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With the rapid development of Industrial Internet of Things (IIoT) technology, 
various IIoT devices are generating large amounts of industrial sensor data that 
are spatiotemporally correlated and heterogeneous from multi-source and multi-
domain. This poses a challenge to current detection algorithms. Therefore, this 
paper proposes an improved long short-term memory (LSTM) neural network 
model based on the genetic algorithm, attention mechanism and edge-cloud 
collaboration (GA-Att-LSTM) framework is proposed to detect anomalies of IIoT 
facilities. Firstly, an edge-cloud collaboration framework is established to real-
time process a large amount of sensor data at the edge node in real time, which 
reduces the time of uploading sensor data to the cloud platform. Secondly, to 
overcome the problem of insufficient attention to important features in the input 
sequence in traditional LSTM algorithms, we introduce an attention mechanism 
to adaptively adjust the weights of important features in the model. Meanwhile, 
a genetic algorithm optimized hyperparameters of the LSTM neural network is 
proposed to transform anomaly detection into a classification problem and effectively 
extract the correlation of time-series data, which improves the recognition rate 
of fault detection. Finally, the proposed method has been evaluated on a publicly 
available fault database. The results indicate an accuracy of 99.6%, an F1-score 
of 84.2%, a precision of 89.8%, and a recall of 77.6%, all of which exceed the 
performance of five traditional machine learning methods.
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1 Introduction

With the widespread application of artificial intelligence and Internet of Things 
technologies in Industry 4.0, Industrial Internet of Things (IIoT) technology greatly improves 
and optimizes the operational and production efficiency of industrial equipment while 
reducing enterprises’ human resource costs (Liu et al., 2023; Zhang et al., 2024; Feng et al., 
2022). However, IIoT technology also increases the complexity of production equipment. As 
a result, the large amount of sensor data generated raises the probability of equipment failure. 
Additionally, industrial equipment is influenced by the external environment and its own 
harsh operating conditions during actual industrial production. Therefore, the sensor data 
exhibits spatio-temporal correlations and high-dimensional characteristics, such as bearing 
wear data, motor condition data, and air pressure, humidity, and temperature data from 
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aircraft in the aerospace sector (Wang et al., 2021; Xu et al., 2022). This 
complexity poses significant challenges to traditional fault detection 
techniques (Zhang et al., 2023; Aboelwafa et al., 2020; Akgüller et al., 
2024). Consequently, accurate and timely detection of abnormal 
phenomena is crucial for ensuring the safety and efficient operation 
of industrial equipment. Currently, fault detection research methods 
can be classified into three main categories:

Univariate and multivariate probability statistical methods are 
utilized based on the characteristics of equipment data. A single index, 
such as the mean, variance, and peak, is commonly used for fault 
detection in single-feature equipment sensor data. Wang et al. (2022) 
proposed a fault detection method for wind turbine blades based on 
the transmissibility function of wavelet packet energy, which enhanced 
high-frequency resolution while maintaining its low sensitivity to 
noise. Zhang et  al. (2022) adopted L2-norm shapelet dictionary 
learning to improve the bearing fault recognition rate under uncertain 
working conditions. Meanwhile, Peng et  al. (2021) realized wind 
turbine fault detection based on fault characteristic frequency 
recognition by using compressive-sensing-based signal reconstruction 
technology and signal reconstruction analysis. Additionally, Shi et al. 
(2022) designed a generalized variable-step multiscale Lempel-Ziv 
algorithm to extract features of rolling bearings. The univariate fault 
detection method is simple and efficient, but performs poorly in 
identifying equipment failures caused by multiple factors. To provide 
a comprehensive analysis of equipment operation, a statistical method 
based on multivariate fault detection is proposed. Lei et al. (2021) 
proposed Hertz contact theory to detect faults in angular contact ball 
bearings by taking into account the influence of centrifugal force, 
thermal impact on bearing operation, and gyroscopic moments. 
Bhatnagar et al. (2022) used the discrete wavelet transform to obtain 
discriminative features of fault current signals for detecting faults in 
distribution networks. This study can effectively identify common 
shunt faults and high-impedance faults in distribution lines. 
Multivariate fault detection methods can provide a comprehensive 
view of equipment status. However, the overall fault detection rate 
may decrease in the presence of numerous missing sample data and 
complex high-dimensional scenarios.

An equipment fault detection method based on spatial distance 
and region. Wang (2018) mentioned that the fault in nonlinear 
processes can be detected by the modified conventional kernel partial 
least squares method, which has definitely improved the computing 
speed. To overcome the limitations of the principal component 
analysis algorithm, Shah et al. (2023) proposed a manifold learning 
method based on the weighted linear local tangent space alignment 
to provide local tangent space estimates under the condition that 
uniformly distributed data is not close to linear subspaces. Qin et al. 
(2022) used a combination of correlative statistical analysis and the 
sliding window technique for diagnosing initial faults, which 
improved the recognition rate and reduced the computational 
complexity. Zhang et al. (2021) proposed an SR-RKPCA model based 
on subspace reconstruction for detecting wind turbine faults. 
Compared with traditional principal component analysis and KPCA 
methods, this approach can better extract nonlinear features of wind 
turbine data. Sarmadi and Karamodin (2020) worked on removing 
the environmental variability conditions and estimating local 
covariance matrices to find sufficient nearest neighbors for training 
and testing datasets in a two-stage procedure. The study used adaptive 
Mahalanobis-squared distance and one-class KNN algorithms to 

classify the fault patterns. Wang et  al. (2021) considered relevant 
hidden information in the temporal dynamics of frequencies and 
spatial configuration for training a K-nearest neighbor classifier based 
on a temporal-spatio graph to improve fault diagnosis performance. 
Distance-based fault detection methods are straightforward, yet their 
computational time increases rapidly with large-scale and high-
dimensional fault data, rendering them unsuitable for real-time 
detection in industrial settings.

A fault detection method based on machine learning. To enhance 
the intelligence and efficiency of fault detection, some scholars have 
applied machine learning technology to the field of fault detection and 
have achieved certain results. In their study, Sun and Yu (2022) 
proposed an innovative adaptive technique based on sparse 
representation and minimum entropy deconvolution for identifying 
bearing faults, which promoted the effectiveness of impulse 
enhancement and the robustness of the inverse filter length. To 
overcome the problem of significant noise interference in bearing 
vibration signals, Chen et al. (2023) extracted the signal features by 
using a hierarchical improved envelope spectrum entropy method and 
identified the bearing faults using a support vector machine. Dhibi 
et al. (2020) proposed a reduced kernel random forest method to 
address the limitations of a single random forest algorithm in 
industrial processes and applied it to the fault detection of grid-tied 
photovoltaic systems.

Machine learning methods transform fault detection into 
classification problems, which offers the advantages of short training 
times and strong generalization abilities. Nonetheless, significant noise 
pollution can lead to suboptimal fault detection rates. Therefore, Xue 
et al. (2022) proposed a stacked long short-term memory (LSTM) 
network to enhance the performance of fault diagnosis. However, the 
hyperparameters of the LSTM network are mostly obtained through 
experience (Zhi et al., 2022). Unreasonable allocation of important 
feature weights and hyperparameter settings directly impact the fault 
classification results. Furthermore, the IIoT data are characterized by 
large scale, multi-source heterogeneity, and high noise, which brings 
many difficulties and challenges to cloud-based IIoT systems. The 
challenges include processing real-time data, managing core network 
loads, maintaining user data security, and ensuring system scalability. 
To address the aforementioned problems, this article proposes and 
implements a fault detection model based on the LSTM model, the 
genetic algorithm, the attention mechanism, and edge-cloud 
collaboration (GA-Att-LSTM) framework. The major contributions of 
the article are summarized as follows:

To improve detection speed and reduce the pressure on cloud 
storage, we utilize an edge-cloud collaborative framework to lower 
more sensor data computation and storage from the “core” to the 
“edge,” which have high storage, efficient processing speed, and strong 
multi-source heterogeneous adaptability.

To extract key temporal features of sensor data, achieve intelligent 
fault detection, and reduce manual intervention, we use Att-LSTM 
network to transform complex fault detection problems into 
classification problems, which has enhanced detection efficiency and 
decreases equipment maintenance costs.

To obtain appropriate hyperparameters of the LSTM network, 
we use an improved genetic algorithm (GA) to optimize Att-LSTM 
network, which has improved the efficiency of fault detection.

The remainder of the article is described as follows: Section2 
introduces the architecture principle of edge-cloud collaborative 
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including intelligent terminal layer, edge node layer and cloud 
platform layer; Section 3 illustrates the methodologies, LSTM 
structure and GA-Att-LSTM network structure; Section 4 
introduces the fault detection principle and design; Section 5 
discusses the performance evaluation of data preprocessing and 
result analysis; Finally, contributions of this article are summarized 
in Section 6.

2 Architecture principle and design

In traditional manual fault detection under IIoT facilities, the 
operating status of the facilities usually needs to be manually detected, 
recorded, analyzed, and judged. This method is inefficient, leading to 
higher maintenance costs and inaccessible, non-real-time results 
(Huang et al., 2020a). Therefore, the demand for intelligent facility 
fault detection without human intervention is urgent in Industry 4.0. 
A facility fault detection model based on cloud-only computing 
provides some advantages and plays a crucial role in IIoT. Storing data 
on the cloud server allows a centralized operations facility to monitor 
systems and process information from various regions and databases 
(Li et al., 2024a). In cloud-only computing, the delay problem cannot 
be solved merely by increasing the speed of data transmission without 
limit (Fu et  al., 2018; Li et  al., 2024b). To effectively alleviate the 
latency issue, the distance data must travel needs to be shortened as 
much as possible. This is why edge computing is used in IIoT. In 
response to the above problems, this article proposes a model based 
on edge-cloud collaboration for facility fault detection. The traditional 
detection model is shown in Figure 1a, while Figure 1b illustrates how 
the arrangement operates via edge-cloud collaboration.

As shown in Figure 1b, a fault detection framework based on 
edge-cloud collaboration is composed of three layers. The intelligent 
terminal layer comprises the industrial infrastructure, where sensors 
and industrial facilities are installed. The edge layer is deployed to 
process collected data in real time. The cloud platform layer is used to 
train GA-Att-LSTM network models and save weight parameters. The 

collaboration between the edge and the cloud, along with various 
sensors and devices, is demonstrated as follows:

 (1) Intelligent terminal layer: the intelligent terminal layer is the most 
basic component of a typical edge-cloud-based infrastructure for 
collecting information. It is mainly composed of sensors, radio-
frequency identification, GPS, and cameras (Li et al., 2023a). First, 
real-time heterogeneous data are primarily obtained using 
cameras and sensors (for position, speed, energy consumption, 
pressure, temperature, etc.). Sensors employ a process to convert 
various signals into electrical signals, which are then processed by 
related equipment (Kaur et al., 2022; Kaur and Chanak, 2023; Liu 
et al., 2021). The data are ultimately transmitted to the upper layer 
using various transmission technologies, such as industrial 
fieldbus, industrial Ethernet, industrial wireless networks, 
Bluetooth, and infrared.

 (2) Edge node layer: the edge node layer is the middle part of the 
system, mainly composed of gateways and computing nodes (e.g., 
mobile phones, computers, servers). Gateways provide both 
visibility and control over connected devices that use the same IIoT 
protocol. Moreover, they standardize the codec for control 
commands and device data, after which they transmit the 
information to the upper layer. This approach avoids the problem 
of disparate data from multiple collection devices in the cloud (Li 
et al., 2023b). The computing node layer consists of various nodes 
through which facility data passes from the gateway to the cloud. 
During the system’s initialization phase, it acts as a relay device, 
transmitting the environmental monitoring data collected by 
wireless sensor nodes to the cloud platform (Yu et al., 2023; Song 
et  al., 2023; Natesha and Guddeti, 2021). Fault detection is 
performed on the collected data during the system’s routine 
operation phase. When an abnormal situation is detected, the edge 
computing node reports the issue to the data and control center on 
the cloud platform. Simultaneously, it prompts the controller at the 
bottom layer to offer an emergency response plan. Figure 2 shows 
the role of the edge computing nodes.

(b)(a)

Facility Fault

Manual Record and Analysis

Manual Detection and Judgment

Edge Node: use AI model 
to real-time analyze the 
original data to reduce 

massive data transferred 
to the cloud center

Intelligent Terminal: mainly 
composed of temperature, 

vision and other sensors, real-
time data acquisition

Request Control 
Response

Management 
ResponseRequest

Cloud Platform: 
global monitoring, 

analysis and 
processing of data

FIGURE 1

Elucidation of traditional model and state-of-the-art system for facility fault-detection in IIoT. (a) Traditional manual fault detection model; (b) the 
advanced edge-cloud collaboration fault detection model.
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 (3) Cloud platform layer: the cloud platform layer sits at the 
top of the architecture, providing significant advantages 
and influencing the IIoT. The cloud computing platform 
offers exceptional computational power and large storage 
capacity, serving as a remote data and control center for the 
system. This enables a centralized operations facility to 
monitor systems and optimize parameters for artificial 
intelligence algorithms (Bui et  al., 2020). It is primarily 
used for processing, storing, and analyzing large-scale 
global historical data with complex computational 
requirements. In this article, the edge-cloud collaboration 
framework is applied to fault detection in equipment to 
improve maintenance efficiency and leverage the strengths 
of both technologies. To achieve real-time functionality, 
edge computing mainly handles short-term, localized data. 
The LSTM network is an artificial neural model that 
requires complex parameter training for feature extraction. 
The computational demands and resource consumption 
associated with this complexity are challenging for both 
wireless sensor nodes and edge computing nodes. To 
address this issue, model training is performed on a cloud-
based platform. Real-time fault detection is then carried 
out by sending the trained model parameters back to the 
edge computing node.

3 Methodology

In this section, we introduce the methodology for developing 
the edge-cloud collaboration framework for IIoT systems. First, 

we  briefly review Recurrent Neural Networks (RNN) and  
LSTM models, which are essential for building the  
proposed GA-Att-LSTM framework. This is followed by a 
discussion of the system architecture and model development. 
Finally, we  introduce the framework for optimizing the LSTM 
network using a GA.

3.1 Basic recurrent neural network

The RNN is an architecture with a memory function that 
stores the previous network operation’s state value and leverages 
it to generate input for the current moment. It stores the previous 
network operation’s generated state value and utilizes it to 
generate the present moment’s input value, enabling RNN to 
handle time-series sensor data (Abdul et al., 2020). Figure 3 shows 
the RNN architecture.

In Figure  3, the hidden layer blocks are unfolded along the 
timeline as shown in Figure 4, and their nodes are connected to the 
corresponding weights through directed loops. Wherex  is the input 
vector, s represents the hidden layer vector, y denotes the output 
vector, weight matrix from the hidden layer to the output layer is 
defined as U , weight matrix from the hidden layer to the output layer 
is defined as V  and W is the connection weight between the hidden 
layer cells.

In IIoT systems, the input values at different time steps are 
denoted as 1tx − , tx  and 1tx + , where each represents the input at a 
specific time step in a sequence. The input 1tx − at time step 1t −  
represents the value immediately preceding the current input. 
The input tx at time step t  is combined with the previous hidden 
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FIGURE 2

The role of edge nodes in the proposed overall architecture.
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state to update the current hidden state. The input 1tx + at time 
step 1t +  is used as the network advances through the sequence. 

tx , ts , and ty  represents input value, memory value, and output 
value at time step t  respectively. The value of ts  is related to the 

tx  at current moments and the 1ts −  at the previous time. These 

internal relationships between the input, hidden, and output 
layers are expressed as shown in Equations (1, 2):

 ( )1t t ts f Ux Ws −= +  (1)

 ( )t ty g Vs=  (2)

where ( )·g  and ( )·f  denote activation functions, respectively. 
From the given (1)–(2), it is clear that the weights are indicative of the 
dependence relationship between input values at time stept  and 1t − . 
Thus, they are commonly used in many sequence learning tasks. 
However, as the time series grows, the initial gradient contribution 
diminishes and the chain of gradients lengthens, resulting in gradient 
vanishing. To address this issue, the LSTM network is proposed.

3.2 Long short-term memory model

The LSTM network can solve the problem of vanishing or exploding 
gradients that exists in ordinary RNN by designing input gates ( ti ), 
forget gates ( tf ), and output gates ( to ) (Huang et al., 2024; Lin and 
Zhang, 2024). Where tc stands for the long-term memory unit, ⊙
symbol represents the multiplication of the corresponding elements. 
( )xσ denotes the non-linear sigmoid activation function with the value 

range from 0 to 1, which is used to describe the number of information 
passing through. W and b are the weight matrices and bias terms, 
respectively. tx  represents the input vector, the short-term state is th . The 
unit structure of hidden layer is shown in Figure 5. Since LSTM has a 
memory block and gate structure, it can learn information with a long 
span and determine the optimal time lag autonomously. When 
processed time series data are fed into the LSTM network, the forgetting 
gate first determines which information needs to be discarded. An input 
vector tx  and a previous short-term state 1th − are utilized for inputs to 
the forget gate. The output value is calculated using the sigmoid 
function. The range is 0 to 1. A value of 0 implies that information may 
pass through while 1 implies the opposite. After passing through the 
input gate, the relevant information is selected for storage in the cell 

Input 1t RNN Output

2tInput

Input

RNN

RNN
nt

Output

Output

2t
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1t

FIGURE 3

Architecture of recurrent neural network.
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FIGURE 4

The hidden layer of RNN is expanded according to the time axis.

FIGURE 5

Internal structure of LSTM block.
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state. The sigmoid layer determines which values should be updated, 
while the tanh layer generates a new candidate value vector and 
calculates the new cell state. Lastly, the output gate decides which 
information to output. The current cell state is processed by tanh and 
multiplied by the sigmoid layer’s output to produce the final output.

The input gate decides the amount of information flows from the 
input xt that is retained in the cell state ct at the present time. The 
output vector it of the input gate is given by He et al. (2023) as shown 
in Equation (3).

 ( )1t xi t hi t ii W x W h bσ −= + +  (3)

The forget gate has the function that saves partial information flow 
of the previous moment in the cell state 1tc − to the current moment tc
. The candidate cell state 

˜
tc  is a crucial element in LSTM that serves as 

a proposed update to the existing cell state. It is based on both the 
current input and the past hidden state. The output of the forget gate 

tf  and the memory cell tc  at time t  are defined  as shown in 
Equations (4–6).

 ( )1t xf t hf t ff W x W h bσ −= + +  (4)

 ( )˜ 1tanht xc t hc t cc W x W h b−= + +
 (5)

 
˜

1 tt t t tc f c i c−= +⊙ ⊙  (6)

The output gate in Equation (7) mainly controls the influence of 
long-term state tc  on the current short-term state th , i.e., the data in tc  
will be output at time t . The output of the output gate to  and output 
value of short-term state th  in Equation (8) are given as follows:

 ( )1t xo t ho t oo W x W h bσ −= + +  (7)

 ( )tanht t th o c= ⊙
 (8)

When training LSTM network model, it’s common to use a loss 
function to evaluate the error between prediction and actual 
values. The smaller the loss function, the better the performance 
of the model. To measure the degree of difference between two 
probability distributions in the same random variable, we use the 
cross-entropy loss function in Equation (9) for measurement. Its 
expression is derived as follows:

 
( )

1

1 ln
N

i i
i

J y y
N

θ
=

= − ×∑


 
(9)

where N  represents the number of samples, iy  is the real value of 
samples, and iy



 stands for the predicted value of samples. Firstly, 

Adam algorithm is used as an optimizer to update the weight of the 
neural network model, which is simple to implement, computationally 
efficient and low memory requirement. Then, the loss function is used 
to calculate the error of each iteration. Finally, the trained neural 
network model is used to predict the results.

3.3 Attention mechanism

The attention mechanism model, jointly proposed by Treisman 
and Gelade, aims to mimic human attention and is particularly 
suitable for optimizing the performance of traditional models. The 
core function of the attention mechanism is to calculate and analyze 
the data features input into the model, assigning corresponding 
probability weights to each feature in the neural network’s hidden 
layer based on the analysis results. In this process, more important 
features receive higher weights, thereby improving the output accuracy 
of the network model (Yuan et al., 2021). The structure of the attention 
mechanism is shown in Figure 6. The variables 1 2 3, , nx x x x  represent 
the input sequences, the variables 1 2 3, , nh h h h  represent the hidden 
sequences, and 1 2 3, , ny y y y  are the output sequences. nw  is the 
attention weight.

3.4 GA-Att-LSTM model

The GA is a highly efficient, parallel, and adaptive global 
probabilistic search method that mimics the process of biological 
evolution and inheritance in natural environments. By using GA to 
optimize the number of layers and neurons in each layer of an LSTM 
network, the architecture selection process can be  automated, 
significantly reducing the complexity of manual tuning. The algorithm 
continuously generates, evaluates, and selects new architecture 
candidates by simulating natural selection and genetic mechanisms. 
Through crossover and mutation of high-fit individuals, it creates 
increasingly diverse network structures, gradually eliminating less 
effective models while refining both the number of layers and neuron 
allocation. As iterations progress, the GA effectively explores the 
parameter space and ultimately identifies the optimal LSTM model for 

FIGURE 6

Internal structure of Attention mechanism.
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a given task, striking an optimal balance between network complexity 
and predictive accuracy. The main process of the GA-Att-LSTM 
model is illustrated in Figure 7.

4 Fault detection principle and design

4.1 Fault detection with traditional method

Fault detection aims to identify the abnormal data points. In IIoT 
systems, the irregular data can be detected by analyzing regular sensor 
data within the spatio-temporal domain. There are many reasons for 
outlier data, including unexpected events within the monitoring area 
(e.g., abnormal device shutdown or sudden power failure) and 
abnormalities within the sensor node itself (e.g., hardware module 
damage, low node power). Many traditional methods have been 
exploited to predict the facilities failure (Li et al., 2024c). The fault 
detection methods commonly used are mainly multinomial naive 
bayes (MNB) (Bennacer et al., 2014), logistic regression (LR) (Huang 
et al., 2020b), principal component analysis-recurrent neural Network 
(PCA-RNN) (Mansouri et  al., 2022), k-nearest neighbor (KNN) 
(Zayed et al., 2023), AdaBoost (Hussain and Zaidi, 2024), and gradient 
boosting classifier (GBC) (Al-Haddad et  al., 2024). Despite their 
widespread use, these algorithms have significant limitations. For 
example, MNB assumes independence between features, resulting in 
reduced classification performance in situations with strong feature 
correlations or class imbalances. LR, on the other hand, is limited to 
linear decision boundaries and performs poorly in the presence of 
complex non-linear relationships unless features are transformed or 

interaction terms are included. KNN, on the other hand, faces 
challenges related to high computational complexity, particularly 
when calculating distances between each sample and all training 
instances in large datasets, and is sensitive to high dimensionality and 
noise. AdaBoost is prone to overfitting in noisy environments or 
unbalanced datasets due to its tendency to continuously increase the 
weights of misclassified samples. Finally, the GBC is characterized by 
prolonged training times and high computational complexity, 
particularly when handling large datasets. It is also susceptible to 
overfitting if hyperparameters are not adequately optimized, especially 
in the presence of noisy data. Traditional methods struggle to achieve 
same-layer capabilities in spatio-temporal problems, mainly due to 
their inability to connect nodes within the same layer. In contrast, 
RNN not only learn data features independently, but also allow the 
current state to receive feedback from the previous state (Li et al., 
2021). Given the inherent correlations between asset data points, RNN 
can detect outliers in asset data more accurately than 
traditional methods.

4.2 Fault detection with GA-Att-LSTM 
algorithm

4.2.1 Principle of fault detection for edge-cloud 
collaboration

In fault detection for IIoT facilities, the GA-Att-LSTM model is 
proposed. Figure  8 illustrates the calculation process which is 
primarily divided into three layers: system data acquisition, network 
model training, and fault detection.

4.2.2 Data acquisition stage
Data acquisition layer establishes connections between the 

control system, sensor system, system integrated control, and other 
core nodes in industrial equipment, which mainly rely on industrial 
ethernet, edge gateways, various sensor devices to communicate 
with the system. In the process of sensor data acquisition, the data 
acquisition layer connects the core nodes of industrial equipment 
such as control systems, sensor systems, and system integration 
control. These nodes mainly rely on industrial Ethernet, edge 
gateways, and different kinds of sensor devices to communicate with 
the system. Therefore, the control system gets operation data of the 
equipment, which is acquired by the sensor nodes periodically 
through the network. The data vector generated by node at time t are 
shown in Equation (10).

 ,,1 ,2 ,3, , , ,
Tt t t t t

i i ji i ix x x x x = …   
(10)

where j  is the number of physical variables monitored by node i.
Usually, the sensor data are uploaded to the cloud platform for 

storage, calculation, and analysis. However, this transmission process 
takes a long time. As a result, equipment may be damaged due to 
delayed data transmission. To solve the above problems, we deploy 
business data that needs to be processed in a timely manner on the 
edge platform, which can alleviate the huge pressure of massive data 
on the network bandwidth and satisfy the demand of connected 
devices for low latency. Further analyzed from a security perspective, 
the risk of leaking sensitive data during transmission on the public 

FIGURE 7

Flow chart for optimizing attention-LSTM network with GA.
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network is avoided because industrial data are stored and analyzed on 
the edge platform.

4.2.3 Training model hyperparameters in the 
cloud server service layer

This article utilizes the GA-Att-LSTM model, which is 
mainly composed of an input layer, a hidden layer and an  
output layer. During the training phase, the large amount of 
data consumption requires significant computing resources 
such as memory, CPU, and hard disk. To mitigate this, training 
takes place in the cloud service layer. Following this, the trained 
network parameters (weights, biases, etc.) are passed to the  
edge computing node, where real-time facility fault detection is 
performed. Finally, the prediction result is outputted and  
the relevant response (alarm, shutdown, automatic cooling, etc.) 
is executed. The historical data stored in the cloud service  
layer is used as the training data for the model, then the data 
matrix of sensor node at time is represented as shown in 
Equation (11):

 
( ) ( ) ( ) ( ) ( )1 2 3 1, , , , ,t t

i i i i i iX x x x x x− = …   
(11)

4.2.4 Real-time fault detection process in the 
edge node layer

The computational process of the fault detection model proposed 
in this article is clearly defined. First, the edge computing system 
preprocesses the state data collected by sensors from industrial 
equipment. Next, the GA-Att-LSTM model is employed to assess the 
abnormality of the equipment. The steps are as follows:

Step 1: Obtain and preprocess sensor data.
Step  2: Split the dataset into training and testing sets using 

cross-validation.
Step 3: Extract important features from both the training and 

testing sets.
Step  4: Initialize the parameters of the GA-Att-LSTM 

network model.

Step 5: Train the GA-Att-LSTM model using the training and 
testing sets.

Step 6: Output the classification results regarding the operational 
conditions of the industrial equipment.

5 Experiment validation and 
discussion

5.1 Dataset description

To evaluate the efficiency of the proposed GA-Att-LSTM model 
in IIoT fault detection, we utilize a publicly available machine failure 
dataset provided by BigML (Huang and Guo, 2019). This dataset 
consists of 8,784 entries and 28 features, categorized into seven date 
variables, fifteen numerical variables, and four string variables.

5.2 Data preprocessing

Data preprocessing is crucial in fault detection, as sensor data 
from equipment may encounter issues such as noise, missing values, 
inconsistencies, redundant data, and class imbalance. These challenges 
must be addressed through preprocessing techniques to enhance the 
accuracy of analysis and prediction. Figure 9 illustrates the framework 
for data preprocessing.

FIGURE 8

Fault detection process of the GA-Att-LSTM model in IIoT facilities.

Raw data 
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FIGURE 9

The proposed framework for data preprocessing.
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As shown in the figure above, the data preprocessing process 
outlines five key steps. Firstly, data cleaning is performed to 
remove noise and incomplete entries. Next, non-numerical data 
is transformed to ensure consistency. Next, normalization is 
applied to enhance data uniformity. Subsequently, important 
features are selected to improve model performance. Finally, the 
issue of imbalanced positive and negative categories is addressed 
to ensure more accurate predictions. The specific steps are 
detailed as follows:

5.2.1 Data cleaning
Usually we  use raw data which may have problems like 

redundancy, missing, garbled etc. Therefore, we need to perform 
deletion, averaging, filtering and other measures before using 
the data.

5.2.2 Non-numerical transformation
One-hot encoding is a technique that transforms discrete features 

into binary vectors in Euclidean space, enabling classifiers to better 
process categorical data. By mapping each unique value to a binary 
representation, such as encoding eight operator values as vectors like 
[1 0 0 0 0 0 0 0] for operator1, this method enhances feature 
representation and increases dimensionality.

5.2.3 Normalized processing
The data are normalized, i.e., the eigenvalues of the sample are 

converted to the same dimension, and the range of values of each 
feature is mapped uniformly linearly to the interval [0,1]. The 
normalized formula is shown in Equation (12).

 

( )
( ) ( )
( ) ( )

,,
,

, ,

min
max min

t
i qt i q

i q
i q i q

x x
x

x x
−

=
−  

(12)

where ( ) ( ) ( ) ( ) ( )1 2 3 1
, , , , , ,, , , , ,t t

i q i q i q i q i q i qx x x x x x− = …    represents the physical variable 
qmonitored by the sensor node i and the historical data vector stored 
in time t . ( ),max i qx  and ( ),min i qx  are the maximum and minimum 
values of ,i qx  respectively. The optimization process of the optimal 

solution will obviously become smoother and it will be  easier to 
correctly converge to the optimal solution after the error data cancel 
the errors caused by different dimensions during training and after the 
data are normalized.

5.2.4 Important feature selection
When the data collected by various sensors involve multiple 

feature values, not all data’ feature is helpful to the prediction of 
facility failure. To improve calculation efficiency, this article only 
selects the 20 important features that are closely related to the 
equipment operation state by using the random forest classifier 
method. The important feature values are defined in Figure 10.

5.2.5 Imbalanced positive and negative 
categories

The failure feature is utilized as a label and is composed of two 
values: yes and no. “No” represents the normal operation of the 
facilities and refers to positive samples, while “yes” indicates that 
the device is functioning abnormally and refers to negative 
samples. After conducting a statistical analysis, the dataset shows 
that the ratio of positive samples to negative samples is around 
107:1. It is important to note that the raw dataset is extremely 
imbalanced since there are significantly more normal records. In 
particular, we  utilized the synthetic minority oversampling 
technique algorithm (SMOTE) to preprocess the data and balance 
the number of normal and failure cases. This entailed increasing 
the number of failure label samples through interpolation to 
eliminate category imbalances in the training set. Figure  11a 
depicts the actual ratio of positive and negative samples in the 
database, while Figure  11b illustrates the ratio of positive and 
negative samples after preprocessing.

5.3 Validation and evaluation of 
performance

In this paper, common classification metrics are used to 
evaluate the performance of the fault detection model, including 

FIGURE 10

The most important 20-dimensional features proposed.
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accuracy (Acc) (Ogaili et  al., 2024), precision (P) (Wang et al., 
2024), and recall (R) (Wang et al., 2024) and F1-score (Li et al., 
2023c; Li et  al., 2022). Accuracy is the proportion of correctly 
predicted samples out of the total number, calculated as the sum of 
true positives (TP) (Guo et al., 2024) and true negatives (TN) (Lee 
et al., 2024) divided by the sum of TP, TN, false positives (FP) and 
false negatives (FN) (Sultan et  al., 2024). Recall measures the 
proportion of actual positive samples that are correctly identified 
by the model, while precision refers to the proportion of predicted 
positive samples that are actually positive. The F1-score is the 
harmonic mean of precision and recall, providing a balanced 
measure of performance, particularly in imbalanced datasets. The 
respective formulas are as follows:

 
TP TNAcc

TP TN FP FN
+

=
+ + +  

(13)

 
TPP

TP FP
=

+  
(14)

 
TPR

TP FN
=

+  
(15)

 
21

2
TPF score

TP FP FN
− =

+ +  
(16)

where TP represents correctly predicted positive cases, TN refers 
to correctly predicted negative cases, FP indicates incorrectly 
predicted positive cases, and FN represents incorrectly predicted 
negative cases. These terms correspond to the counts in the confusion 
matrix and provide a comprehensive assessment of the classifier’s 
performance in fault detection.

5.4 Results and analysis

5.4.1 Performance evaluation of LSTM model with 
GA

In this paper, the TensorFlow and Keras frameworks are used 
alongside the GA-Att-LSTM algorithm in the context of device fault 
detection in the IIoT. The GA-Att-LSTM model is configured with an 
input layer and output layer of 2 and 20 parameters, respectively, with 
a learning rate of 0.001 to ensure effective convergence. The number 
of hidden layers and the number of nodes in each layer are typically 
determined based on empirical methods, which can result in reduced 
recognition rates for the LSTM model. To improve the efficiency and 
accuracy of the model, we use genetic algorithms to optimise key 
parameters, including the number of hidden layers, the number of 
neurons per layer, and the configuration of fully connected layers. The 
optimised parameters for the LSTM model after 100 iterations are 
shown in Table 1.

Experimental results show that when the GA-Att-LSTM model is 
configured with two layers of 11 and 12 nodes, respectively, and two 
fully connected layers of 15 nodes each, a detection accuracy of 99.6% 
can be achieved. Optimisation by genetic algorithms allows systematic 
exploration and selection of the best hyperparameters, which 
significantly improves the efficiency and reliability of fault detection.

5.4.2 Performance evaluation of LSTM model 
with attention mechanism

The paper experimentally validates the significant enhancement 
of LSTM model performance achieved by integrating attention 
mechanisms and genetic algorithms. We conducted a comparative 
analysis of the PCA-RNN model, the standard LSTM model, and the 
improved LSTM model with attention mechanisms. The average 
evaluation results over ten trials are shown in Table  2. Various 
classification metrics, including accuracy, precision, recall, and 
F1-score, were employed to comprehensively assess each model’s 
performance. These metrics provide insights into the strengths and 

FIGURE 11

The comparison of positive and negative sample counts before and after optimization using SMOTE. (a) The original number of samples; (b) the 
number of samples after preprocessing.
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weaknesses of different models in fault detection tasks, offering 
valuable references for future research.

The experimental results indicate that the GA-Att-LSTM model 
outperforms the other two models, particularly in terms of F1-score. 
This improvement is primarily attributed to the introduction of the 
attention mechanism, which enables the model to more effectively 
identify and focus on key features related to equipment failures. 
Although the accuracy of all three algorithms is similar, the higher 
F1-score of GA-Att-LSTM demonstrates its advantage in balancing 
precision and recall, especially when addressing class imbalance 
issues. This suggests that the GA-Att-LSTM model can reliably detect 
equipment failures in practical applications, reducing both false 
positive and false negative rates, thereby providing significant support 
for the safety and efficiency of industrial IoT systems.

5.4.3 Performance evaluation of the GA-Att-LSTM 
against various machine learning models

To further validate the effectiveness of the proposed GA-Att-
LSTM model, we compared it with several classical machine learning 
models, including MNB, LR, KNN, AdaBoost, and GBC. These 
experiments are designed to systematically assess the performance of 
different models in fault detection tasks. Based on Equations (13–16), 
we specifically analyzed the accuracy, precision, recall and F1-score of 
each model to understand their performance in detecting faults. The 
comparative results of different algorithms under the same 
experimental conditions are illustrated in Figure 12.

As shown in Figure 12, the GA-Att-LSTM model achieves an 
average accuracy of 99.6%, an average precision of 89.8%, an average 
recall of 77.6% and an average F1-score of 84.2%. These metrics 
significantly outperform five other machine learning models (MNB, 
LR, KNN, AdaBoost, GBC) and are slightly higher than those of the 
PCA-RNN model. This remarkable improvement is mainly attributed 
to the effective integration of genetic algorithms and attention 
mechanisms within the GA-Att-LSTM model, which enhances its 
ability to capture important features and complex relationships in the 
data, thereby improving prediction accuracy and robustness. 
Specifically, the GA-Att-LSTM model shows an increase in accuracy 

ranging from 1.1 to 17.9%, an increase in precision ranging from 11.5 
to 54.5%, an increase in recall ranging from 29.1 to 75.3%, and an 
increase in F1-score ranging from 21.4 to 79.9%. These results indicate 
that the GA-Att-LSTM model is outstanding in terms of overall 
performance and balance, thereby improving its generalisation ability. 
The exceptional performance of the model can largely be attributed to 
the effectiveness of the LSTM in handling long-term error data 
received from sensors. In addition, the incorporation of the attention 
mechanism plays a crucial role in the success of the model. By 
introducing the attention mechanism between the LSTM and the 
regression layer, the model processes different input data before 
applying the attention layer. This mechanism adaptively assigns 
different weights to the processed data, allowing the model to 
selectively focus on the most relevant historical sequences, 
significantly improving classification accuracy.

5.4.4 Performance evaluation of GA-Att-LSTM 
across different training stages

During training of the GA-Att-LSTM model, we  introduced 
regularisation parameters to prevent overfitting and ensure that the 
model retains good generalisation capabilities when faced with unseen 
data. Cross-entropy was used as the loss function, which effectively 
reduced training errors and stabilised learning at each training stage. 
In addition, we  chose accuracy as an evaluation metric to 
comprehensively assess the model’s performance; this not only reflects 
the overall predictive ability of the model, but also provides a reference 
for subsequent optimisation. Figure 13 illustrates the changes in the 
model’s performance during training, clearly showing trends in 
training loss and accuracy, which helps to understand the model’s 
behavior at different stages of training and facilitates further tuning 
and improvement.

To further compare the learning performance of GA-Att-
LSTM model during training stage, accuracy and loss values from 
different deep learning models are evaluated using iterative curve 
graphs. In Figure  13, the x-axis represents the number of 
iterations, and the y-axis represents the accuracy and loss function 
values for fault identification in IIoT facilities. From Figure 13a, 

TABLE 1 The results of GA-optimized Att-LSTM parameters.

Number of layers Number of nodes 
each layer

Number of dense 
layers

Number of dense 
layers nodes

Learning rate Acc

1 14 1 12 0.001 0.981

2 (10, 12) 3 (11, 11, 11) 0.001 0.984

1 12 3 (12, 13, 15) 0.001 0.982

1 12 1 13 0.001 0.987

1 15 3 (12, 13, 12) 0.001 0.987

2 (11, 12) 2 (10, 15) 0.001 0.987

2 (11, 12) 2 (15, 15) 0.001 0.996

TABLE 2 Evaluation of different LSTM models.

Model Acc P R F1-score

PCA-RNN 0.991 0.762 0.485 0.589

LSTM 0.995 0.837 0.776 0.804

GA-Att-LSTM 0.996 0.898 0.776 0.842
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FIGURE 12

Different evaluation metrics for different models. (a) Accuracy of different models; (b) precision of different models; (c) recall of different models; (d) 
F1-score of different models.

FIGURE 13

Accuracy and loss curve of GA-Att-LSTM and PCA-RNN in the training stage. (a) Accuracy curve of different network models; (b) loss curve of different 
network models.
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it is evident that as the number of iterations increases, the 
accuracy of both the GA-Att-LSTM and PCA-RNN models 
increases, eventually reaching convergence. However, the GA-Att-
LSTM model achieves faster convergence and higher final 
accuracy than the PCA-RNN model. Figure 13b shows that as the 
number of iterations increases, the loss values of both models 
decrease until convergence. The GA-Att- LSTM model converges 
more quickly and achieves a lower final loss value compared to the 
PCA-RNN model. These results indicate that the proposed 
method has a stronger feature extraction capability and can 
quickly learn fault features, leading to faster and more effective 
model convergence in terms of fault detection.

6 Conclusion

This paper presents an edge-cloud collaboration framework for 
device fault detection using GA-Att-LSTM as the core algorithm. 
The framework computes a large amount of data from the cloud 
layer to the edge layer, which improves the multi-source 
heterogeneous adaptability and reduces the delay. Since traditional 
LSTM networks cannot focus on the important features in the 
input sequence at different time steps, this limits their ability and 
efficiency in processing complex time series data. To address this 
issue, an attention-based LSTM model is introduced that captures 
the attention of spatial variables and time samples, and optimises 
the model hyperparameters using genetic algorithms to improve 
the detection accuracy. Simulation results show that the GA-Att-
LSTM method outperforms six other machine learning algorithms. 
In future work, we plan to improve the fault detection performance 
by considering the balance between high accuracy and low time 
delay in IIoT.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/supplementary material.

Author contributions

JD: Conceptualization, Methodology, Validation, Writing – 
original draft, Writing – review & editing. ZL: Software, Writing – 
review & editing. YZ: Writing – review & editing. JL: Data curation, 
Writing – review & editing. MZ: Writing – review & editing. XY: 
Conceptualization, Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by the National Natural Science Foundation of China (no. 
61971033) and Sichuan Application and Basic Research Funds (no. 
2021YJ0313).

Acknowledgments

We would like to acknowledge the organizations that provided the 
sources of the data used in this work, namely the BigML machine 
learning platform.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Abdul, Z. K., Al-Talabani, A. K., and Ramadan, D. O. (2020). A hybrid temporal 

feature for gear fault diagnosis using the long short term memory. IEEE Sensors J. 20, 
14444–14452. doi: 10.1109/JSEN.2020.3007262

Aboelwafa, M. M., Seddik, K. G., Eldefrawy, M. H., Gadallah, Y., and Gidlund, M. 
(2020). A machine-learning-based technique for false data injection attacks detection 
in industrial IoT. IEEE Internet Things J. 7, 8462–8471. doi: 10.1109/JIOT.2020.2991693

Akgüller, Ö., Batrancea, L. M., Balcı, M. A., Tuna, G., and Nichita, A. (2024). Deep 
learning-based anomaly detection in occupational accident data using fractional 
dimensions. Fractal Fract. 8:604. doi: 10.3390/fractalfract8100604

Al-Haddad, L. A., Jaber, A. A., Hamzah, M. N., and Fayad, M. A. (2024). Vibration-
current data fusion and gradient boosting classifier for enhanced stator fault diagnosis 
in three-phase permanent magnet synchronous motors. Electr. Eng. 106, 3253–3268. doi: 
10.1007/s00202-023-02148-z

Bennacer, L., Amirat, Y., Chibani, A., Mellouk, A., and Ciavaglia, L. (2014). Self-
diagnosis technique for virtual private networks combining Bayesian networks and case-
based reasoning. IEEE Trans. Autom. Sci. Eng. 12, 354–366. doi: 10.1109/
TASE.2014.2321011

Bhatnagar, M., Yadav, A., and Swetapadma, A. (2022). A resilient protection scheme 
for common shunt fault and high impedance fault in distribution lines using wavelet 
transform. IEEE Syst. J. 16, 5281–5292. doi: 10.1109/JSYST.2022.3172982

Bui, K. T., Van Vo, L., Nguyen, C. M., Pham, T. V., and Tran, H. C. (2020). A fault 
detection and diagnosis approach for multi-tier application in cloud computing. J. 
Commun. Networks 22, 399–414. doi: 10.1109/JCN.2020.000023

Chen, Z., Yang, Y., He, C., Liu, Y., Liu, X., and Cao, Z. (2023). Feature extraction 
based on hierarchical improved envelope spectrum entropy for rolling bearing 
fault diagnosis. IEEE Trans. Instrum. Meas. 72, 1–12. doi: 10.1109/
TIM.2023.3277938

Dhibi, K., Fezai, R., Mansouri, M., Trabelsi, M., Kouadri, A., Bouzara, K., et al. (2020). 
Reduced kernel random forest technique for fault detection and classification in grid-
tied PV systems. IEEE J. Photovoltaics 10, 1864–1871. doi: 10.1109/
JPHOTOV.2020.3011068

Feng, Y., Chen, J., Liu, Z., Lv, H., and Wang, J. (2022). Full graph autoencoder for one-
class group anomaly detection of IIoT system. IEEE Internet Things J. 9, 21886–21898. 
doi: 10.1109/JIOT.2022.3181737

Fu, J., Liu, Y., Chao, H., Bhargava, B. K., and Zhang, Z. (2018). Secure data storage and 
searching for industrial IoT by integrating fog computing and cloud computing. IEEE 
Trans. Industr. Inform. 14, 4519–4528. doi: 10.1109/TII.2018.2793350

Guo, W., Zhong, L., Zhang, D., and Li, Q. (2024). Pavement crack detection using 
fractal dimension and semi-supervised learning. Fractal Fractals 8:468. doi: 10.3390/
fractalfract8080468

https://doi.org/10.3389/fnbot.2024.1499703
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.1109/JSEN.2020.3007262
https://doi.org/10.1109/JIOT.2020.2991693
https://doi.org/10.3390/fractalfract8100604
https://doi.org/10.1007/s00202-023-02148-z
https://doi.org/10.1109/TASE.2014.2321011
https://doi.org/10.1109/TASE.2014.2321011
https://doi.org/10.1109/JSYST.2022.3172982
https://doi.org/10.1109/JCN.2020.000023
https://doi.org/10.1109/TIM.2023.3277938
https://doi.org/10.1109/TIM.2023.3277938
https://doi.org/10.1109/JPHOTOV.2020.3011068
https://doi.org/10.1109/JPHOTOV.2020.3011068
https://doi.org/10.1109/JIOT.2022.3181737
https://doi.org/10.1109/TII.2018.2793350
https://doi.org/10.3390/fractalfract8080468
https://doi.org/10.3390/fractalfract8080468


Dong et al. 10.3389/fnbot.2024.1499703

Frontiers in Neurorobotics 14 frontiersin.org

He, Y., Liu, J., Wu, S., and Wang, X. (2023). Condition monitoring and fault detection 
of wind turbine driveline with the implementation of deep residual long short-term 
memory network. IEEE Sensors J. 23, 13360–13376. doi: 10.1109/JSEN.2023.3273279

Huang, H., Ding, S., Zhao, L., Huang, H., Chen, L., Gao, H., et al. (2020a). Real-time 
fault detection for IIoT facilities using GBRBM-based DNN. IEEE Internet Things J. 7, 
5713–5722. doi: 10.1109/JIOT.2019.2948396

Huang, H., and Guo, S. (2019). Proactive failure recovery for NFV in distributed edge 
computing. IEEE Commun. Mag. 57, 131–137. doi: 10.1109/MCOM.2019.1701366

Huang, W., Lin, Y., Liu, M., and Min, H. (2024). Velocity-aware spatial-temporal 
attention LSTM model for inverse dynamic model learning of manipulators. Front. 
Neurorobot. 18:1353879. doi: 10.3389/fnbot.2024.1353879

Huang, H., Zhao, L., Huang, H., and Guo, S. (2020b). Machine fault detection for 
intelligent self-driving networks. IEEE Commun. Mag. 58, 40–46. doi: 10.1109/
MCOM.001.1900283

Hussain, S. S., and Zaidi, S. S. H. (2024). Adaboost ensemble approach with weak 
classifiers for gear fault diagnosis and prognosis in dc motors. Appl. Sci. 14:3105. doi: 
10.3390/app14073105

Kaur, G., and Chanak, P. (2023). An intelligent fault tolerant data routing scheme for 
wireless sensor network-assisted industrial internet of things. IEEE Trans. Industr. 
Inform. 19, 5543–5553. doi: 10.1109/TII.2022.3204560

Kaur, G., Chanak, P., and Bhattacharya, M. (2022). Obstacle-aware intelligent fault 
detection scheme for industrial wireless sensor networks. IEEE Trans. Industr. Inform. 
18, 6876–6886. doi: 10.1109/TII.2021.3133347

Lee, D. C., Jeong, M. S., Jeong, S. I., Jung, S. Y., and Park, K. R. (2024). Estimation of 
fractal dimension and segmentation of body regions for deep learning-based gender 
recognition. Fractal Fractals 8:551. doi: 10.3390/fractalfract8100551

Lei, C., Cui, P., Cao, P., Liu, K., and Song, R. (2021). Research on comprehensive 
stiffness characteristics of angular contact ball bearings under multi-factor coupling 
condition. J. Adv. Mech. Design Syst. Manufact. 15:JAMDSM0073. doi: 10.1299/
jamdsm.2021jamdsm0073

Li, L., Lv, M., Jia, Z., Jin, Q., Liu, M., Chen, L., et al. (2023a). An effective infrared and 
visible image fusion approach via rolling guidance filtering and gradient saliency map. 
Remote Sens. 15:2486. doi: 10.3390/rs15102486

Li, L., Lv, M., Jia, Z., and Ma, H. (2023b). Sparse representation-based multi-focus 
image fusion method via local energy in shearlet domain. Sensors 23:2888. doi: 10.3390/
s23062888

Li, L., Ma, H., and Jia, Z. (2021). Change detection from SAR images based on 
convolutional neural networks guided by saliency enhancement. Remote Sens. 13:3697. 
doi: 10.3390/rs13183697

Li, L., Ma, H., and Jia, Z. (2022). Multiscale geometric analysis fusion-based 
unsupervised change detection in remote sensing images via FLICM model. Entropy 
24:291. doi: 10.3390/e24020291

Li, L., Ma, H., and Jia, Z. (2023c). Gamma correction-based automatic unsupervised 
change detection in SAR images via FLICM model. J. Indian Soc. Remote Sens. 51, 
1077–1088. doi: 10.1007/s12524-023-01674-4

Li, L., Ma, H., Zhang, X., Zhao, X., Lv, M., and Jia, Z. (2024c). Synthetic aperture radar 
image change detection based on principal component analysis and two-level clustering. 
Remote Sens. 16:1861. doi: 10.3390/rs16111861

Li, L., Shi, Y., Lv, M., Jia, Z., Liu, M., Zhao, X., et al. (2024a). Infrared and visible image 
fusion via sparse representation and guided filtering in laplacian pyramid domain. 
Remote Sens. 16:3804. doi: 10.3390/rs16203804

Li, L., Zhao, X., Hou, H., Zhang, X., Lv, M., Jia, Z., et al. (2024b). Fractal dimension-
based multi-focus image fusion via coupled neural P systems in NSCT domain. Fractal 
Fract. 8:554. doi: 10.3390/fractalfract8100554

Lin, C., and Zhang, X. (2024). Fusion inception and transformer network for 
continuous estimation of finger kinematics from surface electromyography. Front. 
Neurorobot. 18:1305605. doi: 10.3389/fnbot.2024.1305605

Liu, J., Liu, H., Chakraborty, C., Yu, K., Shao, X., and Ma, Z. (2023). Cascade learning 
embedded vision inspection of rail fastener by using a fault detection IoT vehicle. IEEE 
Internet Things J. 10, 3006–3017. doi: 10.1109/JIOT.2021.3126875

Liu, M., Yang, K., Zhao, N., Chen, Y., Song, H., and Gong, F. (2021). Intelligent signal 
classification in industrial distributed wireless sensor networks based industrial internet 
of things. IEEE Trans. Industr. Inform. 17, 4946–4956. doi: 10.1109/TII.2020.3016958

Mansouri, M., Dhibi, K., Hajji, M., Bouzara, K., Nounou, H., and Nounou, M. (2022). 
Interval-valued reduced RNN for fault detection and diagnosis for wind energy 
conversion systems. IEEE Sensors J. 22, 13581–13588. doi: 10.1109/JSEN.2022.3175866

Natesha, B. V., and Guddeti, R. M. R. (2021). Fog-based intelligent machine 
malfunction monitoring system for industry 4.0. IEEE Trans. Industr. Inform. 17, 
7923–7932. doi: 10.1109/TII.2021.3056076

Ogaili, A. A. F., Hamzah, M. N., and Jaber, A. A. (2024). Enhanced fault detection of 
wind turbine using extreme gradient boosting technique based on nonstationary 
vibration analysis. J. Fail. Anal. Prev. 24, 877–895. doi: 10.1007/s11668-024-01894-x

Peng, Y., Qiao, W., and Qu, L. (2021). Compressive sensing-based missing-data-
tolerant fault detection for remote condition monitoring of wind turbines. IEEE Trans. 
Ind. Electron. 69, 1937–1947. doi: 10.1109/TIE.2021.3057039

Qin, Y., Yan, Y., Ji, H., and Wang, Y. (2022). Recursive correlative statistical analysis 
method with sliding windows for incipient fault detection. IEEE Trans. Ind. Electron. 69, 
4185–4194. doi: 10.1109/TIE.2021.3070521

Sarmadi, H., and Karamodin, A. (2020). A novel anomaly detection method based on 
adaptive mahalanobis-squared distance and one-class KNN rule for structural health 
monitoring under environmental effects. Mech. Syst. Signal Process. 140:106495. doi: 
10.1016/j.ymssp.2019.106495

Shah, M. Z. H., Ahmed, Z., and Lisheng, H. (2023). Weighted linear local tangent 
space alignment via geometrically inspired weighted PCA for fault detection. IEEE 
Trans. Industr. Inform. 19, 210–219. doi: 10.1109/TII.2022.3166784

Shi, J., Su, Z., Qin, H., Shen, C., Huang, W., and Zhu, Z. (2022). Generalized variable-
step multiscale Lempel-Ziv complexity: a feature extraction tool for bearing fault 
diagnosis. IEEE Sensors J. 22, 15296–15305. doi: 10.1109/JSEN.2022.3187763

Song, C., Liu, S., Han, G., Zeng, P., Yu, H., and Zheng, Q. (2023). Edge-intelligence-
based condition monitoring of beam pumping units under heavy noise in industrial 
internet of things for industry 4.0. IEEE Internet Things J. 10, 3037–3046. doi: 10.1109/
JIOT.2022.3141382

Sultan, H., Ullah, N., Hong, J. S., Kim, S. G., Lee, D. C., Jung, S. Y., et al. (2024). 
Estimation of fractal dimension and segmentation of brain tumor with parallel features 
aggregation network. Fractal Fractals 8:357. doi: 10.3390/fractalfract8060357

Sun, Y., and Yu, J. (2022). Adaptive sparse representation-based minimum entropy 
deconvolution for bearing fault detection. IEEE Trans. Instrum. Meas. 71, 1–10. doi: 
10.1109/TIM.2022.3174278

Wang, L. (2018). Enhanced fault detection for nonlinear processes using modified 
kernel partial least squares and the statistical local approach. Can. J. Chem. Eng. 96, 
1116–1126. doi: 10.1002/cjce.23058

Wang, T., Liu, Z., Lu, G., and Liu, J. (2021). Temporal-spatio graph based spectrum 
analysis for bearing fault detection and diagnosis. IEEE Trans. Ind. Electron. 68, 
2598–2607. doi: 10.1109/TIE.2020.2975499

Wang, X., Liu, Z., Zhang, L., and Heath, W. P. (2022). Wavelet package energy 
transmissibility function and its application to wind turbine blade fault detection. IEEE 
Trans. Ind. Electron. 69, 13597–13606. doi: 10.1109/TIE.2022.3146535

Wang, J., Su, N., Zhao, C., Yan, Y., and Feng, S. (2024). Multi-modal object detection 
method based on dual-branch asymmetric attention backbone and feature fusion 
pyramid network. Remote Sens. 16:3904. doi: 10.3390/rs16203904

Xu, J., Fang, H., Zhang, B., and Guo, H. (2022). High-frequency square-wave signal 
injection based sensorless fault tolerant control for aerospace FTPMSM system in 
fault condition. IEEE Transac. Transport. Elect. 8, 4560–4568. doi: 10.1109/
TTE.2022.3170304

Xue, M., Yan, H., Wang, M., Shen, H., and Shi, K. (2022). LSTM-based intelligent fault 
detection for fuzzy Markov jump systems and its application to tunnel diode circuits. 
IEEE Trans Circuits Syst II Express Briefs 69, 1099–1103. doi: 10.1109/
TCSII.2021.3092627

Yu, W., Liu, Y., Dillon, T., and Rahayu, W. (2023). Edge computing-assisted IoT 
framework with an autoencoder for fault detection in manufacturing predictive 
maintenance. IEEE Trans. Industr. Inform. 19, 5701–5710. doi: 10.1109/
TII.2022.3178732

Yuan, X., Li, L., Shardt, Y. A. W., Wang, Y., and Yang, C. (2021). Deep learning with 
spatiotemporal attention-based LSTM for industrial soft sensor model development. 
IEEE Trans. Ind. Electron. 68, 4404–4414. doi: 10.1109/TIE.2020.2984443

Zayed, S. M., Attiya, G., El-Sayed, A., Sayed, A., and Hemdan, E. E. D. (2023). An 
efficient fault diagnosis framework for digital twins using optimized machine learning 
models in smart industrial control systems. Int. J. Comput. Intell. Syst. 16:69. doi: 
10.1007/s44196-023-00241-6

Zhang, X., Ge, Y., Wang, Y., Wang, J., Wang, W., and Lu, L. (2024). Residual learning-
based robotic image analysis model for low-voltage distributed photovoltaic fault 
identification and positioning. Front. Neurrobot. 18:1396979. doi: 10.3389/
fnbot.2024.1396979

Zhang, J., Song, X., Gao, L., Shen, W., and Chen, J. (2022). L2-norm shapelet dictionary 
learning-based bearing-fault diagnosis in uncertain working conditions. IEEE Sensors 
J. 22, 2647–2657. doi: 10.1109/JSEN.2021.3139844

Zhang, K., Tang, B., Deng, L., and Yu, X. (2021). Fault detection of wind turbines by 
subspace reconstruction-based robust kernel principal component analysis. IEEE Trans. 
Instrum. Meas. 70, 1–11. doi: 10.1109/TIM.2021.3075742

Zhang, X., Tian, H., Zheng, X., and Zeng, D. D. (2023). Robust monitor for industrial 
IoT condition prediction. IEEE Internet Things J. 10, 8618–8629. doi: 10.1109/
JIOT.2022.3222439

Zhi, Z., Liu, L., Liu, D., and Hu, C. (2022). Fault detection of the harmonic reducer 
based on CNN-LSTM with a novel denoising algorithm. IEEE Sensors J. 22, 2572–2581. 
doi: 10.1109/JSEN.2021.3137992

https://doi.org/10.3389/fnbot.2024.1499703
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.1109/JSEN.2023.3273279
https://doi.org/10.1109/JIOT.2019.2948396
https://doi.org/10.1109/MCOM.2019.1701366
https://doi.org/10.3389/fnbot.2024.1353879
https://doi.org/10.1109/MCOM.001.1900283
https://doi.org/10.1109/MCOM.001.1900283
https://doi.org/10.3390/app14073105
https://doi.org/10.1109/TII.2022.3204560
https://doi.org/10.1109/TII.2021.3133347
https://doi.org/10.3390/fractalfract8100551
https://doi.org/10.1299/jamdsm.2021jamdsm0073
https://doi.org/10.1299/jamdsm.2021jamdsm0073
https://doi.org/10.3390/rs15102486
https://doi.org/10.3390/s23062888
https://doi.org/10.3390/s23062888
https://doi.org/10.3390/rs13183697
https://doi.org/10.3390/e24020291
https://doi.org/10.1007/s12524-023-01674-4
https://doi.org/10.3390/rs16111861
https://doi.org/10.3390/rs16203804
https://doi.org/10.3390/fractalfract8100554
https://doi.org/10.3389/fnbot.2024.1305605
https://doi.org/10.1109/JIOT.2021.3126875
https://doi.org/10.1109/TII.2020.3016958
https://doi.org/10.1109/JSEN.2022.3175866
https://doi.org/10.1109/TII.2021.3056076
https://doi.org/10.1007/s11668-024-01894-x
https://doi.org/10.1109/TIE.2021.3057039
https://doi.org/10.1109/TIE.2021.3070521
https://doi.org/10.1016/j.ymssp.2019.106495
https://doi.org/10.1109/TII.2022.3166784
https://doi.org/10.1109/JSEN.2022.3187763
https://doi.org/10.1109/JIOT.2022.3141382
https://doi.org/10.1109/JIOT.2022.3141382
https://doi.org/10.3390/fractalfract8060357
https://doi.org/10.1109/TIM.2022.3174278
https://doi.org/10.1002/cjce.23058
https://doi.org/10.1109/TIE.2020.2975499
https://doi.org/10.1109/TIE.2022.3146535
https://doi.org/10.3390/rs16203904
https://doi.org/10.1109/TTE.2022.3170304
https://doi.org/10.1109/TTE.2022.3170304
https://doi.org/10.1109/TCSII.2021.3092627
https://doi.org/10.1109/TCSII.2021.3092627
https://doi.org/10.1109/TII.2022.3178732
https://doi.org/10.1109/TII.2022.3178732
https://doi.org/10.1109/TIE.2020.2984443
https://doi.org/10.1007/s44196-023-00241-6
https://doi.org/10.3389/fnbot.2024.1396979
https://doi.org/10.3389/fnbot.2024.1396979
https://doi.org/10.1109/JSEN.2021.3139844
https://doi.org/10.1109/TIM.2021.3075742
https://doi.org/10.1109/JIOT.2022.3222439
https://doi.org/10.1109/JIOT.2022.3222439
https://doi.org/10.1109/JSEN.2021.3137992

	Real-time fault detection for IIoT facilities using GA-Att-LSTM based on edge-cloud collaboration
	1 Introduction
	2 Architecture principle and design
	3 Methodology
	3.1 Basic recurrent neural network
	3.2 Long short-term memory model
	3.3 Attention mechanism
	3.4 GA-Att-LSTM model

	4 Fault detection principle and design
	4.1 Fault detection with traditional method
	4.2 Fault detection with GA-Att-LSTM algorithm
	4.2.1 Principle of fault detection for edge-cloud collaboration
	4.2.2 Data acquisition stage
	4.2.3 Training model hyperparameters in the cloud server service layer
	4.2.4 Real-time fault detection process in the edge node layer

	5 Experiment validation and discussion
	5.1 Dataset description
	5.2 Data preprocessing
	5.2.1 Data cleaning
	5.2.2 Non-numerical transformation
	5.2.3 Normalized processing
	5.2.4 Important feature selection
	5.2.5 Imbalanced positive and negative categories
	5.3 Validation and evaluation of performance
	5.4 Results and analysis
	5.4.1 Performance evaluation of LSTM model with GA
	5.4.2 Performance evaluation of LSTM model with attention mechanism
	5.4.3 Performance evaluation of the GA-Att-LSTM against various machine learning models
	5.4.4 Performance evaluation of GA-Att-LSTM across different training stages

	6 Conclusion

	References

