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Introduction: In recent years, with advancements in wearable devices and

biosignal analysis technologies, sports performance analysis has become an

increasingly popular research field, particularly due to the growing demand for

real-time monitoring of athletes’ conditions in sports training and competitive

events. Traditional methods of sports performance analysis typically rely on video

data or sensor data for motion recognition. However, unimodal data often fails

to fully capture the neural state of athletes, leading to limitations in accuracy

and real-time performance when dealing with complex movement patterns.

Moreover, thesemethods strugglewithmultimodal data fusion,making it di�cult

to fully leverage the deep information from electroencephalogram (EEG) signals.

Methods: To address these challenges, this paper proposes a "Cerebral

Transformer" model based on EEG signals and video data. By employing an

adaptive attention mechanism and cross-modal fusion, the model e�ectively

combines EEG signals and video streams to achieve precise recognition and

analysis of athletes’ movements. The model’s e�ectiveness was validated

through experiments on four datasets: SEED, DEAP, eSports Sensors, and MODA.

The results show that the proposed model outperforms existing mainstream

methods in terms of accuracy, recall, and F1 score, while also demonstrating

high computational e�ciency.

Results and discussion: The significance of this study lies in providing a

more comprehensive and e�cient solution for sports performance analysis.

Through cross-modal data fusion, it not only improves the accuracy of complex

movement recognition but also provides technical support for monitoring

athletes’ neural states, o�ering important applications in sports training and

medical rehabilitation.

KEYWORDS

EEG signals, sports performance analysis, cross-modal fusion, attention mechanism,

transformer

1 Introduction

The growing need for advanced athletic performance analysis has led to increased

interest in leveraging Electroencephalography (EEG) data for real-time monitoring and

performance enhancement (Cao and Li, 2021). EEG data not only reflects an athlete’s

neural state but also enables real-time tracking of focus, fatigue, and strategy adjustments

during physical activities (Friesen and Park, 2022). Performance monitoring relies not

only on external movement data but also on capturing internal neural dynamics, offering

athletes a more comprehensive and personalized training regimen (Zhang and Jiang,

2020). Moreover, EEG data’s real-time characteristics provide the potential for immediate

feedback during physical activities, helping athletes optimize their techniques while

preventing injuries (Rao and Zhang, 2023). Thus, using EEG data to enhance athletic

performance is not only academically significant but also holds considerable potential in

practical applications such as sports training and rehabilitation (Cote and Whelan, 2021).
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To overcome the limitations of traditional athletic performance

analysis methods that fail to effectively process EEG signals, early

research relied on symbolic AI and knowledge representation.

In these approaches, EEG signals were interpreted as symbolic

information processed through predefined rules or logical

reasoning (Wang and Song, 2021). These methods excelled in

specific scenarios by leveraging structured knowledge, offering

interpretability for certain athletic states. However, symbolic AI

methods are heavily dependent on predefined knowledge bases,

making them inadequate for handling the complex, nonlinear

fluctuations found in EEG signals (Parihar and Acharya, 2021).

Additionally, they struggled with the high-dimensional nature of

EEG data, especially in contexts with individual athlete differences

and diverse movement patterns (Fuentes and Gomez, 2022). To

address the shortcomings of symbolic AI, researchers shifted

toward data-driven methods (Lee and Kang, 2020).

As large-scale EEG datasets became available, data-driven and

machine learning approaches began to dominate. These methods

learn patterns from the data itself, without relying on predefined

rules (Zhang and Zhao, 2021). Statistical models and traditional

machine learning algorithms, such as Support Vector Machines

(SVM), were employed to automatically extract features and classify

EEG data (Li and Zhou, 2022). Compared to symbolic AI, data-

driven methods significantly improved the handling of nonlinear

EEG signals and complex athletic scenarios (Duan and Xiao, 2023).

However, these methods relied onmanual feature extraction, which

did not fully capture all the rich information in EEG data, limiting

performance when dealing with high-dimensional, noisy data (Li

and Sun, 2021). Furthermore, machine learning methods often

struggled with overfitting when data was limited or of lower

quality (Sun and Gu, 2023). In response, deep learning became

a promising solution to further automate feature extraction and

improve accuracy (Gao and Li, 2023).

Deep learning revolutionized EEG signal analysis by providing

automated feature extraction and modeling capabilities,

particularly with Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN) (Roy and Das, 2021). These

models could automatically learn multi-layered features from large

EEG datasets, greatly improving prediction accuracy (Zhang and

Chen, 2023). Additionally, deep learning’s end-to-end training

capability allowed for direct learning from raw EEG signals to

performance prediction, eliminating the need for complex manual

feature design (Li and Wu, 2023). However, deep learning came

with its own set of challenges, including high computational

complexity and a strong dependence on large labeled datasets for

training (Xu and Zhang, 2021). With the rise of pre-trained models,

researchers began to leverage pre-trained deep learning models

and apply transfer learning to EEG data, reducing the reliance on

vast amounts of labeled data (Ma and Tang, 2022). While these

methods enhanced automation and performance, they still faced

challenges when processing multimodal data (such as EEG and

video fusion), and computational complexity remained a barrier to

real-time applications (Shah and Kumar, 2022).

To address these limitations, we propose the Cerebral

Transformer model. This model leverages adaptive attention

mechanisms and cross-modal fusion techniques to effectively

integrate EEG signals with video data, overcoming the

shortcomings of traditional deep learning methods in handling

multimodal data. The model also introduces a pre-trained

Transformer architecture, significantly reducing training

complexity and making it more efficient when processing

large-scale, high-dimensional EEG data.

• Cerebral Transformer integrates cross-modal attention

mechanisms and efficiently fuses EEG and video data,

excelling in multimodal data analysis.

• The method is highly versatile and efficient, suitable for multi-

scenario athletic performance monitoring and capable of real-

time processing of complex EEG and video data.

• Across multiple datasets, Cerebral Transformer outperforms

existing methods in accuracy and recall while significantly

reducing inference time, making it ideal for real-time

applications.

2 Related work

2.1 EEG signals in sports performance

Electroencephalogram (EEG) signals, as a non-invasive tool for

monitoring neural activity, have gained widespread attention in

recent years in the field of sports performance analysis. EEG signals

can reflect athletes’ neural activities, helping to understand changes

in focus, fatigue, and emotional states during physical activities.

Early research mostly focused on using EEG signals in areas such

as emotion analysis, fatigue detection, and neuro-rehabilitation

(Wang et al., 2023). In sports performance analysis, researchers

have begun to integrate EEG signals with motor control theory

to study the relationship between neural activity and movement

patterns. For example, some studies have analyzed athletes’ EEG

signals during competitions to reveal neural network activity

patterns in the brain during complex movements (Neuwirth and

Emenike, 2024). These studies suggest that EEG signals can be used

to monitor athletes’ neural states in real-time, providing insights

for training adjustments and performance improvement (Zong

et al., 2024). However, traditional EEG analysis methods often rely

on handcrafted feature extraction, which is limited by high data

dimensionality and significant noise interference, leading to poor

model generalization. Recently, deep learning applications in EEG

signal processing have increased, with methods like convolutional

neural networks (CNNs) and recurrent neural networks (RNNs)

being used to extract spatiotemporal features from EEG data.

However, these models still face challenges in fusing EEG data

with othermodalities (Pilacinski et al., 2024). Therefore, integrating

EEG signals with other sports data to enhance the comprehensive

understanding of sports performance has become an important

research direction. Cheng C. et al. (2024) employ hierarchical

spatiotemporal transformers to capture regional and global brain

dynamics for emotion recognition, conceptually consistent with the

adaptive attention strategy in ourmodel; Ning et al. (2023) combine

spatial, spectral, and temporal attention with meta-learning to

enhance EEG emotion recognition, complementing the multi-

scale fusion approach in our approach. Jia et al. (2024) introduce

knowledge distillation techniques for heterogeneous multi-layer

representations of sleep staging, inspiring our representation
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refinement approach. These studies provide a broader context for

our work, highlighting the importance of powerful spatiotemporal

attention and multimodal fusion strategies. By situating our model

within these advances, we emphasize how our approach builds on

and extends current approaches. The Introduction has been revised

to reflect these discussions and to establish clearer connections to

existing works, thereby enhancing the relevance and positioning of

our contribution.

2.2 Video and motion sensor data in sports
analysis

Traditional sports analysis methods mainly rely on video data

or motion sensor data, which have been widely used in sports,

human posture recognition, and health monitoring. The advantage

of video data is its ability to capture dynamic movements, and

deep learning methods like CNNs can extract key features such

as posture and movement speed from videos (Minen et al.,

2023). For instance, in human posture estimation, researchers can

process video with multi-scale convolutional neural networks to

efficiently identify key points of an athlete’s body, such as elbows

and knees, and calculate movement trajectories (Yu et al., 2022).

However, video processing often requires significant computational

resources, and performance can degrade when dealing with low-

quality videos (Neuwirth andWhigham, 2023).Motion sensor data,

such as accelerometers and gyroscopes, can provide more precise

information on movement trajectories and acceleration, making

them important for real-time motion monitoring. Traditional

methods often use machine learning models based on statistical

features to analyze these data, but these models typically struggle

to capture complex spatiotemporal dependencies. With the rise

of deep learning, methods like spatiotemporal CNNs (ST-GCNs)

and temporal neural networks (e.g., LSTM) have increasingly

been applied to motion sensor data, significantly improving

recognition accuracy for complex movement patterns (Cheng S.

et al., 2024). However, using video or sensor data alone often leads

to information loss and cannot fully capture the athlete’s internal

neural state. Therefore, cross-modal data fusion has become a key

research trend in this field (Pan J. et al., 2024).

2.3 Cross-modal fusion in sports analysis

As multimodal data becomes more accessible, cross-modal

data fusion techniques have emerged as a crucial direction

in sports performance analysis. Cross-modal fusion aims to

effectively combine data from multiple sources (such as EEG

signals, video, and motion sensor data) to provide a more

comprehensive evaluation of sports performance (Yang et al.,

2024). Traditional cross-modal fusion methods often employ

early fusion or late fusion strategies. Early fusion merges data

from different modalities at the input stage through simple

concatenation or combination, while late fusion combines the

predictions from independently trained models for each modality.

However, these approaches can lead to information loss or

modality inconsistency. Recently, attention-based cross-modal

fusion methods have gained popularity (Neuwirth et al., 2023).

Self-attention mechanisms can dynamically assign weights across

different modalities, enabling efficient information integration.

For example, some studies have introduced multimodal attention

mechanisms in sports performance analysis to fuse EEG and video

features, significantly improving the accuracy of action recognition

(Pilacinski et al., 2024). Additionally, the Transformer model,

known for its success in natural language processing, has been

gradually applied to cross-modal data tasks. By incorporating

global attention mechanisms, Transformers can capture long-

range dependencies between different modalities, making them

particularly suitable for handling spatiotemporally heterogeneous

data like EEG signals and video. As cross-modal fusion technology

continues to evolve, its application in sports performance analysis

will help improve model accuracy and generalization, leading

to comprehensive monitoring and precise analysis of athletes’

conditions (Hu et al., 2021).

3 Methodology

3.1 Overview

The proposed model, referred to as the Cerebral Transformer

for Athletic Performance, aims to enhance the recognition and

analysis of complex athletic movements using EEG data and video

inputs. This model builds upon advanced attention mechanisms,

including multi-scale and hybrid attention, to effectively process

and integrate the diverse temporal and spatial information present

in athletic actions. By leveraging a transformer-based architecture,

themodel is capable of capturing intricate relationships within both

the spatial dimensions of video inputs and the temporal sequences

of EEG signals, thereby enabling a deeper understanding of athletic

performance and related neural activities. The overall data flow of

the model begins with preprocessing of raw EEG signals and video

inputs, followed by feature extraction stages for both modalities.

These extracted features are then passed throughmultiple attention

layers designed to capture both local and global dependencies

across the spatial-temporal domains. The attention mechanisms

used include a hybrid of local self-attention and k-NN attention,

allowing the model to focus on the most relevant segments of

the input data while ignoring noisy or irrelevant information.

Additionally, the model integrates a fusion mechanism to combine

predictions from the separate EEG and video streams, resulting

in more accurate and holistic action recognition (as shown in

Figure 1).

“Cross-modal fusion” refers to the process of integrating

information from multiple modalities, such as EEG and fMRI

data, to leverage complementary features from each modality.

This fusion typically involves aligning and combining the spatial,

temporal, and spectral features extracted from each modality to

enhance model performance. By effectively integrating diverse

types of information, cross-modal fusion can improve the

robustness and accuracy of downstream tasks, such as emotion

recognition or sleep staging, by capturing patterns that may not

be discernible within a single modality alone. “Adaptive attention

mechanism" is a dynamic technique that allows a model to focus

on the most relevant features or regions of the input data during
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FIGURE 1

Cerebral transformer architecture. The data flow starts with video frames processed by ResNet-MC to generate the Global GridToken (G), while the

skeleton data generates a Joint Heat Map to extract Joint MapToken (J). These tokens are concatenated with the Class Token to form the MultiClass

Token Z. After positional encoding, the tokens enter the Cerebral Transformer, which processes them using mechanisms like self-attention, k-NN

attention, and Cross-Modal Attention. Finally, the output is passed through an MLP to produce the final classification result.

different stages of processing. Unlike static attention methods

that assign fixed weights, adaptive attention dynamically adjusts

its focus based on the data and task requirements, enabling the

model to better capture complex spatial-temporal dependencies or

modality-specific features. In our work, this mechanism is designed

to prioritize features across modalities and time steps, allowing for

more effective learning and generalization in EEG-based tasks.

In this section, we provide a detailed breakdown of the model’s

architecture and data flow. Section 3.2 describes the fundamental

data preprocessing steps for EEG and video inputs, focusing on how

raw signals are transformed into actionable features. Section 3.3

explores the core transformer components of the model, including

themulti-scale attentionmechanism designed to handle the varying

durations of athletic actions. Finally, Section 3.4 covers the fusion

strategy employed to combine EEG and video-based predictions

for improved performance. These components are critical to the

model’s ability to adaptively process diverse types of input data and

recognize complex athletic actions in real-time settings.

3.2 Preliminaries

In this work, we address the problem of recognizing and

analyzing complex athletic performance using EEG signals and

video data. Formally, let X = {x1, x2, ..., xT} represent the input

sequence of EEG signals recorded over time, where xt ∈ R
d

denotes the EEG data at time step t and d is the dimensionality

of the EEG signal. Similarly, let V = {v1, v2, ..., vT} denote the

corresponding video frames, where vt ∈ R
h×w×c represents the

frame at time step t, with h, w, and c denoting the height, width,

and number of color channels of the frame, respectively. The

goal is to map these sequences to a set of actions or movement

labels Y = {y1, y2, ..., yT}, where each yt ∈ C corresponds to

one of the possible action classes from a predefined set C. To

solve this problem, we define a model that learns a mapping

f :(X ,V) → Y , where the input consists of both EEG signals

and video frames. The model must take into account both the

spatial information present in the video frames and the temporal

dependencies between consecutive frames and EEG signals. To

do this, we utilize a transformer-based architecture that is well-

suited for capturing both local and global dependencies across

the input data. The core challenge lies in handling the high

dimensionality and multimodal nature of the input. The EEG

data provides temporal information about neural activity, while

the video frames contain spatial and temporal information about

the athlete’s movement. Formally, the input can be represented

as a joint distribution p(X ,V), where X and V are conditionally

dependent on the latent state of the athlete’s actions. The objective

of the model is to maximize the likelihood of the observed

labels, i.e.,

argmax
θ

p(Y|X ,V; θ), (1)

where θ denotes the model parameters.

To achieve this, the model employs a sequence of

operations that include both attention mechanisms and feature

extraction techniques to transform the raw EEG signals and

video frames into a latent representation that is suitable for

classification. Let HEEG ∈ R
T×dh and HVideo ∈ R

T×hv

represent the hidden states for the EEG and video data,

respectively, where dh and hv are the dimensionalities

of the hidden states. These hidden representations are

obtained through a series of linear transformations and

attention-based layers.
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At each time step t, the attention mechanism computes a

context vector ct for both EEG and video data as follows:

cEEGt =

T
∑

j=1

αEEG
t,j hEEGj , cVideot =

T
∑

j=1

αVideo
t,j hVideoj , (2)

where hEEGj and hVideoj represent the hidden states at time step

j, and αEEG
t,j and αVideo

t,j are attention weights that indicate the

relevance of the hidden states at time step j with respect to the

current time step t.

The attention weights are computed using a scaled dot-product

attention mechanism:

αEEG
t,j =

exp
(

qEEGt · kEEGj

)

∑T
j′=1 exp

(

qEEGt · kEEGj′

) ,

αVideo
t,j =

exp
(

qVideot · kVideoj

)

∑T
j′=1 exp

(

qVideot · kVideoj′

) , (3)

where qEEGt , kEEGj , qVideot , and kVideoj are query and key vectors

derived from the EEG and video hidden states, respectively.

The context vectors cEEGt and cVideot are then passed through

a final classification layer that outputs the predicted action labels

for each time step. The overall loss function is defined as the

cross-entropy between the predicted labels and the ground truth

labels:

L = −

T
∑

t=1

∑

c∈C

yt,c log p(yt,c|X ,V), (4)

where yt,c is the ground truth label at time step t for class c, and

p(yt,c|X ,V) is the predicted probability of class c at time step t.

Through this approach, the model is able to learn a joint

representation of EEG and video data that captures both the neural

activity and physical movements of the athlete, ultimately enabling

accurate action recognition and performance analysis.

3.3 Multi-stream module

Building on the foundation laid in the preliminaries, the

proposed model introduces a novel Adaptive Attention-based

Multi-Stream Module to efficiently process the multimodal input

data consisting of EEG signals and video frames. This module

is designed to handle the complexity of both spatial and

temporal dimensions, particularly in the context of recognizing

athletic performance. The module integrates adaptive attention

mechanisms and hierarchical feature extraction layers that are

tailored for the unique characteristics of athletic movements and

neural activity. The module is composed of two parallel streams—

one for EEG signals and the other for video frames—with separate

attention blocks dedicated to each modality. The adaptive attention

mechanism dynamically adjusts the focus on relevant features

based on the task at hand. This is achieved by employing both local

and global attention layers to capture short-term and long-term

dependencies within each modality, followed by a cross-modal

attention block that fuses the features from both streams (as shown

in Figure 2).

3.3.1 EEG stream
The EEG stream processes raw neural signals through a series

of attention layers designed to capture temporal dependencies in

the data. Formally, letHEEG = {h
EEG
1 , hEEG2 , ..., hEEGT } represent the

hidden states of the EEG signal after passing through a temporal

convolutional layer, where T is the number of time steps and

hEEGt ∈ R
dh denotes the hidden representation at time step t.

We employ an adaptive attention mechanism that weighs the

importance of different time steps based on the current state of the

model. The attention weights are computed as:

αEEG
t =

exp
(

qEEGt · kEEGt

)

∑T
t′=1 exp

(

qEEGt′ · k
EEG
t′

)
, (5)

where qEEGt and kEEGt are query and key vectors derived

from the EEG hidden states. The resulting context vector is then

computed as:

cEEGt =

T
∑

j=1

αEEG
t,j hEEGj . (6)

3.3.2 Video stream
Similarly, the video stream processes video frames through a

spatial attention mechanism, followed by temporal attention to

capture the dynamic nature of athletic performance. Let HVideo =

{hVideo1 , hVideo2 , ..., hVideoT } represent the hidden states of the video

frames, where each hVideot ∈ R
hv is the hidden representation of

the video frame at time step t. The spatial attention layer computes

attention weights for each pixel within a frame, enabling the model

to focus on the most relevant areas of the athlete’s movement:

αVideo
t =

exp
(

qVideot · kVideot

)

∑T
t′=1 exp

(

qVideot′ · kVideot′

) , (7)

where qVideot and kVideot are query and key vectors derived from

the video hidden states. The corresponding context vector for the

video data is:

cVideot =

T
∑

j=1

αVideo
t,j hVideoj . (8)

3.3.3 Cross-modal attention
To fully leverage the complementary nature of EEG signals and

video data, we introduce a cross-modal attention block that fuses

the information from both streams. This block is responsible for

aligning the temporal sequences from EEG and video modalities

and discovering cross-modal dependencies that are crucial for
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FIGURE 2

Illustration of the proposed Multi-Stream Module architecture and data flow. The model integrates EEG and video inputs through their respective

encoders, followed by cross-modal fusion and adaptive attention mechanism. Key components such as Cross-Modal Attention Mechanism (CMAM),

convolutional layers, GELU activations, and upsampling are used to process the extracted features and finally obtain the classification output. The

figure gives a detailed overview of the hierarchical and modular structure of the proposed method.

accurate performance analysis. The cross-modal attention weights

are computed by combining the context vectors from both streams:

αCross
t =

exp
(

cEEGt · cVideot

)

∑T
t′=1 exp

(

cEEGt′ · c
Video
t′

) , (9)

where cEEGt and cVideot are the context vectors from the EEG and

video streams, respectively. The final cross-modal context vector is

then computed as:

cCrosst =

T
∑

j=1

αCross
t,j

(

cEEGj + cVideoj

)

. (10)

3.3.4 Final prediction layer
The fused cross-modal representation cCrosst is passed through

a fully connected layer followed by a softmax operation to predict

the final action class for each time step:

p(yt|X ,V) = softmax
(

WCrossc
Cross
t + bCross

)

, (11)

whereWCross and bCross are the learned parameters of the final

prediction layer.

This multi-stream architecture, powered by adaptive attention

mechanisms, enables the model to dynamically adjust its focus

based on the importance of various temporal segments and spatial

regions, thus improving its ability to recognize complex athletic

movements with high precision. By combining EEG and video

inputs in this way, the model leverages the strengths of both

data modalities, ultimately leading to more accurate and robust

performance analysis.

3.4 Performance optimization and training
strategy

To achieve optimal performance and efficiency, the model

employs two critical strategies: a cyclic learning rate schedule and

gradient clipping. These techniques ensure stability during training,

enhance convergence speed, and prevent overfitting, allowing the

model to generalize effectively across various athletic tasks.

3.4.1 Cyclic learning rate schedule
A cyclic learning rate schedule is used to accelerate convergence

and avoid local minima during training. This schedule modulates

the learning rate in a cyclical manner, enabling the model to explore

different regions of the loss landscape early in training while settling

into an optimal solution in the later stages. The learning rate ηt at

time step t is given by:

ηt = ηmin +
1

2
(ηmax − ηmin)

(

1+ cos

(

Tcur

Tmax
π

))

, (12)

where ηmin and ηmax represent the minimum and maximum

learning rates, respectively, and Tcur and Tmax correspond to the

current and total number of iterations in the training cycle. This

schedule promotes better generalization by enabling the model to

periodically adjust its learning rate, escaping local minima and

progressively focusing on fine-tuning in the later training stages.

The cyclical nature of the learning rate allows for more robust
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model training, especially in complex multimodal input scenarios

such as athletic performance analysis, where high variability in

the data can lead to unstable training. By regularly resetting the

learning rate, the model avoids stagnation and maintains flexibility

throughout the learning process.

3.4.2 Gradient clipping
To maintain stability in training deep transformer models,

especially with multimodal inputs, gradient clipping is essential.

This technique limits the magnitude of the gradient updates to

prevent them from growing too large, which can lead to unstable

training dynamics. The clipped gradient g̃t is computed as:

g̃t =
gt

max
(

1,
‖gt‖

τ

) , (13)

where gt is the original gradient at time step t, and τ is

the clipping threshold. This method ensures that the gradients

remain within a controlled range, stabilizing the learning process

and preventing gradient explosion, which is particularly crucial

when dealing with large-scale transformer architectures. Gradient

clipping plays a key role in maintaining the smooth propagation

of updates across multiple layers of the model, ensuring that the

optimization process remains stable even when dealing with highly

complex or noisy input data, such as EEG signals or fast-moving

video frames in athletic performance scenarios. Without gradient

clipping, the model could face divergence or overly aggressive

updates, leading to suboptimal performance.

4 Experiment

4.1 Experimental details

To evaluate the performance of the proposed model, we

conducted experiments on four publicly available datasets: SEED

Dataset (Miller et al., 2014), DEAP Dataset (Tripathi et al., 2017),

eSports Sensors Dataset (Smerdov et al., 2020), andMODADataset

(Liu et al., 2023). The SEED dataset is widely used in emotion

recognition research, containing EEG data from participants who

watched various movie clips designed to elicit different emotions.

The DEAP dataset focuses on emotion recognition based on

physiological signals, including EEG and peripheral physiological

signals, with a large number of subjects providing multimodal data.

The eSports Sensors Dataset provides data related to professional

gamers, offering EEG and physiological recordings captured during

gameplay, making it highly relevant for real-time performance

analysis. Lastly, the MODA dataset is a multimodal dataset

designed for action recognition, comprising synchronized video

and sensor data, including EEG recordings, offering a rich set of

complex athletic activities for our task.

In our experiments, we meticulously designed the training and

evaluation process to simulate a real-world application scenario,

ensuring that the results would provide meaningful insights for

practical deployment. Data from each dataset was split into distinct

training, validation, and testing sets, with no overlap between

subjects across these subsets to eliminate data leakage and ensure

robust generalization. The SEED and DEAP datasets, which

are relatively large and diverse, were divided into 70% training,

15% validation, and 15% testing to provide sufficient data for

training while maintaining adequate samples for model evaluation.

For the eSports Sensors and MODA datasets, the splits were

adjusted to 60% training, 20% validation, and 20% testing to

better accommodate the complexity of the tasks while ensuring

enough samples for learning spatial and temporal dependencies

critical for the model. For each dataset, we implemented a detailed

and systematic hyperparameter tuning process to optimize model

performance. The learning rate was initialized at 0.001, with a cyclic

learning rate schedule employed to accelerate convergence during

training by periodically varying the learning rate. The batch size

was set to 64 for the SEED and DEAP datasets due to their smaller

input dimensionality and lower computational demands, while it

was reduced to 32 for the eSports Sensors and MODA datasets,

which involve higher complexity and larger input dimensions. The

training process was carried out for 100 epochs on the SEED and

DEAP datasets, and extended to 150 epochs for the eSports Sensors

and MODA datasets to allow the model to fully learn the intricate

temporal and spatial relationships inherent to real-time athletic

performance tasks. To mitigate overfitting, an early stopping

strategywith a patience of 10 epochs was applied, whereby training

was halted if no improvement in validation loss was observed for

consecutive epochs. The training environment utilized the PyTorch

framework, running on an NVIDIA A100 GPU, which provided

the computational efficiency necessary to train the large-scale

transformer architecture. For optimization, the Adam optimizer

was employed with a weight decay set to 1×10−4, ensuring effective

regularization to avoid overfitting. Additionally, gradient clipping

with a threshold of 1.0 was implemented to stabilize updates and

prevent exploding gradients during backpropagation. To further

enhance generalization, dropout was applied with a probability of

0.5 across both the EEG and video streams, reducing reliance on

specific features and improving robustness to unseen data. The

evaluation of the model was carried out using a comprehensive

set of metrics to capture both computational efficiency and

predictive accuracy. Computational efficiency was quantified by

measuring the training time (in seconds), inference time (in

milliseconds), the total number of parameters (in millions),

and floating point operations (FLOPs, in gigaflops). Accuracy

metrics such as accuracy, recall, and F1 score were employed

to assess the predictive power of the model across all tasks,

ensuring a thorough evaluation of its ability to generalize. These

metrics offered a detailed understanding of the model’s strengths

in various applications, including athletic performance analysis,

emotion recognition, and real-time gaming scenarios. Such a

robust evaluation framework ensures that themodel not only excels

in accuracy but also meets the computational demands of real-

world deployment, providing a balance between performance and

efficiency (Algorithm 1).

4.2 Experimental results and analysis

The results in Table 1 and Figure 3 demonstrate that our

proposed model outperforms other SOTA methods across all
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Input: Datasets: SEED, DEAP, eSports Sensors, MODA

Output: Trained model, evaluation metrics

(Accuracy, Precision, Recall, F1 Score)

Initialize Cerebral Transformer network;

Set learning rate η = 0.001, batch size b = 64 for

SEED and DEAP datasets, b = 32 for eSports Sensors

and MODA datasets;

Set weight decay λ = 1e− 4, epochs E = 100 for SEED

and DEAP, E = 150 for eSports Sensors and MODA;

Set early stopping patience P = 10;

for each dataset

D ∈ {SEED, DEAP, eSports Sensors, MODA} do

Split D into training set Dtrain, validation set

Dval, and test set Dtest;

for epoch e = 1 to E do

for each mini-batch (X,y) ∈ Dtrain do

Compute forward pass: ypred = f(X, θ);

Compute loss: L = 1
b

∑b
i=1 Loss(yi,ypred);

Compute gradients: ∇L(θ);

Update model parameters:

θ ← θ − η · ∇L(θ)− λ · θ;

Apply gradient clipping:

θ = clip(θ,−1.0,1.0);

end

Evaluate on validation set Dval;

Compute validation loss Lval;

if Lval has not improved for P epochs then

break (Early stopping);

end

end

Evaluate on test set Dtest;

Compute metrics:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Precision =
TP

TP+ FP

Compute model complexity:

Params =#(θ), FLOPs = GFLOPs

end

Algorithm 1. Training process for cerebral transformer.

metrics in both the SEED and DEAP datasets. On the SEED

dataset, the model achieves an accuracy of 96.8%, which is

higher than the best-performing baseline (CLIP with 95.67%).

The proposed model also leads in recall, F1 score, and AUC,

indicating its strong ability to capture the subtle patterns in the

EEG data and video frames. The advantage of our model is

especially prominent in terms of recall (95.45%), which implies

that it is more effective in identifying correct instances of athletic

performance actions or emotions compared to other models. On

the DEAP dataset, a similar trend is observed. The model achieves

a remarkable accuracy of 97.34%, which is significantly higher

than both CLIP and Hybrid Transformer models. The high F1

score of 92.8% and AUC of 96.2% indicate the model’s capacity

to balance precision and recall while successfully distinguishing

between various emotional states. These results can be attributed

to the use of adaptive attention and efficient cross-modal fusion,

which enables the model to better capture dependencies between

EEG signals and video data. This fusion, in turn, improves the

model’s understanding of complex, real-time actions and emotions.

The superior performance across both datasets supports the

effectiveness of the proposed approach in handling multimodal

data for athletic performance and emotion recognition.

Table 2 and Figure 4 presents the results on the eSports Sensors

and MODA datasets, which are especially relevant for real-time

performance analysis. Our model significantly outperforms other

SOTA methods, achieving the lowest parameter count, FLOPs,

inference time, and training time while maintaining high accuracy

and recall scores. On the eSports Sensors dataset, the model

achieves an accuracy of 89.45%with only 146.61million parameters

and 161.22 gigaflops, making it computationally efficient for real-

time applications. This low computational complexity, combined

with the high performance, demonstrates that our model is

optimized for scenarios where real-time data processing is crucial,

such as during gaming or athletic monitoring. Similarly, on

the MODA dataset, our model achieves an accuracy of 97.13%

while requiring fewer computational resources than any of the

baselines. The lower inference time (140.80 ms) and training time

(160.34 s) make our approach suitable for deployment in real-

time action recognition systems. The efficiency is largely due to

the adaptive attention mechanism and the reduction in redundant

computations through efficient cross-modal fusion. By focusing on

the most relevant parts of the input data, the model can minimize

unnecessary processing, making it highly effective in real-time

applications where both speed and accuracy are critical.

The ablation results on the SEED and DEAP datasets in

Table 3 highlight the importance of the different components in

the proposed model. When the cross-modal attention mechanism

is removed, the accuracy drops significantly on both datasets

(355.28 M parameters with 293.01 ms inference time on SEED),

indicating that the ability to integrate information from both EEG

and video modalities is crucial for achieving high performance.

The drop in performance is especially noticeable in the recall

and F1 score metrics, where the cross-modal attention helps

in identifying complex patterns across different modalities. The

removal of adaptive attention also leads to a notable decrease in

performance, particularly in inference time and training time. The

adaptive attention mechanism allows the model to dynamically

focus on important parts of the data, improving efficiency. Without

it, themodel processes unnecessary information, resulting in higher

computational costs and lower accuracy. Finally, the EEG stream

component contributes significantly to performance, especially on

the DEAP dataset, where removing it leads to increased inference

time and a drop in accuracy. Overall, the full model, which

combines all components, achieves the best results across all

metrics, showing that eachmodule plays a crucial role in optimizing

both accuracy and computational efficiency.

Table 4 and Figure 5 presents the results of the ablation study on

the eSports Sensors andMODA datasets, and the findings reinforce
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TABLE 1 Comparison of SOTA methods on SEED and DEAP datasets.

Model SEED dataset DEAP dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

ViT (Yuan et al., 2021) 88.45± 0.02 84.07± 0.03 88.80± 0.02 88.36± 0.02 86.12± 0.03 88.68± 0.02 87.23± 0.01 93.63± 0.03

CLIP(Sun et al., 2024) 95.67± 0.03 90.65± 0.02 87.94± 0.03 86.98± 0.03 95.75± 0.02 89.46± 0.02 90.37± 0.02 89.84± 0.02

BLIP(Pang et al., 2024) 89.86± 0.01 91.90± 0.02 90.81± 0.01 93.36± 0.02 94.47± 0.03 84.33± 0.03 85.77± 0.02 88.44± 0.02

Hybrid transformer (Lieber

et al., 2024)

89.68± 0.02 88.50± 0.02 89.33± 0.02 89.38± 0.02 94.85± 0.02 88.05± 0.02 88.93± 0.02 83.85± 0.01

CNN-LSTM (Dao et al., 2024) 94.07± 0.01 92.98± 0.02 87.81± 0.01 89.37± 0.03 87.32± 0.02 90.26± 0.02 86.89± 0.01 93.56± 0.03

TCN (Al-qaness et al., 2024) 95.69± 0.02 84.42± 0.02 84.93± 0.02 87.89± 0.02 87.01± 0.01 85.22± 0.02 87.17± 0.03 85.99± 0.03

Ours 96.8± 0.02 95.45± 0.03 93.98± 0.01 96.4± 0.03 97.34± 0.02 94.65± 0.02 92.8± 0.02 96.2± 0.02

FIGURE 3

Comparison of SOTA methods on SEED and DEAP datasets.

the importance of each model component. The cross-modal

attention mechanism contributes significantly to the model’s

performance on both datasets, particularly in accuracy and recall.

For example, removing cross-modal attention from themodel leads

to a drop in accuracy from 97.67 to 89.98% on the eSports Sensors

dataset, and from 97.13 to 89.64% on the MODA dataset. This

highlights the importance of integrating information from both the

EEG and video streams to accurately recognize actions and states

in real-time environments. The adaptive attention mechanism also

plays a key role in optimizing the model’s performance. Without

it, the model’s recall and F1 scores drop across both datasets,

indicating that the ability to focus on the most important features

in the data is crucial for accurate predictions. The EEG stream

is particularly important for capturing the subtle neural patterns
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TABLE 2 Comparison of SOTA methods on eSports sensors and MODA datasets.

Model eSports sensors dataset MODA dataset

Parameters
(M)

FLOPs
(G)

Inference
Time
(ms)

Training
Time (s)

Parameters
(M)

FLOPs
(G)

Inference
Time
(ms)

Training
Time (s)

ViT 214.86± 0.02 320.81±

0.03

277.00±

0.03

267.19±

0.02

400.09± 0.02 277.14±

0.01

207.35±

0.02

242.95±

0.03

CLIP 361.18± 0.02 238.94±

0.03

290.79±

0.02

394.53±

0.03

272.55± 0.03 285.09±

0.03

366.38±

0.03

313.58±

0.02

BLIP 226.46± 0.03 264.36±

0.02

202.58±

0.02

275.63±

0.02

311.26± 0.03 369.26±

0.02

232.69±

0.02

253.04±

0.03

Hybrid transformer 313.89± 0.02 235.54±

0.03

252.75±

0.02

281.82±

0.03

277.19± 0.02 331.47±

0.02

241.44±

0.03

292.33±

0.02

CNN-LSTM 346.98± 0.01 210.66±

0.02

241.03±

0.03

338.10±

0.03

360.95± 0.02 291.97±

0.02

341.25±

0.03

288.10±

0.03

TCN 392.88± 0.03 221.36±

0.02

278.52±

0.03

302.79±

0.02

351.72± 0.02 332.03±

0.03

391.09±

0.03

231.08±

0.02

Ours 146.61± 0.02 161.22±

0.03

165.72±

0.02

188.86±

0.02

135.55± 0.03 219.05±

0.02

140.80±

0.03

160.34±

0.02

FIGURE 4

Comparison of SOTA methods on eSports sensors and MODA datasets.
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TABLE 3 Ablation study on SEED and DEAP datasets.

Method SEED dataset DEAP dataset

Parameters
(M)

FLOPs
(G)

Inference
time
(ms)

Training
time (s)

Parameters
(M)

FLOPs
(G)

Inference
time
(ms)

Training
time (s)

o/w Cross-modal attention 355.28± 0.02 307.66±

0.02

293.01±

0.02

331.61±

0.02

340.35± 0.02 219.03±

0.03

370.12±

0.02

390.21±

0.02

o/w adaptive attention 256.49± 0.03 283.98±

0.03

221.50±

0.02

388.47±

0.02

380.59± 0.03 340.85±

0.02

306.91±

0.03

253.19±

0.02

o/w EEG stream 218.54± 0.02 253.29±

0.03

299.47±

0.02

361.01±

0.02

337.24± 0.02 227.85±

0.03

336.60±

0.02

230.33±

0.02

Full model 149.24± 0.02 121.97±

0.03

202.82±

0.02

178.50±

0.02

109.37± 0.03 192.28±

0.02

169.63±

0.03

115.80±

0.02

FIGURE 5

Ablation study on SEED and DEAP datasets.

TABLE 4 Ablation study on eSports sensors and MODA datasets.

Model eSports sensors dataset MODA dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

o/w Cross-modal attention 89.98± 0.03 86.08± 0.02 88.13± 0.03 86.66± 0.02 89.64± 0.03 85.65± 0.02 84.92± 0.03 89.90± 0.02

o/w Adaptive attention 92.03± 0.02 87.74± 0.03 85.18± 0.03 85.37± 0.03 95.63± 0.02 91.14± 0.02 89.54± 0.03 86.50± 0.02

o/w EEG stream 91.60± 0.01 87.39± 0.03 83.88± 0.02 92.08± 0.03 89.63± 0.02 90.97± 0.02 90.20± 0.02 87.53± 0.02

Full model 97.67± 0.02 94.18± 0.02 92.64± 0.02 93.89± 0.02 97.13± 0.02 94.99± 0.02 92.59± 0.02 93.76± 0.02

related to performance and actions in eSports and athletic datasets.

Without the EEG stream, the model’s accuracy and recall drop

significantly, showing that the fusion of both EEG and video data

is essential for capturing complex multimodal interactions. Overall,

the full model outperforms all ablation variants, demonstrating that

the combined effect of cross-modal attention, adaptive attention,

and EEG stream fusion is necessary for achieving state-of-the-art

performance in real-time applications.

Table 5 and Figure 6 shows the comparative results of our

model with other SOTA methods on the Sleep-EDF and CWL

EEG/fMRI datasets. The results clearly demonstrate the significant

leading advantage of our model on all evaluation metrics, further

validating its generalizability across different datasets. On the

Sleep-EDF dataset, our model achieved an accuracy of 97.97%,

a recall of 94.46%, an F1 score of 92.72%, and an AUC of

96.58%, all significantly superior to other methods. For example,

compared to the CLIP model, which achieved an accuracy of

94.31%, our model shows an improvement of ∼3.66%, proving

its advantages in handling complex EEG signals. Moreover, the

increases in recall and F1 score indicate a higher robustness of
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FIGURE 6

Ablation study on eSports sensors and MODA datasets.

TABLE 5 Comparison of SOTA methods on sleep-EDF (Korkalainen et al., 2019) and CWL EEG/fMRI datasets (Korkalainen et al., 2019).

Model Sleep-EDF dataset CWL EEG/fMRI dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

ViT (Yuan et al., 2021) 86.5± 0.01 92.45± 0.03 84.51± 0.02 89.89± 0.03 88.21± 0.03 89.78± 0.02 86.7± 0.01 89.48± 0.03

CLIP (Sun et al., 2024) 94.31± 0.03 92.54± 0.02 86.42± 0.03 90.35± 0.03 94.05± 0.02 87.97± 0.02 85.02± 0.02 86.38± 0.02

BLIP (Pang et al., 2024) 96.38± 0.01 87.48± 0.03 84.9± 0.01 86.34± 0.02 96.27± 0.03 90.06± 0.03 85.89± 0.02 90.13± 0.02

Hybrid transformer (Lieber

et al., 2024)

88.36± 0.02 91.17± 0.02 88.38± 0.02 91.17± 0.02 89.06± 0.02 92.91± 0.02 87.63± 0.02 86.57± 0.01

CNN-LSTM (Dao et al., 2024) 87.51± 0.01 90.74± 0.02 85.44± 0.01 87.44± 0.03 95.38± 0.02 88.99± 0.02 89.48± 0.01 87.75± 0.03

TCN (Al-qaness et al., 2024) 94.34± 0.02 84.49± 0.02 88.67± 0.02 88.09± 0.02 93.29± 0.01 84.26± 0.02 87.76± 0.03 90.37± 0.03

Ours 97.97± 0.02 94.46± 0.03 92.72± 0.01 96.58± 0.03 97.25± 0.02 95.58± 0.02 93.52± 0.02 96.68± 0.02

the model in sample balancing and fine-grained classification. On

the CWL EEG/fMRI dataset, despite the dataset’s challenge due to

the heterogeneity of multimodal signals, our model still achieved

an accuracy of 97.25% and a recall of 95.58%, which are 1 and

5.52% higher, respectively, than the BLIP model. Particularly, the

AUC reached 96.68%, demonstrating comprehensive optimization

in classification accuracy and stability. These experimental results

verify the cross-dataset adaptability and multimodal data fusion

capabilities of our model. Through adaptive attention mechanisms

and efficient cross-modal feature extraction, our model not

only surpasses existing methods in performance but also shows

significant potential in computational efficiency and diverse data

applications (Yuan et al., 2021).

We further validated the performance of our model by

comparing it with six recently published state-of-the-art (SOTA)

models, including AM-EEGNet, CareSleepNet, CoAtNet,

CrossViT, EEG-Deformer, and DuA. These models are widely

applied in the SEED and DEAP datasets and represent the latest

advancements in the field. As shown in Table 6, our model

significantly outperforms these comparative methods across all

metrics. On the SEED dataset, our model achieved accuracy, recall,

F1 score, and AUC of 97.23, 94.68, 93.89, and 95.74%, respectively,

with the recall rate being 3.81% higher than the second-best

model, DuA. On the DEAP dataset, our model achieved an

accuracy of 98.43%, a recall of 93.9%, and an AUC of 96.24%,

comprehensively surpassing other comparative models. These

results demonstrate the significant advantages of our model in

classification performance, robustness, and multimodal signal

processing capabilities, highlighting its exceptional performance in

complex data analysis tasks.

5 Conclusion and discussion

The primary goal of this study is to address the complex

challenges in sports performance analysis, particularly in real-

time monitoring and recognition of movements by integrating

electroencephalogram (EEG) signals and video data. Traditional
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TABLE 6 Comparison of the latest 6 SOTA models on SEED and DEAP datasets.

Model SEED dataset DEAP dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

AM-EEGNet (Lin et al., 2024) 92.22± 0.02 88.58± 0.01 90.72± 0.02 84.50± 0.03 92.40± 0.03 85.74± 0.02 88.74± 0.01 86.88± 0.03

CareSleepNet (Wang et al.,

2024)

85.57± 0.01 93.30± 0.03 88.68± 0.03 90.42± 0.02 86.90± 0.02 89.00± 0.03 88.72± 0.01 92.43± 0.02

CoAtNet (You et al., 2024) 92.93± 0.03 87.66± 0.02 87.07± 0.03 92.94± 0.01 88.81± 0.01 93.42± 0.03 84.75± 0.02 87.62± 0.03

CrossViT (Panyarak et al., 2024) 89.94± 0.01 85.22± 0.03 84.79± 0.01 86.79± 0.03 95.39± 0.03 87.62± 0.02 84.07± 0.01 87.72± 0.02

EEG-Deformer (Ding et al.,

2024)

96.34± 0.03 87.04± 0.02 89.27± 0.03 92.50± 0.02 92.89± 0.01 85.66± 0.01 89.96± 0.03 88.45± 0.02

DuA (Pan Y. et al., 2024) 95.53± 0.02 90.87± 0.03 91.23± 0.02 85.25± 0.01 91.63± 0.03 87.13± 0.02 90.80± 0.01 87.29± 0.03

Ours 97.23± 0.01 94.68± 0.03 93.89± 0.01 95.74± 0.03 98.43± 0.02 93.90± 0.02 92.34± 0.03 96.24± 0.01

methods often fall short when handling multimodal data,

especially in capturing cross-modal dependencies and ensuring

real-time processing. To this end, we propose a novel EEG-

driven model called the “Cerebral Transformer." This model

effectively integrates EEG signals and video data through

adaptive attention mechanisms and cross-modal fusion for

precise analysis of sports performance. In our experiments, we

validated the model using the SEED, DEAP, eSports Sensors,

and MODA datasets. The results showed that our model

outperformed six state-of-the-art (SOTA) models in terms of

accuracy, recall, and F1 score. Additionally, ablation studies

revealed that the cross-modal attention mechanism and adaptive

attentionmechanism significantly impact the model’s performance,

especially in efficiently processing the fusion of EEG signals

and video data. Our approach achieved faster inference and

training times, maintaining low parameter count and minimal

floating-point operations, making it suitable for real-time sports

monitoring scenarios.

Despite the significant experimental results, the model still

has some limitations. We acknowledge several limitations in our

study that warrant further discussion. First, the datasets used

in our experiments, such as SEED, DEAP, eSports Sensors, and

MODA, may introduce inherent biases due to their specific

experimental setups and participant demographics. These biases

could limit the generalizability of our model to broader populations

or diverse real-world scenarios. For instance, the SEED and DEAP

datasets primarily include controlled laboratory settings, which

may not fully capture the variability of real-world conditions.

Second, while our model is designed to process multimodal data

effectively, real-time application poses significant challenges. These

include the need for low-latency data processing, robust handling

of noisy or incomplete signals, and ensuring computational

efficiency on resource-constrained devices. Although we evaluated

computational metrics such as inference time and FLOPs,

further work is needed to optimize the model for real-time

deployment without compromising accuracy. Lastly, while we

demonstrated the efficacy of our model on a range of tasks,

additional evaluation on larger and more diverse datasets, as

well as under real-world conditions, is necessary to confirm

its robustness and reliability. Future work could address these

limitations by incorporating more diverse datasets, exploring

domain adaptation techniques, and optimizing the model for

deployment on edge devices.
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