasks, integrating

prior domain knowledge is crucial for improving the model’s

generalization to unseen environments and enhancing robustness

against variable conditions. Our model employs a Prior-Guided

Multimodal Adaptation Strategy (PGMAS) that leverages UAV-

specific metadata (such as altitude, weather, and view angle)

and domain-specific knowledge to refine both detection and

navigation outputs. This strategy is incorporated into the overall

architecture of NavBLIP to guide decision-making processes,

ensuring that UAV operations remain effective in diverse and

unpredictable environments. The prior information consists of

domain knowledge in the form of pre-defined rules or distributions
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about how different nuisances (e.g., altitude, weather, or view

angle) affect object visibility and detection performance. Let

P(A), P(V), P(W) represent the prior distributions of altitude, view

angle, and weather, respectively. These priors are used to weight the

importance of specific features when predicting objects or adjusting

navigation behavior. For instance, when flying at high altitudes A,

smaller objects may be harder to detect, and thus, the model should

prioritize extracting finer features. The adaptation mechanism

begins by calculating a prior-guided feature adjustment gprior,

which modifies the combined feature representation zcombined from

the NIMFE module. This adjustment is computed by combining

the feature map with the learned priors:

gprior(zcombined, P(A), P(V), P(W)) = zcombined + α ·
(

P(A)+ P(V)

+ P(W)
)

, (8)

where α is a learned parameter that controls the strength of the

prior adjustment. The term P(A) + P(V) + P(W) represents

a weighted combination of the priors, which can dynamically

influence the feature adjustment based on the current metadata

values.

To optimize this adaptation process, the model minimizes a

prior-guided loss function, which encourages the system to use

prior knowledge effectively while performing object detection and

navigation. The total loss for this adaptation strategy, Lprior, is

defined as:

Lprior = Lobj + β · Ex,m

[

gprior(zcombined, P(A), P(V), P(W))
]

, (9)

where β is a regularization parameter that balances the importance

of the prior information with the object detection loss.

Additionally, PGMAS allows for strategic control over UAV

navigation. The prior-guided feature adjustment also affects the

control signals generated by the navigation module fnav, ensuring

that the UAV responds appropriately to environmental variations.

For instance, when adverse weather conditions W are detected,

the navigation system can adjust the UAV’s trajectory to avoid

areas with reduced visibility or higher detection difficulty. This

adaptation is handled by modifying the navigation loss Lnav to

account for the priors:

L
prior
nav = E(x,m)

[

ℓ(fnav(gprior(zcombined, P(A), P(V), P(W))), c)
]

,

(10)

where the navigation output is influenced by the adjusted

features gprior, ensuring that the UAV adapts its control based on

environmental conditions.

The overall impact of the Prior-GuidedMultimodal Adaptation

Strategy is twofold: first, it enhances the object detection capabilities

of the system by leveraging prior knowledge about nuisance

effects, and second, it improves UAV navigation by adjusting

control outputs based on real-timemetadata and prior information.

This approach enables NavBLIP to operate effectively in diverse

environments, enhancing both accuracy and robustness across a

range of UAV applications. Figure 2 is a schematic diagram of the

principle of Transfer Learning.

3.4.1 Theoretical justification for adversarial
learning convergence

The adversarial training approach aims to achieve two critical

objectives: disentangling task-relevant features from nuisance

factors while enhancing the model’s robustness under diverse

environmental conditions. This objective is formulated as a min-

max optimization problem, defined as:

min
θf

max
θd

Ladv(θf , θd) = −
∑

i∈{A,V ,W}

γi · Lnuis
(

f
(i)
d

(

ff (X,M)
)

,Mi

)

,

(11)

where the variables are defined as follows: θf : Parameters of the

feature extraction network ff , which aims to produce a feature

representation that is invariant to nuisances. θd: Parameters of the

nuisance discriminator networks f
(i)
d
, designed to predict nuisance-

specific information (e.g., altitude A, view angle V , or weather

W) from the extracted features. Lnuis: The nuisance prediction

loss, measuring the discriminators’ ability to predict the nuisance

factorsMi. ff (X,M): The feature extractor’s output given input data

X and metadata M. f
(i)
d
: The discriminator function for nuisance

i ∈ {A,V ,W}, specifically designed to extract nuisance-relevant

information from the features. γi: A hyperparameter that weights

the contribution of each nuisance-specific loss term.

The adversarial loss −Ladv operates as a two-player game

between the feature extractor ff and the nuisance discriminators

f
(i)
d
. The feature extractor minimizes the loss to suppress nuisance-

relevant information, while the discriminators maximize the loss

by attempting to recover this information. The equilibrium of

this min-max game represents a state where the feature extractor

produces a representation that is maximally invariant to nuisances.

θ∗f = argmin
θf

max
θd

Ladv(θf , θd). (12)

From a theoretical perspective, convergence of this adversarial

training process can be interpreted in the context of game theory.

A Nash equilibrium is achieved if the following holds:

Ladv(θ
∗
f , θ

∗
d ) ≤ Ladv(θf , θ

∗
d ) ∀θf , (13)

Ladv(θ
∗
f , θ

∗
d ) ≥ Ladv(θ

∗
f , θd) ∀θd. (14)

At this equilibrium, the feature extractor successfully

minimizes nuisance interference while preserving task-relevant

information, and the discriminators are no longer able to exploit

these features to recover nuisance factors. It is important to note

that achieving such convergence in real-world applications is non-

trivial. Empirical evidence from our experiments demonstrates

robust performance improvements, suggesting approximate

convergence in practical settings. However, establishing rigorous

theoretical guarantees, such as convexity or differentiability of the

loss landscape, remains a challenging area for future exploration.

Further studies could apply advanced tools from optimization
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FIGURE 2

A schematic diagram of the principle of transfer learning.

TABLE 1 Relationship between dataset features and research objectives.

Dataset name Feature description Scale Contribution to research objectives

RefCOCO Accurate object annotation, diverse scenes 142,210 images Test object detection and localization capabilities

CC12M Large-scale image-text matching data, rich text descriptions 12,000,000 pairs Evaluate visual-text modality fusion performance

CC3M Simplified image-text matching data, high-quality image-text pairing 3,000,000 pairs Test model performance retention under limited resources

OpenImages Diverse object categories, complex environmental conditions 9,178,275 images tested robustness to weather and viewpoint changes

theory and adversarial dynamics to derive formal convergence

guarantees. By grounding our methodology in these theoretical

foundations, we aim to provide a comprehensive justification for

the proposed training strategy and its effectiveness in real-world

scenarios.

4 Experiment

4.1 Datasets

In this paper, we use four datasets. The RefCOCOdataset (Chen

et al., 2020) is a benchmark dataset focused on understanding

referential expressions, characterized by precise object annotations

and diverse scenes. This dataset encompasses a rich variety of

object categories and complex visual environments, providing a

reliable foundation for testing the performance of the NavBLIP

model in object detection and localization tasks. Experiments

on this dataset allow us to assess whether the model can

accurately recognize targets and effectively locate them in complex

environments. The CC12M dataset (Changpinyo et al., 2021) is

a large-scale image-text matching dataset, containing over twelve

million pairs of images and textual descriptions, widely used to

test the model’s multimodal learning capabilities. The core feature

of this dataset is its rich textual information and visual content,

which helps the model perform well in understanding visual-

text relationships. Due to its large scale and complex content, it

provides an ideal scenario for NavBLIP to test its performance

in handling large-scale, multimodal data. The CC3M dataset

(Wang A. J. et al., 2023) is a streamlined version of CC12M,

containing approximately three million pairs of high-quality

image-text data. Despite its smaller scale, its high-quality pairing

and diversity still make it a key dataset for testing the model’s ability

to maintain performance. Especially in situations with limited

computational resources, CC3M can effectively evaluate NavBLIP’s

generalization abilities and applicability on smaller datasets. The

OpenImages dataset (Kuznetsova et al., 2020), known for its broad

coverage, diverse categories, and complex environments, becomes

a key dataset for testing the model’s robustness. This dataset

includes various object categories and complex environmental

conditions, such as different weather conditions and changes

in perspectives, providing a challenging scenario for testing the

performance of the NavBLIP model. Experiments on this dataset

can verify the model’s adaptability and stability when facing

complex scenes and diverse tasks. By combining the experimental

results from these four datasets, we can not only comprehensively

assess NavBLIP’s capabilities in object detection, modal fusion,

performance maintenance, and robustness, but also delve into its

potential and limitations in practical applications (Table 1).
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4.2 Experimental setup

The experiments were carefully designed to simulate realistic

UAV operations in various environments, ensuring that the

evaluation of NavBLIP is comprehensive and replicates real-world

scenarios. The datasets were split into training, validation, and

testing sets. Specifically, for each dataset, 70% of the images were

allocated to the training set, 15% to the validation set, and the

remaining 15% for testing. This split ensured that the model

was trained on a sufficiently large portion of the dataset while

still having enough samples for robust validation and testing

phases. The model was trained using the PyTorch framework, with

training performed on an NVIDIA A100 GPU cluster. The training

utilized a batch size of 64 images, and the model parameters were

optimized using the AdamW optimizer with an initial learning

rate of 1 × 10−4, which was scheduled to decay by a factor

of 0.1 after every 10 epochs. The training ran for a total of 30

epochs, during which the best model was selected based on its

performance on the validation set, specifically focusing on the

accuracy and F1 score for object detection tasks. To prevent

overfitting, early stopping was employed with a patience threshold

of five epochs, meaning that training was halted if no improvement

in validation performance was observed for five consecutive

epochs. We also applied standard data augmentation techniques,

including random horizontal flipping, color jittering, and random

cropping, to increase the model’s robustness to variations in visual

inputs.

The model architecture used for the experiments was pre-

initialized with weights from pre-trained models on the CC12M

and OpenImages datasets, allowing for faster convergence

and enhanced generalization through transfer learning. The

model was fine-tuned on the RefCOCO dataset to ensure

it adapts to specific object detection and navigation tasks

relevant to UAV applications. For evaluation, we considered

multiple metrics, including Training Time (S), Inference

Time (ms), Parameters (M), FLOPs (G), Accuracy, Recall,

and F1 Score. These metrics provide a holistic view of the

model’s efficiency, computational overhead, and predictive

accuracy, which are critical in real-world UAV deployment

scenarios. Inference was carried out on an NVIDIA V100 GPU

to simulate real-time UAV operations where computational

resources are often constrained. Additionally, FLOPs were

calculated to assess the computational cost, while Accuracy,

Recall, and F1 Score were computed to evaluate the detection

performance across different environmental conditions

(Algorithm 1).

Training Time (S): The total time (in seconds) required to train

the model.

Inference Time (ms): The time taken (in milliseconds) by the

model to make a prediction during inference.

Parameters (M): The total number of trainable parameters in

the model, usually measured in millions.

FLOPs (G): The number of floating point operations (FLOPs)

required for a single forward pass through the model. This is

measured in billions of FLOPs.

FLOPs = 2× (MACs) (15)

Input: Datasets: RefCOCO, CC12M, CC3M, OpenImages

Output: Trained Model, Evaluation Metrics

Initialize NavBLIP with pre-trained weights from

CC12M and OpenImages;

Set learning rate α = 1× 10−4;

Set batch size B = 64;

Set maximum epochs E = 30;

Set patience for early stopping P = 5;

Initialize AdamW optimizer with learning rate α;

Split datasets: Training set Ttrain = 70%,

Validation set Tval = 15%, Test set Ttest = 15%;

for epoch e = 1 to E do

for each batch b in Ttrain do

Get images Xb and labels Yb;

Apply data augmentation: random horizontal

flip, color jitter, random crop;

Forward pass: Ob = NavBLIP(Xb);

Compute loss Lb = 1
B

∑B
i=1 L(O

(i)
b

,Y
(i)
b

);

Backpropagation: update weights using AdamW

optimizer;

end

if epoch e mod 10 == 0 then

Decay learning rate α = α × 0.1;

end

Evaluate on Tval to get validation accuracy

Accval, Recall Recval, Precision Precval, and F1

Score F1val;

if no improvement in F1val for P consecutive

epochs then

Break;

end

end

Select best model based on F1val;

while testing on Ttest do

for each batch b in Ttest do

Get images Xb and labels Yb;

Forward pass: Ob = NavBLIP(Xb);

Compute Accuracy Acctest, Recall Rectest,

Precision Prectest, and F1 Score F1test;

end

end

Compute final metrics:

Acctest =
1

N

N
∑

i=1

1(Oi == Yi)

Rectest =
TP

TP+ FN

Compute Training Time Ttrain, Inference Time Tinf,

Parameters Pmodel, and FLOPs Fmodel;

Algorithm 1. Training procedure for NavBLIP model.

where MACs denotes Multiply-Accumulate operations.
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Accuracy: The ratio of correct predictions to the total number

of predictions made by the model.

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(16)

where, TP: true positives; TN: true negatives; FP: false positives; FN:

false negatives.

Recall: The proportion of actual positives correctly identified by

the model.

Recall =
TP

TP+ FN
(17)

F1 Score: The harmonic mean of Precision and Recall.

F1 Score = 2×
Precision× Recall

Precision+ Recall
(18)

where:

Precision =
TP

TP+ FP
(19)

Area Under the Curve (AUC) is an important indicator for

evaluating the performance of classification models. It measures

the model’s ability to distinguish between positive and negative

samples. In binary classification problems, AUC is usually

associated with the Receiver Operating Characteristic (ROC) curve,

which represents the area under the ROC curve and ranges from 0

to 1. The calculation formula of AUC is as follows:

AUC =

∫ 1

0
TPR(FPR) d(FPR) (20)

Where:

• TPR represents the true positive rate, and the calculation

formula is:

TPR =
TP

TP + FN
(21)

• FPR represents the false positive rate, and the calculation

formula is:

FPR =
FP

FP + TN
(22)

In the above formula, TP, FN, FP, TN represent the number

of true positive examples, false negative examples, false positive

examples, and true negative examples, respectively. The closer the

AUC value is to 1, the stronger the model’s ability to distinguish

is. In this experiment, AUC was selected as the evaluation metric

to comprehensively evaluate the performance of the model in

processing unbalanced data sets and under different decision

thresholds.

4.3 Experimental results and analysis

In Table 2 and Figure 3, we present a comprehensive

comparison that demonstrates the clear advantages of our

TABLE 2 Performance comparison of models on RefCOCO and CC12M

datasets.

Model Accuracy Recall F1 Score AUC

RefCOCO dataset

Chen et al. (2021) 86.23± 0.02 85.36± 0.02 86.20± 0.02 88.37± 0.02

Tao et al. (2020) 95.94± 0.02 92.44± 0.02 88.11± 0.02 89.32± 0.02

Nicora et al. (2021) 94.26± 0.02 87.02± 0.02 86.82± 0.02 89.23± 0.02

Evjemo et al. (2020) 88.00± 0.02 91.40± 0.02 85.41± 0.02 91.07± 0.02

Conti et al. (2022) 94.02± 0.02 89.29± 0.02 87.15± 0.02 88.03± 0.02

Duan et al. (2024) 96.33± 0.02 92.26± 0.02 86.07± 0.02 89.77± 0.02

Ours 97.60 ± 0.02 94.19 ± 0.02 93.01 ± 0.02 96.69 ± 0.02

CC12M dataset

Chen et al. (2021) 89.83± 0.02 85.15± 0.02 86.14± 0.02 89.15± 0.02

Tao et al. (2020) 91.69± 0.02 87.43± 0.02 86.27± 0.02 86.53± 0.02

Nicora et al. (2021) 91.47± 0.02 89.69± 0.02 86.04± 0.02 86.98± 0.02

Evjemo et al. (2020) 95.68± 0.02 92.41± 0.02 84.56± 0.02 91.92± 0.02

Conti et al. (2022) 91.69± 0.02 93.47± 0.02 86.43± 0.02 86.42± 0.02

Duan et al. (2024) 93.80± 0.02 83.83± 0.02 86.16± 0.02 84.44± 0.02

Ours 97.11 ± 0.02 95.24 ± 0.02 92.83 ± 0.02 96.54 ± 0.02

proposed NavBLIP model over six state-of-the-art (SOTA)

models across all four evaluation metrics when tested on both

the RefCOCO and CC12M datasets. Notably, NavBLIP attains an

impressive accuracy of 97.6% on the RefCOCO dataset and 97.11%

on the CC12M dataset, both of which represent a significant leap

in performance compared to the next best model by Duan et al.,

which achieves 96.33% on RefCOCO and 93.8% on CC12M. These

results emphasize NavBLIP’s superior capabilities in both object

detection and navigation, making it particularly well-suited for

complex Unmanned Aerial Vehicle (UAV) applications. In these

multimodal settings, where accurate and efficient processing of

both visual and metadata inputs is critical, NavBLIP proves its

robustness and adaptability. A key strength of NavBLIP lies in its

ability to handle diverse multimodal inputs with high precision, a

vital factor in UAV navigation tasks that require real-time object

detection and decision-making. This is especially important in

scenarios where UAVs must operate in dynamic and unpredictable

environments. The integration of the Neural Inference-based

Multimodal Feature Extraction (NIMFE) module significantly

enhances NavBLIP’s ability to extract relevant information from

both visual and metadata streams, ensuring accurate navigation

and object detection even in challenging conditions. Moreover,

the use of transfer learning allows NavBLIP to generalize across

different datasets and environments with minimal degradation

in performance, making it an ideal model for real-world UAV

operations. The robustness and versatility of NavBLIP not only

elevate it above competing models but also position it as a leading

solution for advanced UAV applications that demand high accuracy

and reliability.

In Table 3 and Figure 4, we compare the computational and

inference efficiency of NavBLIP with other SOTA models on the
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FIGURE 3

Performance comparison of models on RefCOCO and CC12M datasets.

TABLE 3 Comparison of computational and inference e�ciency on CC3M (Wang A. J. et al., 2023) and OpenImages datasets (Kuznetsova et al., 2020).

Method Parameters (M) Flops (G) Inference time (ms) Training time (s)

CC3M dataset (Wang A. J. et al., 2023)

Chen et al. (2021) 272.69± 0.02 267.74± 0.02 374.73± 0.02 219.88± 0.02

Tao et al. (2020) 352.24± 0.02 343.29± 0.02 311.60± 0.02 207.71± 0.02

Nicora et al. (2021) 398.93± 0.02 326.70± 0.02 375.99± 0.02 303.47± 0.02

Evjemo et al. (2020) 375.51± 0.02 229.73± 0.02 350.06± 0.02 232.25± 0.02

Conti et al. (2022) 283.37± 0.02 312.18± 0.02 390.15± 0.02 204.67± 0.02

Duan et al. (2024) 210.06± 0.02 294.54± 0.02 221.36± 0.02 316.21± 0.02

Ours 212.09 ± 0.02 173.42 ± 0.02 159.02 ± 0.02 211.35 ± 0.02

OpenImages dataset (Kuznetsova et al., 2020)

Chen et al. (2021) 240.16± 0.02 388.39± 0.02 306.34± 0.02 235.84± 0.02

Tao et al. (2020) 311.15± 0.02 340.01± 0.02 366.96± 0.02 338.58± 0.02

Nicora et al. (2021) 320.70± 0.02 280.80± 0.02 374.69± 0.02 293.86± 0.02

Evjemo et al. (2020) 224.79± 0.02 373.83± 0.02 364.05± 0.02 300.24± 0.02

Conti et al. (2022) 370.56± 0.02 356.63± 0.02 232.82± 0.02 201.71± 0.02

Duan et al. (2024) 351.17± 0.02 234.00± 0.02 277.39± 0.02 336.01± 0.02

Ours 128.09 ± 0.02 187.08 ± 0.02 140.51 ± 0.02 184.37 ± 0.02

CC3M and OpenImages datasets. NavBLIP achieves the lowest

number of parameters (212.09M and 128.09M) and the fewest

FLOPs (173.42G and 187.08G) on the CC3M and OpenImages

datasets, respectively, indicating that our model is highly efficient

in terms of computational complexity. Compared to Chen et al.’s

model, which has 272.69M parameters and 267.74G FLOPs on

the CC3M dataset, NavBLIP reduces the computational load

by more than 20%. Furthermore, NavBLIP achieves the fastest

inference times, with 159.02 ms on the CC3M dataset and 140.51

ms on the OpenImages dataset, which are significantly lower

than all other models. For instance, Tao et al.’s model has an

inference time of 311.60 ms on the CC3M dataset, which is nearly

double that of NavBLIP. This computational efficiency makes

NavBLIP well-suited for real-time UAV applications, where quick
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FIGURE 4

Comparison of computational and inference e�ciency on CC3M and OpenImages datasets.

decision-making and response times are critical. Additionally,

the training times are also competitive, with NavBLIP achieving

the fastest training times compared to other models on both

datasets. The results highlight the effectiveness of the NIMFE

module and transfer learning in reducing model complexity

without sacrificing performance. This reduction in computational

overhead enables NavBLIP to be deployed on resource-constrained

UAV systems, making it ideal for real-time object detection and

navigation tasks.

In Table 4 and Figure 5, we conduct an ablation study to

evaluate the importance of various components in NavBLIP on

the CC3M and OpenImages datasets. The full model achieves the

highest performance across all metrics, with an accuracy of 97.09%

and 97.68% on the CC3M and OpenImages datasets, respectively.

When the NIMFE module is removed, the performance drops

significantly, with accuracy falling to 90.79% on the CC3M

dataset and 90.76% on the OpenImages dataset. This indicates

that the NIMFE module plays a critical role in handling

nuisance factors such as weather and altitude, enabling the

model to focus on task-relevant features and improve object

detection accuracy. When the PGMAS (Prior Guided Multimodal

Attention Strategy) module is removed, the accuracy drops to

94.1% on the CC3M dataset and 88.18% on the OpenImages

dataset. This shows that the PGMAS module is essential for

efficiently integrating multimodal inputs, such as visual features

and flight metadata. Without PGMAS, the model struggles to

combine these inputs effectively, resulting in reduced performance.

The transfer learning mechanism also proves to be crucial, as

its removal leads to a noticeable drop in performance, with

accuracy falling to 86.97% on the CC3M dataset and 86.08%

on the OpenImages dataset. This demonstrates that transfer

learning enables NavBLIP to generalize well across different

datasets and environments, enhancing its adaptability to new tasks

and conditions.

TABLE 4 Ablation study: performance of di�erent components of

NavBLIP on CC3M and OpenImages datasets.

Model Accuracy Recall F1 score AUC

CC3M Dataset

w/o NIMFE 90.79± 0.02 91.05± 0.02 84.29± 0.02 87.01± 0.02

w/o PGMAS 94.1± 0.02 86.47± 0.02 86.98± 0.02 89.49± 0.02

w/o Transfer

Learning

86.97± 0.02 91.72± 0.02 89.35± 0.02 89.58± 0.02

Ours 97.09 ± 0.02 94.82 ± 0.02 93.8 ± 0.02 91.6 ± 0.02

OpenImages dataset

w/o NIMFE 90.76± 0.02 91.37± 0.02 90.77± 0.02 87.99± 0.02

w/o PGMAS 88.18± 0.02 86.92± 0.02 85.91± 0.02 86.26± 0.02

w/o Transfer

Learning

86.08± 0.02 86.03± 0.02 84.65± 0.02 91.5± 0.02

Ours 97.68 ± 0.02 94.16 ± 0.02 93.99 ± 0.02 93.72 ± 0.02

In Table 5 and Figure 6, we evaluate the computational

efficiency of NavBLIP and its components through an ablation

study on the RefCOCO and CC12M datasets. The full model

achieves the best results in terms of both computational efficiency

and inference speed. NavBLIP, in its full form, requires 105.68M

parameters on the RefCOCO dataset and 153.89M parameters

on the CC12M dataset, along with the fewest FLOPs and fastest

inference times. When the NIMFEmodule is removed, the number

of parameters increases significantly to 207.00M on RefCOCO and

299.67M on CC12M, indicating that the NIMFE module optimizes

the model’s capacity by focusing on task-relevant features.

Similarly, removing the PGMAS module leads to an increase in

FLOPs and training time, further emphasizing the importance

of multimodal attention in reducing computational overhead.
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FIGURE 5

Ablation study: performance of di�erent components of NavBLIP on CC3M and OpenImages datasets.

TABLE 5 Ablation study: computational e�ciency of di�erent components of NavBLIP on RefCOCO and CC12M datasets.

Method Parameters (M) Flops (G) Inference time (ms) Training time (s)

RefCOCO dataset

w/o NIMFE 207.00± 0.02 249.72± 0.02 279.29± 0.02 336.76± 0.02

w/o PGMAS 232.71± 0.02 315.93± 0.02 324.62± 0.02 219.05± 0.02

w/o Transfer learning 304.81± 0.02 234.90± 0.02 391.16± 0.02 203.39± 0.02

Ours 105.68 ± 0.02 125.90 ± 0.02 148.49 ± 0.02 150.20 ± 0.02

CC12M dataset

w/o NIMFE 299.67± 0.02 230.22± 0.02 231.71± 0.02 264.60± 0.02

w/o PGMAS 361.93± 0.02 391.74± 0.02 318.07± 0.02 219.96± 0.02

w/o Transfer learning 335.65± 0.02 291.47± 0.02 389.34± 0.02 223.65± 0.02

Ours 153.89 ± 0.02 172.69 ± 0.02 228.74 ± 0.02 134.09 ± 0.02

Removing the transfer learning mechanism also increases the

number of parameters and FLOPs, suggesting that transfer learning

helps the model leverage pre-trained knowledge and reduces the

need for extensive training from scratch. Overall, these results

demonstrate that each component of NavBLIP contributes to

improving both its computational efficiency and performance,

making it suitable for deployment in real-time UAV applications.

To validate the necessity of using separate transformations

(f (A), f (V), f (W)) for each type of nuisance (altitude, view angle,

and weather), we conducted a comprehensive ablation study.

The objective of this experiment was to assess the impact

of separate transformation modules compared to a unified

transformation module or no transformation module at all.

This study aimed to determine whether treating nuisances

independently could provide measurable performance advantages,

especially in handling complex environmental conditions. We

designed three configurations for this evaluation: (1) Separate

Transformation Modules, where each nuisance is processed

using a dedicated transformation module tailored to its specific

characteristics; (2) Unified Transformation Module, where a

single module processes all nuisances collectively; and (3) No

Transformation Module, where no explicit nuisance handling is

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1513354
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2024.1513354

FIGURE 6

Ablation study: computational e�ciency of di�erent components of NavBLIP on RefCOCO and CC12M datasets.

TABLE 6 Ablation study results: performance of di�erent transformation settings on RefCOCO and CC12M datasets.

Setting Dataset Accuracy (%) F1 score (%) AUC (%)

Separate transformation modules (f (A) , f (V) , f (W)) RefCOCO 97.6± 0.02 93.8± 0.03 96.7± 0.01

Separate transformation modules (f (A) , f (V) , f (W)) CC12M 97.1± 0.01 92.8± 0.03 96.5± 0.02

Unified transformation module RefCOCO 94.1± 0.03 86.9± 0.02 89.5± 0.01

Unified transformation module CC12M 91.8± 0.02 85.9± 0.01 86.3± 0.03

No transformation module RefCOCO 90.8± 0.01 84.3± 0.02 87.0± 0.03

No transformation module CC12M 90.7± 0.03 84.6± 0.01 86.0± 0.02

applied. The performance of these configurations was measured

on the RefCOCO and CC12M datasets using key metrics including

Accuracy, F1 Score, and AUC.

The results, summarized in Table 6, demonstrate the clear

benefits of separate transformation modules. The Separate

Transformation Modules configuration achieved the highest

performance across all metrics. For instance, on the RefCOCO

dataset, it recorded an Accuracy of 97.6% and an AUC of

96.7%, while on the CC12M dataset, it achieved an Accuracy of

97.1% and an AUC of 96.5%. This highlights the effectiveness of

handling nuisances independently, as it allows the model to better

capture nuisance-specific variations and produce robust feature

representations. In contrast, the Unified Transformation Module

configuration resulted in significantly lower performance, with

Accuracy dropping to 94.1% and AUC to 89.5% on the RefCOCO

dataset. Similarly, the No Transformation Module configuration

performed the worst, with Accuracy reduced to 90.8% on

RefCOCO and 90.7% on CC12M. These findings confirm the

importance of explicitly addressing nuisance factors and validate

our design choice to employ separate transformation modules.

Moreover, the cross-modal attention mechanism integrated into

our framework further ensures that interactions between nuisances

are effectively captured, enhancing the model’s adaptability to real-

world environments.

5 Conclusion and discussion

in this work, we aimed to address the challenges of UAV-based

navigation and object detection in dynamic environments by

proposing NavBLIP, a novel visual-language model that integrates

multimodal inputs with advanced feature disentanglement

techniques. UAVs often face difficulties due to nuisances such

as varying altitudes, weather conditions, and complex object

detection tasks. To overcome these challenges, NavBLIP combines

the Nuisance-Invariant Multimodal Feature Extraction (NIMFE)

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1513354
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2024.1513354

module, Prior Guided Multimodal Attention Strategy (PGMAS),

and transfer learning techniques to enhance robustness and

adaptability. These components allow the model to disentangle

task-relevant features from nuisances and effectively integrate

metadata such as altitude and weather for better object detection

and navigation. The experiments were designed to evaluate the

performance of NavBLIP on four diverse datasets: RefCOCO,

CC12M, CC3M, and OpenImages. Results demonstrated that

NavBLIP consistently outperforms six state-of-the-art models

across all key metrics, including accuracy, recall, F1 score, and

AUC. The ablation studies further highlighted the importance

of each component in improving both model performance

and computational efficiency. NavBLIP exhibited significant

improvements in inference time and parameter efficiency, making

it suitable for real-time UAV applications. However, two notable

limitations remain. First, while NavBLIP achieves state-of-the-art

performance, it still requires substantial computational resources

for training, which may limit its applicability in resource-

constrained environments. Second, despite the model’s robustness

to a variety of conditions, its performance on highly complex,

unseen environments could be further improved with more

adaptive learning mechanisms. In the future, we plan to explore

lightweight versions of NavBLIP, incorporating more efficient

model compression techniques to reduce training overhead.

Additionally, integrating meta-learning approaches could allow

NavBLIP to adapt more quickly to unseen environments, further

enhancing its applicability in real-world UAV operations.
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