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As robots become integral to various sectors, improving human-robot

collaboration is crucial, particularly in anticipating human actions to enhance

safety and e�ciency. Electroencephalographic (EEG) signals o�er a promising

solution, as they can detect brain activity precedingmovement by over a second,

enabling predictive capabilities in robots. This study explores how EEG can be

used for action anticipation in human-robot interaction (HRI), leveraging its

high temporal resolution and modern deep learning techniques. We evaluated

multiple Deep Learning classification models on a motor imagery (MI) dataset,

achieving up to 80.90% accuracy. These results were further validated in a

pilot experiment, where actions were accurately predicted several hundred

milliseconds before execution. This research demonstrates the potential of

combining EEG with deep learning to enhance real-time collaborative tasks,

paving the way for safer and more e�cient human-robot interactions.
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1 Introduction

The ubiquity and omnipresence of technology in modern life has raised the necessity
in understanding how humans and machines can interact in productive, safe, and
fulfilling ways. Specifically, robots represent a new frontier for human-machine interaction,
becoming increasingly prevalent and versatile in recent decades. Their capabilities now
span a wide range of tasks, significantly impacting various sectors and daily life (Graetz and
Michaels, 2018): automated guided vehicles move packages around warehouses (Bogue,
2016); industrial robots assemble complex machinery, such as cars (Brogårdh, 2007);
educational robots provide children with an introduction to programming and logic
(Atman Uslu et al., 2023); service robots spare users the work of performing tedious
household chores (Sahin and Guvenc, 2007); and these are but a few examples from
the universe of potential applications. As scenarios of human-robot interaction grow in
number, so does the need to address the technical, ethical, economical, and sociological
questions behind them. A constant area of research in this field is the search for new ways
for humans and robots to collaborate in order to complete a task (Arents et al., 2021), to
which the ability to anticipate human action is crucial.
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Interestingly, electroencephalography (EEG) can provide us
with a way of detecting action intention before its onset. EEG is
a functional imaging technique with high temporal resolution, and
has been shown to detect changes in brain activity preceding action
by over 1-s (Brunia et al., 2011). Further, mobile EEG systems are
now more common than ever; they are also relatively inexpensive,
non-invasive, and considerably easier to set up than when first
introduced (Biasiucci et al., 2019). As a result, EEG signals offer a
promising data source for achieving action anticipation in human-
robot interaction (HRI) applications.

In addition, modern Deep Learning techniques, such as
Convolutional Neural Networks (CNN), can support multi-modal
data and end-to-end time series classification, allowing for the
extraction of useful action anticipation features from EEG data
with very low latency. According to previous works, brain regions
responsible for motor action exhibit distinct responses prior to
motion onset, which can be exploited to anticipate action through
the use of Machine Learning techniques, both during imagined and
executed movement (Brunia et al., 2011; Lew et al., 2012; Planelles
et al., 2014; Buerkle et al., 2021).

Due to the broad range of contexts in which humans and
robots interact, and the different ways in which they do so, it is
important to approach any HRI challenge under a clear and concise
definition for which interactions we seek to augment. In this work,
we will focus on a more strict definition of HRI as the successive
manipulation of the same object by a human and a robot. Having
established action anticipation as playing a fundamental role in
cooperation between humans and robots, the motivation behind a
system capable of predicting human limb motion in an accurate,
timely manner, becomes clear.

This paper aim to provide a basis for the comparison of
Machine Learningmethodologies that use EEG signals to anticipate
action, by performing an evaluation of different Deep Learning,
namely CNN-based, approaches for the task of action anticipation
from EEG signals. The resulting action anticipation model should
also be capable of anticipating action within a short amount of
time. Furthermore, this work aims to compare Deep Learning
methodologies for the task of action anticipation using EEG
through novel performance metrics, providing the basis for an
action anticipation system which can be deployed and evaluated in
online HRI experiments.

The main contributions of this work are:

• Proposing and evaluating Deep Learning models for low-
latency action detection and anticipation using EEG signals;

• Establishing a novel metric that combines classification time
advantage with a measure of its consistency, quantifying each
model’s action anticipation capabilities;

• Obtaining and analyzing a pilot-experiment dataset for action
anticipation in an HRI task, with time-labeled EEG signals.

2 Background

2.1 Action anticipation in HRI

A wide range of issues must be considered when developing
physical robotic systems made to interact with humans. These

robots must not only be safe and reliable, but also be perceived as
such by their human counterparts. However, the unpredictability
of anthropic environments requires robots to behave with at least
some degree of autonomy, requiring careful design and control.

In their “Atlas of physical Human-Robot interaction”, De Santis
et al. (2008) portray dependability in physical HRI as the interplay
between 5 key attributes: safety, reliability, availability, integrity,
and maintainability. Of these, safety, in particular, relies on an
accurate anticipation and modeling of human action. For physical
HRI to be safe, collisions must be avoided, even at the cost of
risking task completion. To achieve this, changes to the mechanical
design of the robots may be made, such as using lighter materials,
or applying compliant transmissions; however, safety can also be
improved by equipping the robot or its environment with adequate
sensors, with the goal of obtaining a model of human behavior that
can inform the robot’s control and decision systems.

Robot reliability in physical HRI can also benefit from
integration of action anticipation into the control and decision
system: more accurate information about human action can
improve fault-handling by allowing the robot to identify potential
changes in its environment and the objects it is manipulating.
By potentially preventing unsafe robot actions, access to this
information can also avoid triggering fail-safe mechanisms that
lower robot uptime, and may have a downstream negative effect in
the production process.

Ultimately, a physical HRI system is made safer and
more reliable through the coexistence of proactive and reactive
behaviors. To enable the former, action anticipation systems
are fundamental.

2.2 Electroencephalography for action
anticipation

Nearly sixty years ago, Kornhuber and Deecke (1965)
published their findings regarding the detection of a readiness
potential preceding voluntary, self-paced movement. This
bereitschaftspotential (BP), referred to using the original German
term, is made up of two main components: early BP, beginning
approximately 1.5 s before movement onset, has a very low
amplitude; late BP starts 0.5 s before action and exhibits greater
amplitude, making it easier to detect. This potential can be detected
in electrodes placed over the Supplementary Motor Area (SMA)
and Primary Motor Area (PMA).

The BP is the earliest of three components which make
up Movement-Related Cortical Potentials (MRCPs). As action is
executed, a Motor Potential can be detected over the Primary
Motor Area, followed by a less pronouncedMovement-Monitoring
Potential (do Nascimento et al., 2006).

When movement is performed in response to a cue, rather than
in a self-paced manner, a Contingent Negative Variation (CNV)
occurs rather than the BP. This phenomenon is also a negative
potential, but presents a different spatial distribution, originating
from a region anterior to that of the BP, the dorsal Premotor Cortex
(Pfurtscheller and Silva, 1999). Debate exists about whether late
CNV and BP components constitute the same phenomenon, as
these exhibit a number of similarities (Grünewald et al., 1979).
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Before movement onset, it is also possible to identify
Event-Related desynchronization (ERD) starting at roughly
the same time as the BP (Pfurtscheller and Silva, 1999), even
in people suffering from certain neurological conditions,
such as Parkinson’s disease (Defebvre et al., 1999). These
phenomena consist primarily of contralateral-dominant µ and
lower β ERD.

The challenges of action anticipation and the detection of
motor execution or motor imagery (MI) using EEG are closely
related, though they differ primarily in their application contexts.
Motor imagery detection, frequently explored within the scope
of restorative BCIs, can typically accommodate a few hundred
milliseconds of latency to yield precise detection. The performance
of MI-based BCI systems is generally evaluated based on metrics
like accuracy and decision rate (often reported per minute).
However, in time-sensitive applications, early EEG markers may
need to be prioritized over robustness to ensure prompt decision-
making. In these cases, system performance is assessed not only in
terms of accuracy, but also by the timing advantage it provides in
relation to task initiation.

2.3 Processing of EEG signals for action
anticipation

In the past, action anticipation using EEG signals was generally
performed by applying a series of filtering techniques, followed
by a linear classifier to detect MRCPs before movement onset
(Shakeel et al., 2015). This standard pipeline usually begins
with a low-pass FIR filter, followed by spatial filtering, such as
through a Large Laplacian Filter (Jochumsen et al., 2013) or an
Optimized Spatial Filter (Niazi et al., 2011), and a Matched Filter
obtained by averaging training trials to uncover the subject-specific
MRCP waveform. Finally, a decision is made by a linear classifier
such as SVM (Kato et al., 2011) or LDA (Lew et al., 2012),
producing a Receiver Operating Curve which can be used to assess
performance characteristics.

This standard pipeline is simple, explainable, and capable of
anticipating action with appreciable accuracy and low latency in a
laboratory setting. Its simplicity, however, also limits its usefulness
in more realistic scenarios: occurrence of Slow Cortical Potentials
similar to the MRCP, or movements unrelated to the task at
hand lead to a considerable number of false positive detections
(Jiang et al., 2015); variations in the MRCP over time due to
a number of factors (speed, force of movement, mental effort,
subject mood, among others have been identified as altering MRCP
characteristics, reviewed in Shibasaki and Hallett (2006) and non-
Gaussian noise, such as the result of eye or muscle movement,
break the primary assumptions of the Matched Filter (Turin, 1960),
degrading system performance.

Recently, developments in Deep Learning have introduced
competing strategies for this task: the use of deep Neural
Networks, such as Convolutional Neural Networks (Valenti
et al., 2021), Long Short-Term Memory Recurrent Neural
Networks (Buerkle et al., 2021), and transformers (Al-
Quraishi et al., 2022) potentially allows for the detection of
these events without resorting to explicit feature selection

or extraction, opening the door to end-to-end classification
pipelines capable of dealing with the shortcomings of the
standard approach.

Another significant trend on this topic is the use of time-
frequency decomposition features to detect action-preceding ERD,
in conjunction with MRCP, in order to improve robustness (Ibáñez
et al., 2014), but calculating these features increases computational
complexity and requires the use of larger time windows, potentially
introducing latency. Other design choices explored in literature
to augment performance include employing more sophisticated
spatial filtering techniques (Ahmadian et al., 2013), selecting
filter frequency bands in a subject-specific, section wise manner
(Jeong et al., 2020), and introducing detection constraints, such as
requiring a certain number of consecutive positive classifications, to
reduce the amount of false positives and improve consistency (Xu
et al., 2014).

2.4 State-of-the-art and current gaps

When exploring literature on action anticipation using EEG, it
is important to be mindful that the status quo on the topic and,
more broadly, all of EEG signal analysis, is not well-defined, lacking
a consistent, standardized approach to both signal processing and
experimental setup (Biasiucci et al., 2019). Nevertheless, identifying
gaps requires at least a qualitative understanding of the state-of-the-
art solutions proposed.

A major factor to take into account when evaluating the
performance of the systems tested is the balance between the True
Positive Rate and detection latency, and the False Positive Rate. As
the standard pipeline makes use of linear classifiers, designers must
make a decision on this trade-off using the convex part of the ROC.
Increasing the TPR and detecting movement intention earlier by
lowering the detection threshold leads to more spurious detections,
which may be unsuited to some applications.

Using a standard pipeline, TPRs in the 70 to 80% range are
usually reported, as reviewed in Shakeel et al. (2015). Studies
cited in this work present FPRs between 1 and 4 detections per
minute, achieving latencies as low as -200 ms. Because most of
these studies focus on BCI applications, low FPRs are generally
prized over early detections when selecting the decision threshold.
Performance generally degrades significantly when the system is
tested in an online setting. With Deep Learning methods, Buerkle
et al. (2021) achieve accuracies as high as 90%, with considerably
earlier detections, anticipating movement by as much as 500 ms in
some subjects.

Presently, literature on action anticipation from EEG presents
the following gaps: since studies focus on BCI, experiments present
low ecological validity for HRI applications, usually consisting of
button-pressing or ankle dorsiflexion tasks which are unnatural and
unusual in human-robot cooperation environments; exploration
of Deep Learning capabilities has been limited; training necessary
to develop a Matched Filter is lengthy, making the systems
less practical. Additionally, there is no standardized way to
represent the reliability/latency trade-off, similar to a Receiver-
Operating Characteristic Curve, which could make the integration
of these systems in robotic control strategies simpler, by allowing
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designers of such systems to select the optimal trade-off for
specific applications.

3 Materials and methods

3.1 Experimental stages and setup

The data used to support this work was obtained from two
experiments. To ensure model validity, the experimental protocol
was similar between experiments. The dataset used to develop and
compare tentative models was produced by Farabbi et al. (2022)
during a Motor-Imagery BCI experiment with a Baxter Robot
(Rethink Robotics, Bochum, Germany). Further, a pilot experiment
was conducted, using a Kinova robotic armGen3 (Kinova Robotics,
Boisbriand, Quebec, Canada) involving realized motor execution,
to serve as a proof-of-concept.

During both experiments, participants were seated in front
of a robot (a Baxter, in the first stage, and a Kinova Gen3 ultra
lightweight robot arm, in the pilot study stage), and had their
EEG signals recorded using 32 active electrodes (actiCAP, Brain
Products GmbH, Gilching, Germany) through a wireless EEG
amplifier (Liveamp 32, Brain Products GmbH, Gilching, Germany)
at 500 hertz sampling frequency, including 3-axial accelerometer.

Cues were issued using a 50 Hz LCD monitor placed behind
the robot, generated and timed using NeuXus (Legeay et al.,
2022), according to the Graz paradigm (Pfurtscheller et al.,
2003). EEG recordings and cues were synchronized through
LabStreamingLayer (Kothe et al., 2014).

Additionally, during the pilot stage, subjects also had their
eye movement and pupil data recorded using a Pupil Labs Core
headset. Due to data corruption as a result of environmental factors
affecting calibration, this modality was not considered for further
analysis, but is nevertheless included in the dataset.

3.2 Motor-imagery robot-arm control
dataset

The dataset used to develop and evaluate the models described
in this work was originally produced by Farabbi et al. (2022). The
experiment, performed to support the authors’ work on Motor-
Imagery detection during Robot-Arm Control of a Baxter robot,
offers a good starting point for the exploration of EEG-signal
classification methodologies during HRI tasks. This context is
important, as interaction with robots can have an impact on EEG
measurements and classification performance (Rihet et al., 2024).

This experiment involved 12 healthy, BCI-naïve subjects, over
the course of three sessions, each with three separate conditions,
spanning three phases. The first condition was a resting state,
during which the user looked at a neutral visual cue (cross) on a
screen in front of them for two minutes. The other two conditions,
performed in random order, were first and third-person robot arm
control perspectives. Each condition was split into a training and a
testing phase. During each of these phases, subjects performed 40
Motor Imagery trials (20 with each arm, in random order), with the
start being signalled by a red arrow on screen, during which they

were asked to imagine a reaching motion to an object in front of
the robot, thus simulating an interaction scenario.

3.3 Pilot study

For the pilot experiment, five subjects were recruited, each
providing their informed consent. The experiment consisted of two
conditions: Motor Imagery (“NOMOVE”), and Motor Execution
(“MOVE”), both performed during the same session. During each
condition, subjects performed a total of 16 trials, with 8 trials for
each arm, in a randomized order. The order in which subjects
performed each condition was also random: the initial condition
was randomly selected, its trials were performed in succession, and
then followed by the other condition’s trials.

Participants were sat in front of a robotic arm, behind which
was a computer screen displaying “Graz” paradigm cues, and were
asked to remain motionless, with each hand placed forward, upon a
table in front of them (Figure 1). An object was placed centrally,
between the robot and the subject, with markers indicating
its 3 possible positions: “L”-left; “C”-central, “R”-right. Before
each experiment, a trial run was conducted during which study
participants could prepare for the experimental tasks, ensuring they
understood the experimental paradigm and could interact safely
with the robot.

Experiments began with a 15-s setup wait. During each trial,
lasting 18 seconds, a cross would appear on-screen to signal the
start for 4 s (baseline); a red arrow would then point to either
side of the screen for 1 second; subjects were instructed to, upon
disappearance of the arrow, place the object in front of them in the
marker corresponding to the side the arrow had pointed, using the
arm on that side, during Motor Execution condition, or imagine
the aforedescribed movement, during Motor Imagery. The robot
would then pick up the object on that side, and place it on its
central position once again, coinciding with the end of the trial;
during the Motor Imagery condition, the object remained in its
central position for the duration of the trials. Trials were followed
by an inter-trial period lasting 4 seconds. Each condition lasted for
around 8 minutes.

3.4 Classification software and hardware

The Deep Learning classification models described, trained,
and evaluated in this work were implemented in Python (version
3.11.4) using the tensorflow package (v2.12.0) (keras backend).
Pre-processing was done using the mne-python (v1.4.2) and scipy

(v1.11.4) packages. The machine used to run this software was
equipped with an Intel Core i7-8565U CPU (4 cores, 8 logical
threads, 1.80 GHz), and 16 GB of RAM, with a Windows 10
64-bit OS.

3.5 Signal pre-processing

To prepare EEG data for classification, the following steps were
followed: a one-pass, zero-phase, FIR high pass filter was applied at
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FIGURE 1

Pilot experiment setup. (A) Screen displaying visual cues. (B) Kinova lightweight robotic arm. (C) Pick-and-place task target object. (D) Participant

wearing the 32 electrode EEG system.

0.1 hertz to remove baseline drift; a one-pass, zero-phase, FIR notch
filter was applied at 50 hertz to remove grid interference; Common
Average Referencing was applied, in order to prevent the signal
from being biased toward specific areas over the scalp; Independent
Component Analysis was then performed on the signal to remove
muscle artifact components (Dharmaprani et al., 2016).

The threshold for the removal of ICA components was selected
to exclude only blatant artifacts: the goal of this step was not to
remove all artifacts, since this cannot be done in an online setting,
thus limiting model resilience and validity, but rather to minimize
the number of epochs heavily corrupted by artifacts, since the
number of examples used to train the models is very low, and this
could significantly impact training outcomes.

The signal was then epoched, selecting the intervals spanning

[0, 1] (containing action anticipation) and [−1, 0] (no action
anticipation) seconds relative to the arrow cue appearing on-screen.
Different window lags were also used, in order to characterize
action anticipation performance, as will be described in more detail
in Section 3.7.

3.6 Signal classification models

The following Deep Learning classifiers were evaluated: a
Multilayer Perceptron (henceforth MLP); a Deep CNN with an
encoding convolutional block and a fully-connected block (CNN);
a shallow, fully convolutional CNN (CNN_shallow); and a CNN,
Long Short-Term Memory hybrid architecture (CNN_LSTM).

The rationale behind the choice of these architectures was
the following: CNNs have been explored in literature for basing
numerous BCI systems, as highlighted by Lotte et al. (2018); as
such, several CNN-based architectures were evaluated, namely a
deep CNN, similar to the one proposed by Cecotti and Graser
(2010) for P300 identification, a shallow CNN, which Schirrmeister
et al. (2017) demonstrated could outperform FBCSP for MI
detection, and a CNN-LSTM hybrid, to explore the viability of
combining architectures which had demonstrated the ability to
correctly classify action anticipation EEG signals (Buerkle et al.,
2021). Furthermore, and considering the low sample size, which
can compromise the performance of CNN models, a more generic,
rudimentary MLP was implemented, as well as a more traditional
Machine Learning approach, using Linear Discriminant Analysis
on a Matched Filter output (Niazi et al., 2011).

The MLP classifier was tested to offer a baseline to compare
the more sophisticated CNNs against. This classifier features two
fully-connected layers with ReLU activation, withU units each, and
an output unit using sigmoid activation. Use of a dropout layer
between each fully-connected layer was also tested.

The CNN classifier features a convolutional block and a fully-
connected block. The convolutional block is constituted by a stack
of two 2-D convolutional layer and maximum pooling (2× 2) layer
sequences; each convolutional layer features F filters, k × k kernel
size, and ReLU activation. The fully-connected block has two fully-
connected layers with U units and ReLU activation, followed by an
output unit with sigmoid activation. Use of a dropout layer between
convolutional layers, and between fully-connected layers, was once
again tested.
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The CNN_shallow classifier is fully-convolutional, based on the
shallow architecture featured in the work of Schirrmeister et al.
(2017). This classifier features a single convolutional layer, F filters,
k×k kernel, followed by amaximum pooling layer (10×10), ending
with an output unit using sigmoid activation.

The CNN_LSTM classifier is a hybrid architecture, featuring a
convolutional encoding block followed by an LSTM decision layer.
The convolutional block is similar to the one used for the deep
CNN, but is followed by a layer of U LSTM units, followed once
again by an output unit using sigmoid activation.

Additionally, a more traditional Machine Learning approach
was implemented, using an Effect-Matched Spatial Filter to
generate a surrogate channel (Schurger et al., 2013), followed
by a Matched Filter produced by averaging training trials, with
classification performed by Linear Discriminant Analysis. This
method has been used extensively for MRCP detection for action
anticipation (Niazi et al., 2011).

Alternative approaches considered, implemented, but excluded
from this paper include an LSTM DNN, and a Low-Frequency
Asynchronous Detector-based classifier. The former was excluded

TABLE 1 MLP model parameters (naming according to keras layer used).

Layer # Filters/units Filter size Stride Activation

Input - - - -

Dense 128 - - ReLU

Dense 128 - - ReLU

Dense 1 - - Sigmoid

TABLE 2 CNNmodel parameters (naming according to keras layer used).

Layer # Filters/units Filter size Stride Activation

Input - - - -

Conv2D 16 9× 9 1 x 1 ReLU

MaxPooling2D - 2× 2 1 x 1 -

Conv2D 16 9 x 9 1× 1 ReLU

MaxPooling2D - 2× 2 1 x 1 -

Flatten - - - -

Dense 64 - - ReLU

Dense 64 - - ReLU

Dense 1 - - Sigmoid

TABLE 3 CNN_shallow model parameters (naming according to keras

layer used) using time-frequency features.

Layer # Filters/units Filter size Stride Activation

Input - - - -

Conv2D 8 2× 2 1× 1 ReLU

MaxPooling2D - 10× 10 1 x 1 -

Flatten - - - -

Dense 1 - - Sigmoid

due to poor performance relative to training time, and the latter
is not shown as it achieved (marginally) lower performance than
the MF approach, which was thus selected to represent more
traditional methodologies. Time-frequency decomposition prior
to classification was also explored, using Short-Time Fourier
Transform, and Gabor Wavelets, both of which underperformed
relative to temporal data classification.

3.7 Time advantage estimation

The task of action anticipation seeks to provide a robotic
control and decision system with a time advantage relative to
the onset of human motion. However, in the literature, examples
of a unifying time advantage metric are scarce, and generally
context-specific, as previously highlighted. Let the Total Time
Advantage (TTA) the action anticipation system provides, relative
to movement onset, be expressed as the difference between the
computational time the system requires to output a decision
(henceforth Computational Time Delay (CTD)), and the time
advantage of the earliest sample the classifier consistently labels
as preceding action, which we will refer to as Decision Time
Advantage (DTA).

Obtaining a measure of CTD is straightforward: the
computation time spent applying pre-processing and making
a prediction for each epoch must be tallied, and a distribution may
then be estimated. The computational time delay is the sum of the
processing and inference time spent per epoch.

Defining the DTA requires handling the trade-off between
decision reliability and latency. Due to false positives, taking
the earliest anticipation-labeled sample would provide an
unrealistic measure; conversely, requiring the classifier to make
an uninterrupted string of positive classifications could provide
an overly pessimist reading, and put an arbitrary restriction
on downstream applications, which may prize low latency over
precision. Nevertheless, the balance between spurious detections
and time advantage provided is generally opaque.

We may thus combine latency measures with a measure of
classification consistency to produce our DTA. As such, we will
define our DTA based on a consistency parameter k, such that
our metric DTAk becomes: the earliest point in time at which the
classifier reaches a true-positive rate of k%, and after which this
value remains above k.

TABLE 4 CNN_LSTMmodel parameters (naming according to keras layer

used).

Layer # Filters/units Filter size Stride Activation

Input - - - -

Conv2D 8 2 x 2 1 x 1 ReLU

MaxPooling2D - 2 x 2 1 x 1 -

Conv2D 1 2 x 2 1 x 1 ReLU

MaxPooling2D - 2 x 2 1 x 1 -

LSTM 8 - - ReLU

Dense 1 - - Sigmoid
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To estimate this value, a sliding window was moved from 1
second before the cue to cue onset, in 0.1 second time increments;
all pre-processing steps were applied to samples generated this
way, labeled by the classifiers. The accuracy at each of these
time increments was computed, and PCHIP interpolation was
performed to produce a spline which could be used to obtain
an estimate of DTAk for each classifier at several k values. Note
that, since positive labels were considered true positives up to
1.5 seconds before movement onset (when MRCP is expected to
begin), the accuracy and TPR are effectively the same for the sliding
windows used.

3.8 Training and performance evaluation
methodology

The Adam optimizer (Kingma and Ba, 2017) was used to train
the classifiers, with a binary cross-entropy loss. Classifiers were
trained for each subject/condition/session trio. The trained models
were saved, and then evaluated on a validation set, randomly
sampled from all epochs (20% validation split). Model performance
was evaluated based on four different metrics: accuracy, precision,
recall, and F1-score (harmonic mean of precision and recall). For
each model parameter, a performance analysis was conducted, in
order to select the most adequate values. Final parameters and
network configurations are presented in Tables 1–4.

From the first stage dataset, data were used from all 12 subjects,
over the three sessions, in the training (offline) phase of the first
and third person conditions, resulting in 72 datasets. Since the pilot
dataset features only 5 subjects, performing two conditions over a
single session, 10 train/validation runs were performed to obtain a
more representative performance distribution.

3.9 Statistical analysis

To compare the accuracy of each different classifier, the Mann-
Whitney U test was employed (Singh et al., 2015). Mann-Whitney
U is a non-parametric test of the hypothesis that, given two
samples x and y from different populations, the probability that x
is greater than y is equal to the probability that y is greater than
x. This method was chosen due to the low sample size and non-
normal distribution of the populations. A significance level of 5%
was admitted.

4 Results

4.1 Classifier architecture performance

Among the four models tested, the MLP classifier presented
the highest classification scores, with a mean accuracy of 80.9%
and F1-Score of 81.54%, followed by the deep CNN, presented
in Table 5. According to results the of the Mann-Whitney U test,
MLP significantly outperforms the CNN_shallow (p = 0.012)

TABLE 5 Classifier architecture performance, first stage dataset.

Accuracy F1-score Precision Recall

Classifier Mean σ Mean σ Mean σ Mean σ

MLP 80.90 13.05 80.62 13.74 83.51 13.15 81.54 12.08

CNN 78.73 16.86 81.15 14.72 76.04 15.83 77.88 13.88

CNN_shallow 73.87 16.28 75.88 20.57 69.27 22.91 71.22 20.64

CNN_LSTM 68.40 16.86 67.73 25.16 64.41 26.41 64.50 24.36

MF-LDA 71.35 15.51 71.27 15.92 73.01 17.96 72.05 18.81

FIGURE 2

Classifier architecture performance distributions, first stage dataset.
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and CNN_LSTM (p < 0.001) classifiers, but not the deep CNN
(p = 0.317). Furthermore, a look at the distribution of the results
reveals very wide intervals for the CNN_shallow and CNN_LSTM
classifiers, as visible in Figure 2, with very considerable differences
between subjects.

4.2 Classifier decision time advantage

Each classifier was evaluated on a moving time window
to determine its action anticipation performance. All classifiers
experienced a significant (p < 0.001 of first coefficient in
linear regression t-test) drop in performance as the window
moved earlier. The Decision Time Advantage was estimated at
several thresholds k using a Gaussian Process Regression. Using a
threshold of 75%, the MLP classifier provides a DTA of around
590 milliseconds (95% CI: 520–870 ms), while the DTA75 of the
deep CNN was lower, at approximately 290 milliseconds (95% CI:
210–360 ms). These results are presented in Table 6 for several
thresholds, as well as graphically in Figure 3.

The delay introduced by the computational burden of
classifying each epoch was also evaluated. This Computational
Time Delay can be broken down into time spent with data
preprocessing, which is similar for all classifiers, and inference time,

TABLE 6 Classifier decision time advantages for thresholds 80%, 75%,

70%, first stage dataset.

Classifier DTA80 (ms) DTA75 (ms) DTA70 (ms)

MLP 380 [290–450] 590 [520–870] >1,000 [790–1,000]

CNN – 290 [210–360] 470 [410–530]

CNN_shallow – – 460 [390–510]

CNN_LSTM – – –

MF-LDA – – 890 [810–980]

95% confidence intervals between square brackets.

largely dependent on classifier architecture. The preprocessing
time spent for each epoch was on average 14 ms (µ: 13.97 ms,
σ : 5.10 ms). Mean inference times varied between 174 ms, for
the shallow CNN, and 799 ms, for the CNN-LSTM hybrid. The
total Computational Time Delay for each classifier is presented in
Table 7.

4.3 Pilot experiment results

When evaluated on the pilot experiment dataset, the MLP
remained the most accurate classifier, with a mean accuracy of
82.29%, and F1-Score of 80.63%. Deep CNN classification dropped
considerably, with an accuracy of 71.57%. Results are presented in
Table 8, Figure 4.

The Decision Time Advantage provided by the classifiers at all
thresholds was also appreciably worse: at a 70% accuracy threshold,
the MLP yielded an advantage of approximately 477 milliseconds,
followed by the deep CNN at 256 milliseconds. Values at other
thresholds are shown in Table 9, and in Figure 5. Performance
deterioration as a result of moving the signal time window was
considerably more pronounced during the pilot experiment when
compared to the first stage dataset, for both the best performing
classifiers, MLP and the deep CNN.

TABLE 7 Classifier computational time delay (preprocessing and

inference), first stage dataset.

Classifier Mean (ms) σ (ms) Relative to lowest

MLP 422.6 431.9 2.27

CNN 270.1 651.3 1.45

CNN_shallow 186.5 341.8 1

CNN_LSTM 814.0 646.3 4.36

FIGURE 3

Classifier accuracy relative to training window lag, first stage dataset.
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TABLE 8 Classifier architecture performance, pilot stage dataset.

Accuracy F1-score Precision Recall

Classifier Mean σ Mean σ Mean σ Mean σ

MLP 82.29 17.74 80.63 22.90 82.15 24.28 81.42 24.69

CNN 71.57 23.43 69.20 29.18 70.51 31.22 72.00 31.57

CNN_shallow 68.43 20.23 62.08 31.50 66.32 34.72 64.67 36.33

CNN_LSTM 63.86 19.53 51.64 36.50 51.38 38.29 58.33 42.59

MF-LDA 64.29 25.75 57.75 33.74 56.00 33.98 63.33 37.86

FIGURE 4

Classifier architecture performance distributions, pilot stage dataset.

TABLE 9 Classifier decision time advantages for thresholds 80%, 75%,

70%, pilot stage dataset.

Classifier DTA80 (ms) DTA75 (ms) DTA70 (ms)

MLP 200 [110–260] 340 [290–380] 440 [400–480]

CNN – – 230 [70–300]

CNN_shallow – – –

CNN_LSTM – – –

MF-LDA – – –

95% confidence intervals between square brackets.

5 Discussion

5.1 Classifier architecture performance

An analysis of the performance of the different classifier
architectures reveals two clear stand-outs: the MLP and the deep
CNN. Considering MLPs are a rudimentary architecture, generally
outperformed by more sophisticated models in most applications,
this result is striking. Several factors may have led to the superiority
of the MLP: first and foremost, the extremely low number of
training examples does not favor the convolutional architectures,
usually trained on several thousand data points; second, the MLP
constitutes a far more generic architecture, with better classification

performance suggesting it could be better suited to detection the
time-domain patterns that reveal action anticipation and execution,
namely MRCPs than convolution-based models.

5.2 Classifier decision time advantage

Through the use of the proposed Decision Time Advantage
metric, determining a classifier’s action anticipation performance
and how it behaves over time becomes more transparent. This
methodology is simple enough to be applied to other action
anticipation pipelines, even those not based on EEG signal
classification. With a quick look at a graphical representation of
performance, a robotic control system designer can determine the
adequate anticipation-reliability trade-off for a specific application.

The MLP and deep CNN classifiers tested, using a 75%
threshold, were able to issue an accurate action anticipation
classification with a 590, and 290 millisecond time advantage,
respectively. In a high-performance human-robot cooperation
scenario, this advantage could prove vital for a timely reaction to
human movement, potentially preventing accidents and increasing
the speed at which tasks may be performed.

It is important to note, however, that the proposed approach
aims only to distinguish between idle and anticipation/action
periods; for a more effective interaction, the system would not
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FIGURE 5

Classifier accuracy relative to training window lag, pilot stage dataset.

only need to perform this binary classification, but also decode
the movement which is about to take place. Such an extension
of this methodology could credibly be implemented, as evidenced
by motor cortex functional mapping studies, but could impact the
Decision Time Advantage.

To evaluate the Total Time Advantage provided by the
system with each of these classifiers, one can subtract the mean
Computational Time Delay, shown in Table 6 (first stage) and
Table 9 (pilot stage), from the Decision Time Advantage to get a
(hardware-specific) estimate. This way, the MLP nets a TTA of
roughly 170 milliseconds, while the CNN achieves 20 milliseconds
of anticipation, if we consider the DTA75, with the hardware used.

5.3 Comparison with other
state-of-the-art

Ehrlich et al. (2023) explore the potential of approaches based
on anticipatory brain signals for Human-Robot Collaboration,
sharing our motivation. In their study, human participants
collaborate with a robotic partner to follow a pre-defined path,
through a computer keyboard. Along this path, certain positions
would trigger a takeover situation: a switch between the robot
acting autonomously, and human control. The goal of their analysis
was to correctly anticipate these takeover situations, through the
use of a regularized LDA classifier on ERP features. Accuracy
results were generally in line with chance-level, only exceeding
these values when discriminating between human takeover versus
robotic continuation, at 57.9 ± 4.3%. While a direct comparison
cannot be made between the results achieved by this group
and ours, namely due to the significantly different interaction
paradigm, as well as the lack of a time advantage estimate, the
similarity in motivation—using EEG to augment HRI—makes this
work notable.

Adjacent to the challenge of anticipation action intention is
the problem of discriminating between which action is about to be

taken, as tackled by Duan et al. (2021). This group makes use of
Task-Related Component Analysis to optimize MRCP data, which
is then provided to an LDA for classification. Accuracies as high as
90.01 ± 9.97 % are reported when discriminating between elbow
flexion and rest periods; for different actions, results ranged from
82.14% (pronation) to 90.32% (elbow extension) on average. While
these results exceed those achieved in our analysis, it should be
noted that the tasks performed had a shorter duration, and did
not involve interaction, resulting in different MRCP modulation,
both in terms of amplitude and latency, which influences results.
Furthermore, an estimate of the time advantage achieved is also
not provided.

Kostiukevych et al. (2021) also explore the use of CNNs, as
well as RNNs, for the anticipation of grasp-and-lift tasks, using the
large GAL dataset (Luciw et al., 2014). The Deep Learning models
were employed in an end-to-end manner, without previous feature
extraction, to analyse the feasibility of different configurations. The
AUC of each classifier was plotted relative to the number of time
samples used, i.e. the window length. The best performance was
achieved by LeNet (LeCun, 2015), reaching AUC of 0.90 in some
cases, when using 1000 sample-long windows. Strikingly, much as
in our analysis, the hybrid CNN-LSTM tested offered unexpectedly
poor performance.

Finally, Buerkle et al. (2021) leverage an LSTM-RNN for
action anticipation in a simulated Human-Robot Collaboration
environment. Their system, which also performs end-to-end
classification of intention vs anticipation epochs, is capable of
providing a time advantage between 54 and 513 milliseconds, with
reported accuracy between 84.98 and 92.08% (although it is unclear
whether they use balanced accuracy). These results are in line with
those achieved during our analysis, and further prove the feasibility
of the EEG-based approaches to action anticipation.

Overall, the results found in recent literature for analogous
experimental paradigms are similar to those achieved by our
system. Additionally, the consistent lack of reporting on time
advantage provided by other proposals, as well as its ambiguity,
when it is reported, solidifies our case for the need for a metric that
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clarifies not only the time advantage a system can provide, but its
trade-off with system reliability.

5.4 Pilot experiment

When comparing the results achieved during the first stage and
pilot experiment dataset, it is important to be mindful of the impact
of the differences between each setup. Most notably, the inclusion
of a Motor Execution condition during the pilot experiment likely
produces more pronounced movement artifacts, which corrupt the
EEG signal. While action anticipating brain potentials such as the
BP present low amplitudes, and are often difficult to identify during
signal trial analysis, movement artifacts often exceed the amplitude
of EEG, sometimes by an order of magnitude. Additionally, fewer
trials were conducted during each condition for the pilot dataset,
which may impact training on architectures that generally demand
a large number of training examples, such as CNNs.

Mean accuracy and F1-Score were lower for all the CNN-based
classifiers when trained on the pilot experiment dataset, although
this difference was not statistically significant (Mann-Whintey
U—CNN: p = 0.113, CNN_shallow: p = 0.054, CNN_LSTM: p =

0.063). As previously mentioned, this may in part be explained by
the lower number of training examples. Perhaps the most striking
difference between datasets is the sharper performance degradation
as the signal time window to be classified is moved earlier, which
occurred for both the best performing classifiers (MLP and deep
CNN). This also resulted in a considerable reduction of the DTA
provided in both cases. While the time advantage provided by
the system is promising, this difference highlights the need for
ecologically valid protocols when attempting to develop EEG-based
action anticipation systems.

A potential explanation for the decrease in DTA could be
differences between the brain responses elicited during motor
execution tasks, as opposed to motor imagery. While potentials
arising during both conditions are similar, they present slightly
different network dynamics (Kim et al., 2018), and both oscillatory
(Höller et al., 2013) and MRCP responses (Shakeel et al., 2015)
may differ significantly. In our case, the steeper drop-off during
Motor Execution tasks suggests the classification models may
have leveraged quicker, later brain responses. This finding has
implications for downstream research on the topic, suggesting
distinct action anticipation pipelines may have to be developed for
Motor Imagery and Execution, so as to ensure early MRCPs are
consistently captured under both conditions.

6 Conclusion

We demonstrated the viability of action anticipation from
EEG signals, in a Human-Robot Interaction scenario, using
only single session and condition trials to train Deep Learning
models. Additionally, a new metric to characterize a system’s
action anticipation capabilities was proposed and implemented.
Our findings were built upon a publicly available MI-BCI EEG
dataset (Farabbi et al., 2022), as well as a pilot experiment, with a
Motor Execution condition, both of which involved Human-Robot
Interaction tasks. Overall, the action anticipation system presented
satisfactory performance, and was capable of consistently detecting

action anticipation EEG signals by several hundred milliseconds, in
line with other state-of-the-art methodologies.

Further work on this topic will include testing under
closed-loop neurofeedback to characterize performance more
realistically, followed by a self-paced HRI experiment, during
which the potential complementary role of eye tracking for action
anticipation will also be explored.
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