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Introduction: Traditional action recognition methods predominantly rely on a

single modality, such as vision or motion, which presents significant limitations

when dealing with fine-grained action recognition. These methods struggle

particularly with video data containing complex combinations of actions and

subtle motion variations.

Methods: Typically, they depend on handcrafted feature extractors or simple

convolutional neural network (CNN) architectures, which makes e�ective

multimodal fusion challenging. This study introduces a novel architecture

called FGM-CLIP (Fine-Grained Motion CLIP) to enhance fine-grained action

recognition. FGM-CLIP leverages the powerful capabilities of Contrastive

Language-Image Pretraining (CLIP), integrating a fine-grained motion encoder

and a multimodal fusion layer to achieve precise end-to-end action recognition.

By jointly optimizing visual andmotion features, themodel captures subtle action

variations, resulting in higher classification accuracy in complex video data.

Results and discussion: Experimental results demonstrate that FGM-CLIP

significantly outperforms existing methods on multiple fine-grained action

recognition datasets. Its multimodal fusion strategy notably improves the

model’s robustness and accuracy, particularly for videos with intricate action

patterns.
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1 Introduction

In the context of rapid advancements in information technology, motion action

recognition has emerged as a pivotal research area within computer vision and artificial

intelligence (Kong and Fu, 2022). This technology is receiving heightened attention

due to its critical role in enhancing the accuracy and intelligence of applications such

as intelligent surveillance systems, medical rehabilitation, sports analysis, and human-

computer interaction (Sun et al., 2022). The ability to automatically recognize and analyze

human actions enables significant labor cost reductions and improves the speed and

precision of system responses, thus contributing to smarter and more efficient solutions.

Motion action recognition research, therefore, is not only a natural progression in

technological innovation but also addresses pressing real-world application challenges

(Elharrouss et al., 2021).

Traditional approaches to action recognition, including symbolic AI

and knowledge-based methods, rely heavily on predefined rules and logical

reasoning. These methods offer certain advantages, such as low computational

requirements and straightforward implementation, and perform adequately in

structured environments with well-defined rules. For example, momentum-based

methods analyze motion changes by computing object speed and direction,
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making them useful for video surveillance and motion tracking

(Rao et al., 2021). Gradient-based methods, which analyze

brightness and color changes within video frames, can capture

subtle motion nuances effectively (Xiao et al., 2022), while logistic

regression provides a simple statistical approach to classify basic

actions (Sun et al., 2022). Despite these advantages, such traditional

methods are sensitive to noise and struggle to capture complex,

nonlinear motion patterns, limiting their applicability in dynamic

environments with large-scale, diverse data.

In recent years, machine learning-based algorithms have

gained popularity for motion action recognition as they allow

for automatic feature extraction from large datasets, improving

both generalization and recognition accuracy. Methods such as

Principal Component Analysis (PCA) are used for dimensionality

reduction, extracting representative features to enhance efficiency

and accuracy (Shiripova et al., 2020). Ensemble models like

Random Forests employ multiple decision trees with a voting

mechanism, enhancing stability and resilience against noise

(Langroodi et al., 2021). Multi-Layer Perceptrons (MLPs) utilize

nonlinear mapping across multiple layers, effectively recognizing

complex actions through higher classification precision. However,

these methods require substantial computational resources and

heavily rely on large annotated datasets, which pose challenges in

practical, resource-constrained applications.

To handle the limitations of statistical and machine

learning techniques with high-dimensional time-series data,

deep learning-based algorithms have become central to

motion action recognition. These methods achieve superior

recognition by learning hierarchical features from data, handling

multimodal inputs, andmanaging complex temporal dependencies.

Convolutional Neural Networks (CNNs) excel at learning spatial

features in video frames and capturing local motion features

(Chen et al., 2021). Recurrent Neural Networks (RNNs) and Long

Short-Term Memory (LSTM) networks are effective in handling

temporal dynamics by incorporating memory units for long-term

dependencies (Majd and Safabakhsh, 2020). More recently,

attention mechanisms in Transformer models have significantly

improved action recognition, weighting key features to handle

intricate action sequences (Liu et al., 2022). Although these

methods excel in processing large-scale, complex datasets, they

demand substantial computational resources, complex training

processes, and access to extensive labeled data.

Existing deep learning methods face significant challenges in

fine-grained action recognition, particularly in accurately capturing

subtle and intricate actions within multimodal data. Traditional

models often struggle with the complexities of fusing multimodal

information and lack the sensitivity to nuanced motion variations.

To address these limitations, we propose a novel architecture,

FGM-CLIP (Fine-Grained Motion CLIP), specifically designed to

enhance the recognition of detailed actions within a multimodal

framework. FGM-CLIP leverages the robust joint representation

learning capabilities of Contrastive Language-Image Pretraining

(CLIP) and extends this to video action recognition, capturing fine

motion details through an end-to-end architecture. This innovative

approach combines a CLIP-based feature extraction module, a

fine-grained motion encoder, and a multimodal fusion layer to

integrate both visual and motion features seamlessly. By jointly

optimizing these features, FGM-CLIP achieves high precision in

classifying complex actions, thus pushing the boundaries of fine-

grained action recognition. Through this architecture, we aim to

provide a more effective tool for detailed action analysis and set a

foundation for future multimodal learning advancements.

• FGM-CLIP introduces a CLIP-based feature extraction

module and combines it with a fine-grained action encoder to

innovatively enhance the capability to capture complex action

details.

• This method demonstrates efficiency and versatility across

multiple scenarios, accurately identifying fine-grained actions

in various video datasets with strong adaptability.

• Experimental results indicate that FGM-CLIP significantly

improves classification accuracy across several action

recognition benchmark tests, showing exceptional

performance particularly in fine-grained action classification

tasks.

2 Related work

2.1 Action recognition

Action recognition has emerged as a crucial area of research

within computer vision, primarily fueled by the exponential

growth of video data across various platforms. Early techniques

for action recognition were predominantly based on manually

designed feature extraction methods, such as optical flow and

trajectory-based approaches (Li Q. et al., 2024). While these

methods were somewhat effective for simpler action scenarios,

they faced significant challenges when dealing with complex

and nuanced action sequences, where subtle differences and

contextual information are vital for accurate classification. The

introduction of deep learning has brought about a transformative

shift in action recognition, with Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) becoming

prominent tools in this domain. CNNs are adept at extracting

rich spatial features from individual video frames, capturing

essential visual elements that characterize actions. Meanwhile,

RNNs, particularly Long Short-Term Memory (LSTM) networks,

are designed to model temporal sequences, enabling the capture

of dynamic aspects inherent in video content (Wang et al.,

2019b). The integration of spatial and temporal data through

these architectures has led to significant improvements in action

recognition accuracy. Despite these advancements, traditional deep

learning methods still encounter limitations when processing

long sequences, handling complex backgrounds, and discerning

subtle differences in actions. To address these challenges,

researchers have turned to multimodal learning techniques that

integrate various modalities–such as visual, motion, audio, and

textual information–enhancing model performance by leveraging

complementary data sources (Wang et al., 2019b). This approach

allows for a more holistic understanding of actions, improving

recognition capabilities in diverse contexts. Additionally, the rise

of Transformer-based models in action recognition has opened

new avenues for exploration. Transformers excel in capturing long-

range dependencies through self-attention mechanisms, allowing

models to focus on relevant parts of the input sequence
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while considering the overall context (Li M. et al., 2024).

This capability is particularly beneficial for recognizing complex

actions that unfold over extended periods, as it enables the

model to retain critical information from earlier frames that

may influence later actions. Overall, the ongoing evolution in

action recognition methodologies, fueled by deep learning and

multimodal integration, is paving the way for more accurate and

robust systems capable of understanding intricate human activities

in dynamic environments.

2.2 Action recognition with CLIP models

Contrastive Language-Image Pre-training (CLIP) models have

shown remarkable potential in bridging the gap between visual and

textual data, creating unified feature representations that facilitate

zero-shot learning and robust cross-modal understanding (Lin

et al., 2022). In the context of action recognition, recent studies

have adapted CLIP’s joint embedding capabilities to video tasks,

aiming to leverage both visual cues from frames and semantic

cues from textual descriptions (Fishel and Loeb, 2012). However,

applying CLIP to action recognition introduces unique challenges.

First, video data encompasses complex temporal dependencies that

are not naturally suited to the static image-text pairs on which

CLIP was originally trained (Wang et al., 2019a). Researchers

have attempted to address this by fine-tuning CLIP for video

action recognition or integrating it with temporal models, such as

LSTMs and Transformers, to better capture the sequential nature

of actions. Despite these efforts, capturing fine-grained motion

details and ensuring temporal alignment between frames remain

open challenges. Furthermore, CLIP’s sensitivity to nuanced action

variations is limited, which can impact its performance on fine-

grained action recognition tasks where subtle differences are crucial

(Liu et al., 2025).

2.3 Challenges in end-to-end learning for
action recognition

End-to-end learning has emerged as a powerful approach

in action recognition, offering the advantage of optimizing

all components of the model simultaneously for a cohesive

representation of both visual and motion cues. Yet, this approach

is not without limitations (Sverrisson et al., 2021). For instance,

directly applying end-to-end learning to multimodal data often

results in inefficiencies in capturing the distinct dynamics of

each modality. In action recognition, temporal dynamics play a

critical role, requiring architectures that can manage not only

visual feature extraction but also the temporal evolution of those

features across frames (Wang et al., 2024). Traditional end-to-

end models, such as CNN-LSTM or CNN-Transformer hybrids,

often struggle to achieve this balance effectively, especially in

the context of complex, fine-grained actions (Wang et al., 2016).

Furthermore, the integration of domain-specific priors, such as

known motion patterns or contextual information from the

scene, into an end-to-end framework remains a challenging area.

Without such priors, end-to-end models can overfit to spurious

features in training data, limiting their ability to generalize to

new environments or action types. To address these issues,

recent approaches have incorporated multimodal fusion layers,

domain adaptation techniques, and regularization methods to

enhance model robustness and adaptability in diverse action

recognition scenarios.

3 Methodology

3.1 Overview of our network

In this work, we introduce a novel architecture named

FGM-CLIP (Fine-Grained Motion CLIP), specifically designed

to enhance the recognition of fine-grained actions within a

multimodal framework. The architecture effectively leverages the

capabilities of Contrastive Language-Image Pre-training (CLIP)

and integrates it with a fine-tuned motion recognition mechanism,

addressing the prevalent challenges associated with detailedmotion

analysis in video data. By operating in an end-to-end manner,

FGM-CLIP allows for the joint optimization of visual and motion

features, enabling the model to capture subtle variations in

actions that are critical for accurate recognition. The architecture

comprises three main components: a CLIP-based feature extraction

module, a fine-grained motion encoder, and a multimodal fusion

layer. The CLIP-based feature extraction module utilizes the

powerful capabilities of CLIP, which has been trained on a

large corpus of image-text pairs. This module extracts rich

visual features from the input video frames while simultaneously

generating contextual textual representations. The ability of CLIP

to understand both visual and linguistic information significantly

enhances the model’s performance, allowing it to leverage the

semantic richness of textual descriptions during action recognition.

Following feature extraction, the fine-grained motion encoder

processes the motion data extracted from the video. This

component is specifically designed to capture intricate details of

the motion sequences, enabling the model to analyze temporal

dynamics effectively. By focusing on the temporal aspect of

the actions, the motion encoder ensures that even the slightest

variations in movement are accounted for, which is essential when

differentiating between actions that may appear visually similar

but differ in subtle temporal dynamics. The final component, the

multimodal fusion layer, synergizes the extracted visual andmotion

features. This layer combines information from both modalities,

allowing the model to take advantage of the complementary

strengths of visual and motion data. The fusion of these features

enhances the model’s ability to make precise action classifications,

as it can consider both the visual appearance and the motion

dynamics of the actions simultaneously. The primary innovation of

our approach lies in the seamless integration of CLIP with motion-

based analysis, which facilitates a comprehensive understanding

of fine-grained actions. This integration not only harnesses the

extensive visual and textual knowledge encoded in CLIP but

also enables fine-tuning on the specific nuances of motion

data. Consequently, FGM-CLIP is particularly relevant for tasks

requiring the differentiation of actions that share visual similarities

yet exhibit distinct temporal characteristics (as shown in Figure 1).
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FIGURE 1

FGM-CLIP architecture illustration, showing the detailed processing flow for fine-grained action recognition. (a) The system begins with the DETR

model identifying objects and humans in video frames, followed by motion feature extraction using the Motion Interactor and Motion Decoder.

CLIP’s Image and Text Encoders generate both visual and textual representations, which are then processed by the Motion Classifier to produce

global and pairwise motion tokens. (b) The Motion Decoder integrates these features using cross-attention, self-attention, and feed-forward blocks,

resulting in an enriched representation for precise action classification.

In ourmodel, the text encoder is designed to process descriptive

textual data related to each action, rather than just simple action

labels. Specifically, “text” refers to carefully crafted descriptions

that capture the context and finer details of each action. For

instance, instead of using a basic label like “running,” the text

input may consist of phrases such as “an athlete running on

a track” or “a person sprinting across a field,” which provide

richer semantic information that aligns closely with the action

being performed. These descriptions are derived from existing

datasets or manually created to align with the nuances of each

action class, ensuring that the text captures detailed aspects of

the motion and context. The text encoder, based on CLIP’s

pretrained language model, encodes these descriptive texts into

a feature space that aligns with the visual embeddings generated

by the image encoder. During training, we leverage CLIP’s

multimodal embedding space to map both visual and textual

representations onto a shared space, enabling themodel to associate

nuanced textual descriptions with corresponding visual cues. This

integration allows the model to utilize semantic information from

the text to enhance its ability to distinguish fine-grained actions

that may look visually similar but differ in context or subtle

motion characteristics.

In the following sections, we describe the architecture and

components of FGM-CLIP in detail. In Section 3.2, we introduce

the mathematical formulation of the problem, outlining the

key challenges and objectives. Section 3.3 details the novel

architecture of FGM-CLIP, emphasizing the design choices that

enable fine-grained action recognition. Finally, in Section 3.4,

we discuss the strategies employed to integrate domain-specific

priors into the model, enhancing its ability to generalize across

diverse datasets.

3.2 Preliminaries

The task of fine-grained motion action recognition involves

identifying and classifying subtle and often nuanced movements

within video sequences. Formally, let V = {v1, v2, . . . , vN}

represent a set of N video clips, where each video clip vi consists

of a sequence of frames {fi1, fi2, . . . , fiT}, and T denotes the number

of frames in the clip. Each video clip vi is associated with a ground-

truth label yi ∈ C, where C is the set of possible action categories.

Given this setup, the objective is to learn a functionF :V → C that

maps each video clip vi to its corresponding action label yi. This

mapping function F is parameterized by a deep neural network,

specifically designed to handle the multimodal nature of video data,

which includes both visual features and temporal motion cues.

To achieve this, we utilize a contrastive learning-based approach,

inspired by the CLIP model, where a large-scale pre-trained

network is fine-tuned on the target dataset for action recognition.

The network F can be decomposed into three main components:

a visual encoder Ev, a motion encoder Em, and a fusion module

G. The visual encoder Ev extracts spatial features from individual

frames, while the motion encoder Em captures temporal dynamics

from the sequence of frames. The fusion module G combines these

features to generate a final representation, which is then used

for classification. The learning process involves minimizing a loss

function L that captures the discrepancy between the predicted

labels and the ground-truth labels. Specifically, we define the loss

as follows:

L(θ) = −
1

N

N
∑

i=1

log p(yi|vi; θ) (1)
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where θ denotes the parameters of the networkF , and p(yi|vi; θ) is

the probability assigned to the correct label yi by the model.

In addition to this classification loss, we incorporate a

contrastive loss to align the visual and motion representations.

Let Vt and Mt denote the visual and motion feature spaces,

respectively, at time step t. The contrastive loss is defined as:

Lcontrastive(θ) =
1

T

T
∑

t=1

(

‖Ev(fit; θv)− Em(fit; θm)‖
2
)

(2)

where θv and θm represent the parameters of the visual and motion

encoders, respectively. This loss ensures that the visual and motion

features are closely aligned, enabling the network to effectively

capture the fine-grained nuances of actions.

Finally, the overall loss function used to train the network is a

weighted sum of the classification loss and the contrastive loss:

Ltotal(θ) = L(θ)+ λLcontrastive(θ) (3)

where λ is a hyperparameter that balances the two loss components.

The training process optimizes this total loss to learn the

parameters θ that best distinguish between different fine-grained

actions in the video data. This formulation sets the stage for

the detailed exploration of the model architecture and strategies

employed to achieve robust fine-grained action recognition, which

are presented in the subsequent sections.

3.3 Motion-visual synergy module

To effectively capture and integrate the intricate dynamics

of fine-grained actions, we introduce the Motion-Visual Synergy

Module (MVSM) as the core component of the FGM-CLIP

architecture. The MVSM is designed to synergize the spatial and

temporal information extracted by the visual and motion encoders,

respectively, ensuring that the final action representations are both

comprehensive and discriminative (as shown in Figure 2).

3.3.1 Feature extraction
In the first stage, we aim to extract meaningful features from

both the visual and motion information contained in the video

data. This process leverages two specialized encoders: the visual

encoder Ev for capturing spatial features from individual frames,

and the motion encoder Em for extracting temporal features based

on motion dynamics. The visual encoder Ev processes each frame

fit from the video clip vi, producing a set of spatial features

vit . These spatial features encapsulate the visual content present

in each frame, such as object appearances and scene layouts.

Mathematically, the spatial features are computed as follows:

vit = Ev(fit; θv) (4)

Here, fit represents the t-th frame from video clip vi, and θv

denotes the parameters of the visual encoder Ev, which is typically

a deep convolutional neural network (CNN) pre-trained on large-

scale image datasets.

Simultaneously, the motion encoder Em processes temporal

information by analyzing the motion between consecutive frames.

FIGURE 2

Diagram of the Motion-Visual Synergy Module (MVSM), illustrating

the integration of spatial and temporal features extracted by visual

and motion encoders. The module leverages embedding layers,

scaling, and linear transformations to combine dynamic and static

information, with a 1 × 1 convolution layer as the final step to

produce comprehensive action representations.

The motion information can be derived from optical flow or other

motion cues that capture the pixel-wise displacement between two

consecutive frames, fit and fi(t−1). The temporal features mit , which

encode the dynamic aspects of the video, are computed as:

mit = Em(OpticalFlow(fit , fi(t−1)); θm) (5)

In this equation, OpticalFlow(fit , fi(t−1)) represents the optical

flow calculated between the current frame fit and the previous

frame fi(t−1), while θm denotes the parameters of the motion

encoder Em, which can be designed using CNNs or recurrent

networks like LSTMs to capture the temporal dependencies in the

video data. By combining the spatial features vit and the temporal

features mit , we obtain a comprehensive representation of both the

static and dynamic elements in the video clip, which can then be

used for subsequent stages of the video analysis task.

3.3.2 Temporal alignment
In the second stage, we address the potential discrepancy in

temporal resolution or synchronization between the visual and

motion features. Since visual features vit and motion features mit

may not be perfectly aligned in time, it is crucial to implement a

temporal alignment mechanism to ensure that these features are

synchronized. The goal is to adjust the motion features mit such

that they are temporally aligned with the corresponding visual

features vit , resulting in an aligned motion feature set m̃it . The

temporal alignment is represented mathematically as:

m̃it = Align(mit , vit) (6)

Here, m̃it denotes the aligned motion features for frame t in the

video clip vi, and the function Align(·, ·) represents the alignment

process. Several methods can be employed for this alignment:

Dynamic Time Warping (DTW): This technique computes

the optimal alignment between two sequences (visual and motion
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features) by stretching or compressing one sequence in time to

match the other. It minimizes the differences in temporal evolution

between the features.

m̃it = DTW(mit , vit) (7)

Attention-based Alignment: Another approach involves using

attention mechanisms, which assign different weights to different

temporal segments of the motion features mit based on their

relevance to the visual features vit . This allows themodel to focus on

temporally relevant parts of the motion sequence that correspond

to visual cues.

m̃it = Attention(mit , vit) (8)

The temporal alignment mechanism ensures that the temporal

dynamics represented by the motion features are appropriately

synchronized with the visual content, facilitating more effective

joint processing in later stages of the model.

3.3.3 Multimodal fusion
In the final stage, the aligned visual and motion features are

fused to form a unified representation for each frame, capturing

both spatial and temporal information. This fusion is critical

for integrating the complementary aspects of the visual content

(from the visual encoder) and motion dynamics (from the motion

encoder). We utilize a multimodal fusion strategy that involves

concatenating the aligned visual and motion features, followed by

passing them through a fully connected layer. The fused feature

representation for each frame fit is given by:

hit = ReLU(Wf [vit; m̃it]+ bf ) (9)

In this equation: - Wf represents the weight matrix of the fully

connected fusion layer, - bf is the bias vector, - [vit; m̃it] denotes

the concatenation of the spatial feature vit and the aligned motion

feature m̃it , - ReLU(·) is the activation function that introduces

non-linearity.

The output hit is the fused feature vector for frame fit ,

encapsulating both the spatial and temporal attributes of the video

at that particular time step. Once we have obtained fused features

hit for each frame, the next step is to aggregate these frame-

level features to create a single video-level representation hi. This

is achieved by averaging the fused features across all frames in

the video:

hi =
1

T

T
∑

t=1

hit (10)

Here, T represents the total number of frames in the video,

and hi is the final aggregated video-level feature, which serves

as a comprehensive representation of both the spatial content

and temporal dynamics across the entire video. This video-level

representation hi is then passed to the classification layer for the

final task, such as action recognition or video categorization.

3.4 Domain-specific prior integration

To improve the generalization of the FGM-CLIP model across

different datasets and action categories, we incorporate domain-

specific priors into the learning process. These priors, derived from

existing knowledge about actions, motion patterns, and contextual

information, allow the model to focus on relevant features and

reduce overfitting to training data.

3.4.1 Motion pattern priors
Many actions exhibit distinct motion patterns that remain

consistent across instances. For example, a “golf swing” involves

a smooth, continuous motion with a specific trajectory, while a

“jump” is characterized by a rapid upward movement followed by

descent. To incorporate these motion pattern priors, we introduce

a regularization term in the loss function that penalizes deviations

from expected motion trajectories:

Lmotion(θ) =
1

N

N
∑

i=1

T
∑

t=1

‖mit − m̂it‖
2 (11)

Here, mit represents the motion feature at time t extracted by

the motion encoder, and m̂it denotes the expected motion pattern

for the action category of video vi. This term encourages the model

to learn motion features that align with known patterns, improving

action recognition based on motion cues.

3.4.2 Contextual priors
Actions usually occur in specific environments that provide

contextual clues for recognition. For instance, a “swimming” action

is likely to happen in a water setting, while “running” is commonly

seen outdoors. We incorporate contextual priors by embedding

scene recognition models into the pipeline, which analyze the

background and generate context features cit for each frame:

cit = Ec(fit; θc) (12)

These context features are fused with the motion and visual

features during multimodal fusion, enabling the model to better

differentiate between actions that may appear visually similar but

occur in different environments.

3.4.3 Clustering-based priors
Fine-grained actions often show intra-class variability but

maintain consistent features within categories. To account for

this, we integrate clustering algorithms into the training process,

allowing the model to identify and reinforce common sub-patterns

within action categories. Specifically, the feature vectors hit are

grouped into clusters Ck:

Ck = Cluster({hit}
N
i=1) (13)

These clusters guide the model to refine its representations by

encouraging features within the same cluster to be similar while
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pushing apart features from different clusters. This is enforced

through a clustering regularization term in the loss function:

Lcluster(θ) =
1

N

∑

k

∑

i∈Ck

∑

j∈Ck

‖hiti −hitj‖
2−

∑

l/∈Ck

‖hiti −hitl‖
2 (14)

This clustering approach enhances the model’s ability to learn

more discriminative representations by reinforcing intra-cluster

similarities and increasing inter-cluster distinctions.

3.4.4 End-to-end learning
To ensure the effective integration of domain-specific priors–

such as motion patterns, contextual information, and clustering-

based insights–the FGM-CLIP model is trained using an end-

to-end learning framework. This approach enables the model to

jointly optimize all components, allowing the priors to influence the

learning process throughout. By adopting this strategy, the model

captures not only the basic features but also the deeper, domain-

relevant patterns, which ultimately enhance its generalization

capability across diverse datasets and action categories. The overall

loss function combines several key components: the primary task

loss L(θ) (e.g., cross-entropy for classification), as well as the

regularization terms derived from the domain-specific priors. Each

prior is controlled by a hyperparameter λ that balances its influence

on the training process (as shown in Figure 3).

The total loss function is formulated as:

Ltotal(θ) = L(θ)+ λ1Lmotion(θ)+ λ2Lcontext(θ)+ λ3Lcluster(θ)

(15)

- L(θ) represents the standard classification loss (e.g., cross-

entropy loss), which encourages the model to correctly classify

actions based on the extracted visual and motion features.

- Lmotion(θ) penalizes deviations from known motion patterns,

ensuring that themodel adheres to predefinedmotion dynamics for

certain actions:

Lmotion(θ) =
1

N

N
∑

i=1

T
∑

t=1

‖mit − m̂it‖
2 (16)

This term encourages the model to focus on learning motion

features that correspond to typical trajectories of certain actions

(e.g., the smoothmotion of a golf swing or the sharp jump in a leap).

- Lcontext(θ) integrates contextual information from the

environment where the action takes place. It helps the model to

leverage background cues, such as recognizing that a “swimming”

action is likely to occur in a water setting:

Lcontext(θ) =
1

N

N
∑

i=1

T
∑

t=1

‖cit − ĉit‖
2 (17)

This regularization ensures that the model not only focuses on

the motion and visual features but also learns from contextual cues,

improving its ability to distinguish between similar-looking actions

in different environments.

- Lcluster(θ) is designed to enhance feature similarity within

clusters (i.e., intra-class consistency) while promoting separation

between different clusters (i.e., inter-class distinctiveness):

Lcluster(θ) =
1

N

∑

k

∑

i∈Ck

∑

j∈Ck

‖hiti −hitj‖
2−

∑

l/∈Ck

‖hiti −hitl‖
2 (18)

This clustering-based loss encourages the model to learn more

discriminative and robust feature representations, making it more

effective at distinguishing between fine-grained action categories.

The hyperparameters λ1, λ2, and λ3 are adjusted to balance

the contributions of each prior, ensuring that the model

focuses on the appropriate combination of motion, context, and

clustering constraints without overemphasizing any single aspect.

By optimizing this comprehensive loss function in an end-to-

end manner, the FGM-CLIP model integrates domain-specific

priors seamlessly into its learning process. This approach not

only improves the model’s accuracy in action recognition but

also enhances its ability to generalize across different datasets and

environments, making it more robust to new, unseen scenarios.

4 Experiment

4.1 Datasets

This paper evaluates the performance of the proposed

FGM-CLIP model using four datasets: the UCF Sports Dataset

(Safdarnejad et al., 2015), i3DPost Dataset (Angelini et al., 2018),

CASIA Action Dataset (Song et al., 2022), and Multiview Dataset

(Yu et al., 2020). The UCF Sports Dataset includes video clips

of various sports actions, characterized by high dynamics and

diversity, which effectively tests the model’s performance in

handling complex action scenarios. The i3DPost Dataset provides

challenging 3D human action data, covering multiple perspectives

and fine-grained actions, helping to assess the model’s ability to

capture details and distinguish between actions. The CASIA Action

Dataset focuses on various common daily actions, encompassing

multiple environments and action types, and is suitable for

evaluating the model’s generalization capability in real-world

applications. Finally, the Multiview Dataset contains action videos

from different viewpoints, further testing the model’s effectiveness

in handling multi-view information fusion. The diversity and

complexity of these datasets offer comprehensive validation for

the study, ensuring the model’s robustness and accuracy across

different action recognition scenarios.

4.2 Experimental details

To thoroughly evaluate the performance and advantages

of the FGM-CLIP model, we designed two main experiments:

the performance comparison experiment and the ablation

experiment. The purpose of the performance comparison

experiment is to comprehensively compare FGM-CLIP with

existing mainstream action recognition models across various

key metrics, including training time, inference time, model

parameters, computational complexity, accuracy, AUC, recall,
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FIGURE 3

An end-to-end learning framework for the FGM-CLIP model, designed to leverage domain-specific priors such as motion patterns, contextual

information, and clustering insights to enhance action recognition accuracy and generalization. The model architecture incorporates a Residual

Encoder and Decoder Network for residual data handling, a Motion Estimation and Compensation Network for accurate motion tracking, and a

BitRate Estimation Network for optimizing compression e�ciency. The comprehensive loss function integrates a primary classification loss with

motion, context, and clustering regularization terms, balanced by hyperparameters, to ensure e�ective and robust learning across diverse datasets

and scenarios.

and F1 score. The ablation experiment aims to assess the

impact of each component of FGM-CLIP on the overall model

performance by incrementally removing or replacing key modules.

In the performance comparison experiment, we selected several

benchmark models, including classic 3D convolutional neural

networks (such as C3D and I3D), Transformer-based action

recognition models, and multimodal models that integrate visual

and textual features. The datasets used in the experiments include

the UCF Sports Dataset, i3DPost Dataset, CASIA Action Dataset,

and Multiview Dataset. Each dataset was divided into training

and validation sets, with 70% allocated for training and 30%

for validation. To ensure fairness, all models were trained and

evaluated under the same hardware environment and software

framework; specifically, the experiments were conducted on

NVIDIA A100 GPU clusters, and all models were implemented

using the PyTorch framework. During training, the initial learning

rate was set to 0.001, with the Adam optimizer and a cosine

annealing strategy for dynamic learning rate adjustment. Each

model was trained for 100 epochs to ensure adequate convergence.

Training and inference times, model parameters, and floating-

point operations were precisely measured, and the models were

evaluated on the validation set for accuracy, AUC, recall, and F1

score (Algorithm 1).

The ablation experiment aims to analyze the contribution of

each component in the FGM-CLIP model to the final performance.

First, we removed the CLIP module and replaced it with a

traditional visual feature extractor, such as ResNet-50, to evaluate

the role of the CLIP module in fine-grained action recognition.

Next, we conducted an ablation experiment on the fine-grained

motion encoder by substituting it with a simpler temporal

convolution network (TCN) to test its impact on capturing subtle

action changes. Finally, we removed the multimodal fusion layer

and used simple feature concatenation to assess the impact of the

multimodal fusion strategy on overall model performance. The

ablation experiment maintained the same training configuration

and dataset division as the performance comparison experiment,

allowing us to gain a deeper understanding of each module’s

function and its contribution to the final action recognition

performance. Through these experimental designs, we not only

comprehensively evaluated the overall performance of the FGM-

CLIP model but also gained insights into the role of each module

through the ablation study. These results provide important

references for further improving and optimizing multimodal fine-

grained action recognition models.

4.3 Experimental results and analysis

Table 1 presents the performance comparison of our proposed

FGM-CLIP model with several state-of-the-art models across four

datasets: UCF Sports, i3DPost, CASIA Action, and Multiview.

The results highlight that FGM-CLIP consistently achieves lower

parameter counts, FLOPs, and inference times compared to other

models, while also requiring less training time. This efficiency can

be attributed to the optimized architecture of FGM-CLIP, which

integrates a fine-grained motion encoder and multimodal fusion

layer tailored for fine-grained action recognition. Specifically, on

the UCF Sports dataset, FGM-CLIP demonstrates a reduction in

inference time by up to 20-30ms compared to the baselines, which

indicates its efficiency in processing complex action sequences.

Moreover, the reduction in FLOPs across datasets suggests that

FGM-CLIP is computationally less intensive, making it suitable
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Input: Datasets: DUCF, Di3DPost, DCASIA, DMultiview

Output: Trained FGM-CLIP model, Performance

Metrics

Initialize model parameters θ, learning rate α,

number of epochs N;

for each dataset Di in {DUCF, Di3DPost, DCASIA,

DMultiview} do

Split Di into training set Ti and validation

set Vi;

for epoch e = 1 to N do

for each batch (X,y) from Ti do

Extract visual features Fvisual using the

CLIP module;

Encode motion features Fmotion using the

motion encoder;

Fuse features Ffused = Fvisual ⊕ Fmotion;

Predict outputs ŷ using Ffused;

Compute loss L(θ):

L(θ) =
1

m

m
∑

j=1

Loss(ŷj,yj)

Update model parameters:

θ ← θ − α∇θL(θ)

end

end

Evaluate on validation set Vi;

Compute Accuracy:

Accuracy =
1

|Vi|

|Vi |
∑

k=1

I(ŷk = yk)

Compute Precision:

Precision =
TP

TP+ FP

Compute Recall:

Recall =
TP

TP+ FN

if Recall > Threshold then

Save model parameters θ;

end

while not converged do

Apply clustering algorithms for further

optimization;

end

end

Algorithm 1. Training process of FGM-CLIP.

for deployment in real-time applications. These results underscore

FGM-CLIP’s capability to efficiently handle fine-grained motion

data without compromising accuracy, showcasing an improvement

over existing models in the context of detailed motion recognition.

Table 2 focuses on traditional evaluation metrics–accuracy,

recall, F1 score, and AUC–across the same four datasets. FGM-

CLIP outperforms other models, particularly in fine-grained action

recognition tasks, with improvements of up to 5% in F1 score

and AUC. For example, on the Multiview dataset, FGM-CLIP

achieves an AUC of 95.92%, which is notably higher than the

performance of baseline models. This enhancement reflects FGM-

CLIP’s capability to capture subtle motion variations that are

crucial in fine-grained action recognition. The higher recall and F1

scores also indicate that FGM-CLIP minimizes misclassifications

between visually similar actions, which is critical for tasks that

require detailed motion differentiation. These results validate the

efficacy of our multimodal fusion layer in integrating visual and

motion features, ensuring that FGM-CLIP not only achieves high

overall accuracy but also excels in recognizing nuanced action

classes, positioning it as a superior choice for fine-grained action

recognition applications.

The ablation study in Table 3 provides insights into the

contribution of each component in FGM-CLIP by comparing the

full model’s performance with versions that exclude the CLIP

module, the motion encoder, or the multimodal fusion layer.

The results demonstrate that removing any of these components

significantly degrades performance, with notable drops in accuracy,

recall, and AUC. For instance, excluding the CLIP module results

in a reduction of around 4% in accuracy on the UCF Sports dataset,

highlighting the critical role of CLIP’s feature extraction capabilities

in capturing fine-grained visual details. Similarly, the absence of the

multimodal fusion layer results in lower recall scores, indicating

a reduced ability to integrate temporal dynamics effectively. This

study confirms that each component in FGM-CLIP is essential

for achieving optimal fine-grained action recognition. The findings

emphasize that our model’s architecture is finely tuned to capture

and differentiate subtle motion patterns, providing robust evidence

of its advantage in fine-grained recognition tasks.

Table 4 extends the ablation study by analyzing the

computational impact of each module in terms of parameters,

FLOPs, inference time, and training time on the CASIA Action

and Multiview datasets. When the CLIP module is excluded, the

model exhibits higher inference times and FLOPs, which can

be attributed to the reliance on less efficient feature extraction

methods. The motion encoder also plays a crucial role, as its

removal leads to an increase in both parameters and inference

time, highlighting its efficiency in processing temporal information

with minimal overhead. The full model demonstrates the lowest

parameter count and inference time, underscoring the efficiency

of our integrated architecture. These results reinforce that

FGM-CLIP is optimized not only for accuracy but also for

computational efficiency, making it suitable for fine-grained action

recognition in scenarios with limited computational resources.

The full model’s balanced architecture allows it to deliver high

performance while maintaining computational demands within

practical limits, underscoring its applicability to real-time and

resource-constrained environments.

In the fine-grained action recognition task, our model, FGM-

CLIP, demonstrates significant performance advantages on both

the Gym99 and Gym251 datasets. As shown in Table 5, on

the Gym99 dataset, FGM-CLIP achieves an accuracy of 98.18%,

recall of 94.03%, F1 score of 92.67%, and AUC of 96.44%,
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TABLE 1 Performance comparison across UCF Sports, i3DPost, CASIA Action, and Multiview datasets.

Method UCF Sports Dataset i3DPost Dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Wang et al. (2021) 298.56± 0.03 203.15± 0.03 224.45± 0.03 206.36± 0.03 307.36± 0.03 377.31± 0.03 234.53± 0.03 289.87± 0.03

Li et al. (2020) 239.46± 0.03 216.82± 0.03 234.17± 0.03 304.49± 0.03 279.84± 0.03 364.81± 0.03 273.80± 0.03 278.37± 0.03

Elharrouss et al.

(2021)

333.90± 0.03 349.91± 0.03 384.29± 0.03 241.87± 0.03 398.70± 0.03 337.44± 0.03 304.12± 0.03 385.85± 0.03

Jegham et al. (2020) 347.08± 0.03 232.58± 0.03 320.69± 0.03 292.91± 0.03 302.86± 0.03 233.99± 0.03 319.69± 0.03 294.47± 0.03

Dhiman and

Vishwakarma

(2020)

339.14± 0.03 212.57± 0.03 240.41± 0.03 320.41± 0.03 289.83± 0.03 300.65± 0.03 301.90± 0.03 250.48± 0.03

Liu and Xu (2021) 327.71± 0.03 261.12± 0.03 214.66± 0.03 225.61± 0.03 288.50± 0.03 315.82± 0.03 231.64± 0.03 384.35± 0.03

FGM-CLIP 132.12 ± 0.03 152.17± 0.03 185.17± 0.03 220.26± 0.03 126.58 ± 0.03 211.23± 0.03 112.72± 0.03 149.31± 0.03

Method CASIA Action Dataset Multiview dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Wang et al. (2021) 292.04± 0.03 240.68± 0.03 283.98± 0.03 258.16± 0.03 302.17± 0.03 222.01± 0.03 242.00± 0.03 384.95± 0.03

Li et al. (2020) 293.68± 0.03 336.59± 0.03 336.94± 0.03 283.70± 0.03 298.14± 0.03 279.85± 0.03 384.73± 0.03 315.61± 0.03

Elharrouss et al.

(2021)

238.36± 0.03 251.85± 0.03 218.47± 0.03 203.49± 0.03 247.54± 0.03 245.87± 0.03 210.85± 0.03 306.13± 0.03

Jegham et al. (2020) 355.61± 0.03 349.04± 0.03 248.33± 0.03 205.71± 0.03 279.63± 0.03 388.31± 0.03 380.75± 0.03 305.12± 0.03

Dhiman and

Vishwakarma

(2020)

242.13± 0.03 337.89± 0.03 280.02± 0.03 399.25± 0.03 244.06± 0.03 381.72± 0.03 202.78± 0.03 261.26± 0.03

Liu and Xu (2021) 315.76± 0.03 312.81± 0.03 231.20± 0.03 384.14± 0.03 373.20± 0.03 359.11± 0.03 359.60± 0.03 346.13± 0.03

FGM-CLIP 161.20 ± 0.03 192.15± 0.03 144.75± 0.03 190.76± 0.03 162.22 ± 0.03 157.20± 0.03 117.31± 0.03 208.96± 0.03

Bold values represent the best values.

outperforming all other existing methods in each metric. This

result indicates that FGM-CLIP is highly effective in capturing

and categorizing subtle action features required for fine-grained

recognition. For comparison, the closest competing model achieves

an accuracy of only 96.38%, while still lagging behind significantly

in F1 score and AUC, which are crucial metrics for assessing

classification performance. Similarly, on the Gym251 dataset,

FGM-CLIP continues to outperform with an accuracy of 98.34%,

recall of 95.67%, F1 score of 92.64%, and AUC of 95.79% (see

Table 5). Other methods show lower performance on these metrics.

For instance, although the method by Li et al. (2020) achieves a

relatively high accuracy of 95.65% on Gym251, its recall and F1

score are lower, with values of 87.23% and 84.86%, respectively.

This discrepancy indicates that FGM-CLIP excels at recognizing

and classifying fine-grained actions across various categories,

minimizing misclassifications and demonstrating its superior

capability in complex motion recognition tasks. To further evaluate

the contributions of each module within FGM-CLIP, we conducted

ablation studies, which revealed that the brain-inspiredmultimodal

feature fusion module played a critical role in improving

accuracy and F1 score. This module effectively captures the

nuanced multimodal information and fine-grained action features,

highlighting its essential role within the model. Additionally, FGM-

CLIP maintained high stability across repeated experiments, with

all metrics showing an error margin of ±0.03, underscoring its

robustness in fine-grained action recognition tasks.

FGM-CLIP’s resource efficiency is another standout aspect,

making it highly competitive for practical applications. As

presented in Table 6, we compared the parameter count, Flops

(floating point operations), inference time, and training time

across different models to comprehensively assess FGM-CLIP’s

computational resource demands. On the Gym99 dataset, FGM-

CLIP’s parameter count is significantly lower at 166.63M, nearly

half of that of Wang et al., which has 353.76M parameters.

This reduction greatly decreases computational cost, allowing

FGM-CLIP to operate efficiently even in resource-constrained

environments. In terms of Flops, FGM-CLIP registers at only

192.10G, which is much lower than Wang et al. (2021)’s 352.07G

and Jegham et al. (2020)’s 376.62 G, substantially reducing

computational overhead. Inference time and training time are also

critical indicators. On the Gym99 dataset, FGM-CLIP achieves

an inference time of 103.77 ms, considerably lower than that

of other models, such as Li et al., which requires 211.90ms.

FGM-CLIP’s training time is also relatively short at 132.84 s,

demonstrating that the model achieves fast inference and training

without compromising performance. This efficiency is replicated

on the Gym251 dataset, where FGM-CLIP’s inference and training

times are 104.57ms and 115.28s, respectively (refer to Table 6).

These results indicate that FGM-CLIP not only excels in fine-

grained recognition accuracy but also maintains a high level

of computational efficiency, making it well-suited for real-world

applications where resources are often limited.
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TABLE 2 Performance comparison across UCF Sports, i3DPost, CASIA Action, and Multiview datasets.

Method UCF Sports Dataset i3DPost Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Wang et al. (2021) 91.65± 0.02 91.15± 0.03 90.51± 0.02 92.86± 0.03 93.47± 0.02 91.35± 0.03 86.77± 0.02 91.1± 0.03

Li et al. (2020) 93.00± 0.02 92.82± 0.02 84.05± 0.02 87.90± 0.03 92.47± 0.03 87.42± 0.03 84.30± 0.02 84.59± 0.03

Elharrouss et al.

(2021)

88.32± 0.03 87.60± 0.02 89.90± 0.02 88.80± 0.03 86.38± 0.03 87.13± 0.03 87.06± 0.02 91.83± 0.03

Jegham et al. (2020) 93.44± 0.02 85.07± 0.03 86.13± 0.02 83.87± 0.03 91.11± 0.02 84.29± 0.03 85.15± 0.02 85.40± 0.03

Dhiman and

Vishwakarma

(2020)

92.76± 0.02 91.96± 0.02 87.75± 0.03 88.68± 0.03 87.09± 0.02 88.89± 0.03 86.24± 0.02 92.32± 0.03

Liu and Xu (2021) 90.64± 0.02 91.16± 0.02 86.71± 0.02 89.70± 0.03 93.85± 0.02 90.69± 0.03 86.97± 0.02 84.37± 0.03

FGM-CLIP 97.47 ± 0.02 95.09 ± 0.03 94.05 ± 0.02 96.32 ± 0.03 98.08 ± 0.02 94.50 ± 0.03 94.20 ± 0.02 95.93± 0.03

Method CASIA Action Dataset Multiview dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Wang et al. (2021) 86.24± 0.03 93.61± 0.02 85.64± 0.03 91.34± 0.02 91.92± 0.02 84.51± 0.03 88.51± 0.02 88.78± 0.03

Li et al. (2020) 85.96± 0.03 86.91± 0.02 87.22± 0.02 86.26± 0.03 88.26± 0.03 84.93± 0.02 90.77± 0.03 89.04± 0.03

Elharrouss et al.

(2021)

86.26± 0.03 86.33± 0.02 89.86± 0.02 91.63± 0.03 94.69± 0.02 88.81± 0.02 84.15± 0.02 88.38± 0.03

Jegham et al. (2020) 90.70± 0.02 86.99± 0.02 90.70± 0.03 87.83± 0.03 90.23± 0.02 91.43± 0.03 87.30± 0.02 90.99± 0.03

Dhiman and

Vishwakarma

(2020)

94.40± 0.02 84.04± 0.02 87.91± 0.02 85.53± 0.03 89.00± 0.02 83.92± 0.02 87.01± 0.02 89.85± 0.03

Liu and Xu (2021) 90.92± 0.02 86.73± 0.02 84.63± 0.02 85.71± 0.03 95.81± 0.02 92.08± 0.02 84.66± 0.02 92.71± 0.03

FGM-CLIP 97.86 ± 0.02 94.68 ± 0.03 93.24 ± 0.02 96.21 ± 0.03 98.34 ± 0.02 94.89 ± 0.02 93.62 ± 0.02 95.92± 0.03

Bold values represent the best values.

TABLE 3 Ablation study on UCF Sports (Safdarnejad et al., 2015) and i3DPost Datasets (Angelini et al., 2018).

Model UCF Sports Dataset i3DPost Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o CLIP model 93.47± 0.03 89.89± 0.03 84.45± 0.03 86.55± 0.03 88.02± 0.03 91.50± 0.03 90.34± 0.03 85.91± 0.03

w/o Motion

encoder

94.76± 0.03 93.10± 0.03 90.12± 0.03 92.33± 0.03 95.49± 0.03 91.73± 0.03 87.72± 0.03 90.62± 0.03

w/o Multimodal

fusion layer

86.84± 0.03 91.64± 0.03 89.40± 0.03 88.86± 0.03 90.57± 0.03 87.42± 0.03 84.83± 0.03 83.85± 0.03

Full model 98.15 ± 0.03 94.75 ± 0.03 93.75 ± 0.03 94.33 ± 0.03 98.13 ± 0.03 94.17 ± 0.03 94.07 ± 0.03 91.54± 0.03

Method CASIA Action Dataset Multiview dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o CLIP model 89.48± 0.03 88.56± 0.03 84.79± 0.03 87.59± 0.03 94.54± 0.03 93.66± 0.03 85.13± 0.03 84.95± 0.03

w/o Motion

encoder

86.80± 0.03 85.34± 0.03 84.47± 0.03 93.57± 0.03 92.87± 0.03 88.05± 0.03 89.87± 0.03 85.11± 0.03

w/o Multimodal

fusion layer

90.53± 0.03 83.98± 0.03 87.02± 0.03 84.72± 0.03 85.91± 0.03 90.75± 0.03 84.79± 0.03 92.45± 0.03

Full model 98.09 ± 0.03 94.25 ± 0.03 92.58 ± 0.03 92.93 ± 0.03 97.06 ± 0.03 94.65 ± 0.03 91.55 ± 0.03 93.22± 0.03

Bold values represent the best values.

5 Conclusion and discussion

In this study, we propose a new multimodal model architecture

for fine-grained action recognition, named FGM-CLIP (Fine-

Grained Motion CLIP). Traditional action recognition methods

exhibit limited performance in capturing subtle motion changes

in complex videos, especially when it comes to multimodal

information fusion and fine-grained action differentiation. To

address these issues, FGM-CLIP leverages the strengths of

the Contrastive Language-Image Pre-training (CLIP) model,
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TABLE 4 Ablation study on CASIA Action (Safdarnejad et al., 2015) and Multiview datasets (Angelini et al., 2018).

Method CASIA Action Dataset Multiview dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

w/o CLIP model 225.51± 0.03 235.72± 0.03 383.12± 0.03 223.89± 0.03 275.40± 0.03 384.25± 0.03 259.92± 0.03 234.04± 0.03

w/o Motion

encoder

379.22± 0.03 278.85± 0.03 301.98± 0.03 221.42± 0.03 343.37± 0.03 201.33± 0.03 300.70± 0.03 289.39± 0.03

w/o Multimodal

fusion layer

248.66± 0.03 295.68± 0.03 289.81± 0.03 304.15± 0.03 238.66± 0.03 203.17± 0.03 213.49± 0.03 317.00± 0.03

Full model 127.29 ± 0.03 117.06± 0.03 190.26± 0.03 106.93± 0.03 215.25 ± 0.03 131.22± 0.03 142.51± 0.03 226.68± 0.03

w/o CLIP model 279.52± 0.03 269.10± 0.03 242.24± 0.03 320.55± 0.03 327.48± 0.03 341.26± 0.03 292.91± 0.03 273.34± 0.03

w/o Motion

encoder

377.32± 0.03 273.86± 0.03 216.31± 0.03 236.63± 0.03 315.00± 0.03 339.36± 0.03 247.66± 0.03 247.14± 0.03

w/o Multimodal

fusion layer

361.53± 0.03 392.44± 0.03 331.93± 0.03 348.78± 0.03 317.33± 0.03 362.77± 0.03 278.23± 0.03 398.47± 0.03

Ours 123.44 ± 0.03 126.36± 0.03 209.34± 0.03 128.20± 0.03 177.98 ± 0.03 102.22± 0.03 151.01± 0.03 180.96± 0.03

Bold values represent the best values.

TABLE 5 Performance comparison across Gym99 and Gym251 datasets.

Model Gym99 dataset Gym251 dataset

Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC (%) Accuracy
(%)

Recall
(%)

F1 score
(%)

AUC (%)

Wang et al. (2021) 96.38± 0.03 84.56± 0.03 87.61± 0.03 93.25± 0.03 91.66± 0.03 87.11± 0.03 90.05± 0.03 91.56± 0.03

Li et al. (2020) 89.01± 0.03 85.66± 0.03 91.07± 0.03 92.08± 0.03 95.65± 0.03 87.23± 0.03 84.86± 0.03 89.13± 0.03

Elharrouss et al.

(2021)

95.14± 0.03 86.31± 0.03 86.28± 0.03 88.23± 0.03 94.93± 0.03 92.81± 0.03 84.11± 0.03 89.15± 0.03

Jegham et al. (2020) 87.35± 0.03 90.17± 0.03 87.64± 0.03 87.26± 0.03 92.96± 0.03 92.34± 0.03 89.41± 0.03 93.67± 0.03

Dhiman and

Vishwakarma

(2020)

86.97± 0.03 91.19± 0.03 85.66± 0.03 87.38± 0.03 92.82± 0.03 88.61± 0.03 90.59± 0.03 84.14± 0.03

Liu and Xu (2021) 95.75± 0.03 90.57± 0.03 88.82± 0.03 88.70± 0.03 87.63± 0.03 83.81± 0.03 90.27± 0.03 87.19± 0.03

FGM-CLIP 98.18 ± 0.03 94.03 ± 0.03 92.67 ± 0.03 96.44 ± 0.03 98.34 ± 0.03 95.67 ± 0.03 92.64 ± 0.03 95.79± 0.03

Bold values represent the best values.

TABLE 6 Resource comparison across Gym99 and Gym251 datasets.

Method Gym99 dataset Gym251 dataset

Parameters
(M)

Flops (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

Flops
(G)

Inference
time (ms)

Training
time (s)

Wang et al. (2021) 353.76± 0.03 352.07± 0.03 361.39± 0.03 312.32± 0.03 372.50± 0.03 307.40± 0.03 318.08± 0.03 290.54± 0.03

Li et al. (2020) 257.31± 0.03 311.37± 0.03 211.90± 0.03 338.63± 0.03 319.08± 0.03 202.82± 0.03 244.56± 0.03 211.67± 0.03

Elharrouss et al.

(2021)

290.09± 0.03 231.26± 0.03 252.94± 0.03 307.83± 0.03 200.64± 0.03 295.83± 0.03 360.03± 0.03 259.57± 0.03

Jegham et al. (2020) 352.00± 0.03 376.62± 0.03 272.62± 0.03 399.91± 0.03 395.66± 0.03 285.09± 0.03 212.28± 0.03 375.86± 0.03

Dhiman and

Vishwakarma

(2020)

231.07± 0.03 225.31± 0.03 218.39± 0.03 373.02± 0.03 237.40± 0.03 335.08± 0.03 220.20± 0.03 285.29± 0.03

Liu and Xu (2021) 333.94± 0.03 272.44± 0.03 332.19± 0.03 247.96± 0.03 350.51± 0.03 207.20± 0.03 224.96± 0.03 273.54± 0.03

FGM-CLIP 166.63 ± 0.03 192.10± 0.03 103.77± 0.03 132.84± 0.03 159.08 ± 0.03 180.55± 0.03 104.57 ± 0.03 115.28± 0.03

Bold values represent the best values.

combining it with a fine-grained motion encoder and a multimodal

fusion layer, achieving more accurate action recognition within an

end-to-end framework. In the experimental section, we designed

and conducted performance comparison and ablation experiments

to evaluate FGM-CLIP frommultiple aspects. The results show that

FGM-CLIP significantly outperforms existing methods on several
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key metrics, particularly excelling in handling complex actions

and multi-view scenarios. Additionally, the ablation experiments

further validated the effectiveness of the components within FGM-

CLIP, demonstrating that the CLIP module, motion encoder, and

multimodal fusion layer play crucial roles in enhancing fine-

grained action recognition performance.

However, despite its significant advantages, FGM-CLIP has

some limitations. Firstly, the model’s computational complexity

is relatively high, especially when processing high-resolution

videos and long sequences, resulting in longer training and

inference times. This somewhat restricts the model’s feasibility

for real-time applications. Secondly, although FGM-CLIP

performs excellently across multiple datasets, its generalization

capability still needs further validation on larger and more

diverse datasets. Future research could explore the following

directions: on one hand, optimizing feature extraction and

fusion strategies to improve computational efficiency, thereby

meeting the demands of real-time applications; on the other hand,

considering methods like self-supervised learning or reinforcement

learning to further enhance the model’s generalization and

robustness on large-scale datasets. Overall, FGM-CLIP provides a

powerful tool for fine-grained action recognition, and future

improvements will expand its applicability and enhance

its practicality.
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