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Deep convolutional neural networks (CNNs) have achieved remarkable success

in various computer vision tasks. However, the lack of interpretability in these

models has raised concerns and hindered their widespread adoption in critical

domains. Generating activation maps that highlight the regions contributing

to the CNN’s decision has emerged as a popular approach to visualize and

interpret these models. Nevertheless, existing methods often produce activation

maps contaminated with irrelevant background noise or incomplete object

activation, limiting their e�ectiveness in providing meaningful explanations. To

address this challenge, we propose Union Class Activation Mapping (UnionCAM),

an innovative visual interpretation framework that generates high-quality class

activation maps (CAMs) through a novel three-step approach. UnionCAM

introduces a weighted fusion strategy that adaptively combines multiple CAMs

to create more informative and comprehensive activation maps. First, the

denoising module removes background noise from CAMs by using adaptive

thresholding. Subsequently, the union module fuses the denoised CAMs with

region-based CAMs using a weighted combination scheme to obtain more

comprehensive and informative maps, which we refer to as fused CAMs. Lastly,

the activation map selection module automatically selects the optimal CAM

that o�ers the best interpretation from the pool of fused CAMs. Extensive

experiments on ILSVRC2012 and VOC2007 datasets demonstrate UnionCAM’s

superior performance over state-of-the-art methods. It e�ectively suppresses

background noise, captures complete object regions, and provides intuitive

visual explanations. UnionCAM achieves significant improvements in insertion

and deletion scores, outperforming the best baseline. UnionCAMmakes notable

contributions by introducing a novel denoising strategy, adaptive fusion of

CAMs, and an automatic selection mechanism. It bridges the gap between CNN

performance and interpretability, providing a valuable tool for understanding and

trusting CNN-based systems. UnionCAM has the potential to foster responsible

deployment of CNNs in real-world applications.
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1 Introduction

Deep learning models have revolutionized various domains,

such as computer vision, natural language processing, and speech

recognition. However, as these models become increasingly

complex and opaque, the interpretation of their decision-making

processes has become crucial for building trust and ensuring

reliability. Among the various interpretation methods, visualizing

feature maps or learned weights is the most intuitive and

convincing approach for users to understand the reasoning behind

the model’s predictions. In convolutional neural networks (CNNs),

which have become the primary choice for feature extraction

in computer vision, gradient-based interpretation (Simonyan and

Zisserman, 2014), region-based visualization (Wang et al., 2020b),

and Class Activation Mapping (CAM) (Zhou et al., 2016) are the

most widely used methods for explaining convolutional operations.

Gradient-based approaches, such as Simonyan and Zisserman

(2014), Adebayo et al. (2018), Omeiza et al. (2019), Springenberg

et al. (2014), Sundararajan et al. (2017), and Zeiler and Fergus

(2014), backpropagate the gradient of the target class to the

input layer, highlighting image regions that significantly impact

the prediction. However, these methods often generate noisy and

incomplete activation maps, focusing primarily on edge or texture

features while neglecting fine-grained information. Moreover, the

gradients of CNNs may vanish or explode due to the saturation

problem in the activation functions, such as Sigmoid or ReLU

(Zhang et al., 2021b), further compromising the quality of the

activation maps.

CAM (Zhou et al., 2016) and its extensions, such as

GradCAM (Selvaraju et al., 2017) and GradCAM++ (Chattopadhay

et al., 2018), provide visual explanations by linearly combining

weighted activation maps from convolutional layers. Despite their

effectiveness, these methods have limitations: CAM is architecture-

sensitive and requires modifying the network structure, while

GradCAM and GradCAM++ may activate irrelevant parts, such as

the background, due to gradient noise. Furthermore, these methods

may generate incomplete activation maps that fail to capture the

entire object of interest, as they rely on the gradients of the target

class, which may not cover all the discriminative regions.

Region-basedmethods, such as ScoreCAM (Wang et al., 2020b)

and GroupCAM (Zhang et al., 2021a), calculate the importance of

activation maps using the category confidence of corresponding

input features rather than local region gradients. Although these

methods can effectively remove background areas, they may

generate incomplete activation maps and have high computational

costs. Moreover, these methods do not fully exploit the information

from the gradients, which can provide valuable insights into the

model’s decision-making process.

To address these limitations and provide a more accurate and

comprehensive visual interpretation of deep CNNs, we propose

UnionCAM, a novel method that employs a “denoising-union-

selection” strategy to generate class activation maps. The main

contributions of this paper are as follows:

• To effectively remove background noise from gradient-based

activation maps and mitigate challenges such as gradient noise

and vanishing gradients, we introduce the Activation Map

Denoising (AMD) module. It applies a denoising function

to the gradients, which enables the AMD module to better

capture discriminative regions by generating more accurate

and reliable activation maps.

• We propose the Activation Map Union (AMU) module,

combining the denoised activation maps from AMD with

region-based activation maps, to integrate the advantages of

gradient-based and region-based methods. AMU generates

more complete and informative activation maps by capturing

both fine-grained details and global context, offering a more

comprehensive understanding of the model’s decision-making

process.

• To select the most informative activation map from the

union set generated by AMU, We further develop the

Activation Map Selection (AMS) module. AMS employs a

novel scoring function that considers both the discriminative

power and the spatial consistency of the activation maps,

ensuring that the selected map provides the most accurate and

reliable visual interpretation. This module further enhances

the interpretability and trustworthiness of the generated

explanations.

• Through extensive experiments on various benchmarks,

we demonstrate that UnionCAM achieves state-of-the-art

performance in visual interpretation, outperforming existing

methods in terms of both accuracy and completeness.

UnionCAM effectively addresses the problems of incomplete

activation and background activation, providing a more

trustworthy and interpretable visualization of deep CNNs. The

superior performance of UnionCAM highlights its potential

for facilitating the understanding and debugging of deep

learning models in real-world applications.

2 Related work

Feature or weight visualization enhances model transparency

and understanding by illustrating how decisions are made. It aids

in understanding the human brain, facilitates early diagnosis of

conditions, improves the accuracy of prediction systems, and helps

detect potential failures, among other benefits (Zong et al., 2024;

Yu et al., 2022). CAM (Zhou et al., 2016) is one of the pioneering

works that uses a weighted sum of the feature maps from the

last convolutional layer to generate class-specific activation maps,

which has inspired numerous subsequent developments in the field.

In this paper, we reviewed recent relevant works and categorized

them into three types: gradient-based, gradient-free, and ensemble

methods. Additionally, some feature visualization methods, such

as GAN-based approaches, can also provide valuable methods for

understanding and interpreting model behavior.

2.1 Gradient-based methods

Gradient-based methods utilize the gradients of the model’s

output with respect to the input or intermediate feature maps

to highlight the important regions. Grad-CAM (Selvaraju et al.,

2017) generalizes CAM to models without global average pooling

by using the gradients of the target class score with respect to
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the feature maps. Expanding on this work, a range of gradient-

based methods have been developed to enhance granularity using

various approaches, such as GradCAM++ (Chattopadhay et al.,

2018), Smooth GradCAM++ (Omeiza et al., 2019), XGradCAM

(Fu et al., 2020), Augmented GradCAM (Morbidelli et al., 2020),

Integrated GradCAM (Sattarzadeh et al., 2021), and among others.

LayerCAM (Jiang et al., 2021) enhances the reliability of CAMs by

incorporating information from various layers through weighted

aggregation, offering a more detailed coarse-to-fine aggregation

solution. Despite their computational efficiency, gradient-based

methods may capture irrelevant information in the activation maps

since the feature maps are not always related to the target class

(Zhang et al., 2021b).

2.2 Gradient-free methods

Gradient-free CAMs, on the other hand, aim to identify the

importance of different input regions by occluding or perturbing

them and observing the effect on the model’s output (Zhang

et al., 2021b; Selvaraju et al., 2017; Kapishnikov et al., 2019;

Zhang et al., 2018; Liu et al., 2021b; Yan et al., 2021; Ahn et al.,

2019; Liu et al., 2021a; Liang et al., 2022; Li et al., 2021; Cui

et al., 2021; Ranjan et al., 2019; Lu et al., 2023; Jiao et al., 2018).

One of the earliest works, RISE (Petsiuk et al., 2018), generates

random binary masks to occlude different parts of the input

image for prediction scores, and then uses a linear combination

of these masks and corresponding scores to obtain the final

importance map. Although effective, it is inefficient due to the

need for thousands of random masks. ScoreCAM (Wang et al.,

2020b) improves upon RISE by using the activation maps as

the initial masks and combining them with the model’s output

scores to generate more accurate activation maps, spearheading

the advancement of methods such as Smooth ScoreCAM (Wang

et al., 2020a), Integrated ScoreCAM (Naidu et al., 2020), FIMF

ScoreCAM (Li et al., 2023), GroupCAM (Zhang et al., 2021a), and

etc. Differently, AblationCAM (Ramaswamy et al., 2020) utilizes

the effective slope which is characterized as the difference between

the original prediction score and the prediction score derived from

an ablated activation map; based on this work, AblationCAM++

(Salama et al., 2022) further introduce clustering to group

activation maps for improved efficiency. ReciproCAM (Byun and

Lee, 2022) significantly accelerates execution speed by using the

reciprocal relationship between activation maps and predictions,

further inspiring the development of ViT-ReciproCAM (Byun and

Lee, 2023) for Vision Transformers (ViT). Although Gradient-Free

CAMs generally produce more human-interpretable explanations,

they may generate incomplete activation maps due to the presence

of salient regions that are not necessarily related to the target class.

2.3 Ensemble methods

To address the limitations of gradient-based and gradient-

free methods, certain approaches FDCAM (Li et al., 2022)

combine gradient-based and score-based weights to derive

CAM’s weightings, harnessing the strengths of both techniques.

Feature CAM (Clement et al., 2024) combines perturbation

and activation solutions for fine-grained, class-discriminative

visualizations. Grad++-ScoreCAM (Soomro et al., 2024) enhances

CNN interpretability and localization by first generating a coarse

heatmap with GradCAM++ and then refining it with ScoreCAM to

incorporate intermediate layer information. Our proposed method

UnionCAM also falls in this part, by denoising the gradient-based

activation maps and then merging them with the region-based

maps using a learned weight, UnionCAM generates more accurate

and complete visual explanations. In the following sections, we

will describe the proposed method in detail and demonstrate its

effectiveness through comprehensive experiments.

2.4 Feature visualization via generation
methods

Methods based on generative models also play an important

role in feature visualization. GAN functions as an insightful method

that clarifies the decision-making process and offers effective

support for diverse tasks (Bau et al., 2018; Yu et al., 2022; Lang

et al., 2021). Bau et al. (2018) introduce an analytical framework

for visualizing and understanding GANs at the levels of units,

objects, and scenes. Lang et al. (2021) train a generative model to

clarify the various attributes that contribute to classifier decisions.

Yu et al. (2022) propose the multidirectional perception generative

adversarial network (MP-GAN) to visualize morphological features

for whole-brain MR images. Besides, diffusion model-based feature

visualization methods provide visualization strategies from a

different perspective. VPD (Zhao et al., 2023) proposes to refine text

features and prompt the denoising decoder for better interaction

between visuals and text, using cross-attention maps for guidance.

NeuroDM (Qian et al., 2024) first extracts the visual-related

features with high classification accuracy from EEG signals by EV-

Transformer, and then employs EG-DM to synthesize high-quality

images with the EEG visual-related features.

3 Methodology

The overall architecture of the proposed UnionCAM is

illustrated in Figure 1, and we also present the pseudocode in

Algorithm 1. This section provides a detailed explanation of the

three key modules in the proposed method: Activation Map

Denoising (AMD), Activation Map Union (AMU), and Activation

Map Selection (AMS). Let I0 ∈ R
3×M×N be an input image, where

M and N represent the height and width of the image, respectively.

Let Ib ∈ R
3×M×N be a black image with the same dimensions as

I0. We denote f (·) as a deep neural network which predicts a score

yc = f c(I0) ∈ R for class c given an input image I0.

3.1 Activation map denoising

After the feature extraction backbone network, the feature map

and the corresponding reverse gradient of each channel can be

obtained, as shown in the “FeatMaps” and “GradMaps” in Figure 1.

However, the gradients of CNNs may be noisy and even tend to
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FIGURE 1

Pipeline of UnionCAM. AMD module is used to denoise meaningless background to generate a purer CAMs. Then, AMU module is to generate a

complete CAM, which takes the class confidence as the weight to union the denoised CAMs and the region-based CAMs. AMS module is used to

select a better interpretation e�ect of CAMs. ⊙ denotes element-wise multiple operation, which used for weight and feature maps.
⊕

represents add

operation.

disappear due to the saturation problem of the zero gradient region

of the “Sigmoid” or “ReLU” function (Zhang et al., 2021b). To

address this issue, we propose an activation map denoising (AMD)

method, as illustrated in the “Activation Map Denoising” part in

Figure 1. This subsection will elaborate on this module. The AMD

module mainly designs a function to denoise the gradient obtained

after the backbone network. For the convenience of explanation,

the gradient is denoted asW here.

For each channel of W, the θ percentile is calculated as

the denoising threshold. If the gradient value is greater than or

equal to the threshold, the gradient value at the corresponding

position remains unchanged; otherwise, the gradient value at the

corresponding position is set to 0. This denoising operation is

reasonable because positions with relatively small gradient values

have a high probability of being background areas unrelated

to the detection target. In this way, we can remove detect

target-independent background regions, thereby improving the

localization effect of class activation maps on detected targets.

In addition to an illustration of the denoising process in

Figure 1, we formulate the denoising function in this section. For

a scalarWij inW, the denoising function can be formulated as:

Denoising(Wcl
ij , θ) =

{

Wcl
ij , Wcl

ij ≥ p(Wcl, θ);

0, otherwise,
(1)

where p(Wcl, θ) calculates the θ percentile of the l-th layerWcl

for specific category c. With denoised weighting maps, the class

related feature maps are defined as the weighted sum to obtain the

class activation map, which can be formulated as,

LcDenoising =
∑

l

αcl
◦ ReLU(Wcl) ◦ Al, (2)

where ◦ is Hadamard product, Al is the feature map of the l-th

layer. The weight α is the pixel-level average coefficient, which is

defined as:

αcl
ij =







1
∑

m,n(W
cl
mnI(W

cl
mn))

if Wcl
ij > 0;

0 otherwise.
(3)

where I(·) is an indicator function checking whether the given

variable is >0, and Wcl
ij is the gradient value corresponding to

the (i, j) position in the denoised gradient W of the l-th channel.

The locations where the gradient values are >0 are most likely the

locations of the target. The use of pixel-level average coefficients

can avoid excessive channel weights in small activation areas, which

will lead to significant activation problems. After the above process,

the gradient-based class activation map after denoising can be

obtained, which is denoted as LcDenoising . A high-quality LcDenoising
serves as the basis for the upcoming soft and hard integration

strategy, ensuring that the model can effectively leverage refined

features.

3.2 Activation map union

Gradient-based CAM introduces noise due to the gradient.

Although the denoising method in Section 3.1 can remove part

of the noise, it cannot completely eliminate the background area

unrelated to the target class. To further suppress the background
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Input: The input image I0

Output: LUnionCAM

1 A,W ← f (I0); // Process the input image

2 Denoising(Wcl
ij , θ)← Equation (1); // Denoise W

3 LcDenoising ← Equation (2); // Obtain LcDenoising

4 WR ← CNN(t(I0,A)); // Get the weight of A

5 LcRegion ← S(A,WR); // Obtain LcRegion

6 βDenoising ← Equation (4); // Obtain the weight

βDenoising

7 βRegion ← Equation (5); // Obtain the weight βRegion

8 LcDe−Region ← Equation (6); // Merge LcDenoising and LcRegion

9 βDe−Region ← Equation (7); // Obtain βDe−Region

10 LUnionCAM ← Equation (8); // Get the final CAM

Algorithm 1. UnionCAM.

area, we draw inspiration from the area-based method. In our

approach, the feature map of each channel is used as a mask to

activate the corresponding area in the original image. The activated

area is then used as the input to the CNN, and the prediction score

is used as the weight of the feature map. The weighted summation

of these feature maps yields the class activation maps, denoted as

LcRegion.

By using LcRegion, the influence of the gradient on the class

activation map is significantly reduced, and the background area

can be effectively suppressed. However, for targets with distinctive

features, the main part of the target may also be partially removed,

leading to an incomplete class activation map. To address this

issue and obtain a more complete representation of the main

object while further suppressing the background, we propose a

method to combine LcDenoising and LcRegion. The two class activation

maps are merged using weights βDenoising and βRegion for LcDenoising
and LcRegion, respectively. The overall process is illustrated in the

“Activation Map Union” block of Figure 1. In the following, we

formulate this module in detail.

To combine the two types of activation maps using weights,

we first need to determine their respective weights. The weight

βDenoising is formulated as:

βDenoising = f c(LcDenoising ◦ I0)− f c(Ib), (4)

Here, we perform the ◦ operation on the denoised CAM

LcDenoising and the original image, which means that LcDenoising
is used as the mask to activate the corresponding part of the

original image.

f c(LcDenoising ◦ I0) denotes the activation image generated

by using LcDenoising as the mask and inputting it into the

convolutional neural network for the corresponding target

category c, and f c(Ib) represents the score corresponding to

the target category c obtained by inputting the all-black

image Ib into the convolutional neural network. Therefore,

βDenoising can be understood as the contribution of the LcDenoising
activation area to the score of the target category c. Similarly,

βRegion can be understood as the contribution of the LcRegion

activation region to the target category c, which can be

formulated as:

βRegion = f c(LcRegion ◦ I0)− f c(Ib), (5)

where f c(LcRegion ◦ I0) denotes the score of the target category c

obtained by inputting the activation image generated using LcRegion
as the mask into the convolutional neural network, and f c(Ib)

represents the score of the target category c obtained by inputting

the all-black image Ib into the convolutional neural network.

Having obtained the score contributions βDenoising and βRegion

of the LcDenoising and L
c
Region activation regions to the target category

c, respectively, we can merge the two types of activation maps using

these contributions as weights:

LcDe−Region = βDenoising · L
c
Denoising + βRegion · L

c
Region. (6)

By combining the two activation maps weighted by their

respective contributions to the target category score, the resulting

class activation map emphasizes the target object’s main area

(high-scoring part) in the original image while suppressing the

background area (low-scoring part). This soft integration strategy

enables the model to adaptively acquire meaningful features

while enhancing its ability to understand and process complex

data patterns. This approach helps to obtain a more complete

representation of the target object while effectively reducing

background activation, thereby improving the interpretability and

localization accuracy of the class activation map.

3.3 Activation map select

The combination of the two activation maps using their

respective scores as weights, as described in Section 3.2, does

not always guarantee an improved explanatory power of the

resulting activation map. One potential scenario is when the

background area outside the target object in LcDenoising is not

entirely suppressed, and the weight βDenoising obtained from

the CNN is greater than βRegion. In this case, merging the

two activation maps with the scores as weights may introduce

redundant background components, which can negatively impact

the final interpretation and localization accuracy of the class

activation map.

To mitigate the above issue, we propose the Activation Map

Selection (AMS) method. Considering both LcDe−Region and LcRegion,

AMS can choose the class activation map that provides a more

interpretable representation of the target category. This capability

enables AMS to select the CAM that yields a higher score for the

target category, indicating better localization and interpretation

of the target object. The overall workflow of the AMS method is

illustrated in Figure 2.

We subsequently formulate AMS, based on the score

contribution βRegion of the LcRegion activation region to the target

category c has been obtained from Equation 5 and the combined

class activation map LcDe−Region is also obtained from Equation 6.

To select the CAMs according to the interpretability of the target

category, we must first get the score contribution βDe−Region of
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FIGURE 2

Activation map select. Based on the comparison between βDe−Region and βRegion, we select the corresponding element from De-Region Map and

Region Map to form the Union CAM.

the LcDe−Region activation region to the target category c. Similarly,

wDe−Region can be formulated as:

βDe−Region = f c(LcDe−Region ◦ I0)− f c(Ib) (7)

After obtaining the score contribution βDe−Region of the

LcDe−Region activation region to the target category c, we can

select the final CAM result according to the bigness of

βDe−Region and βRegion and its decision-making process can be

formulated as:

LcUnionCAM =

{

LcDe−Region if βDe−Region > βRegion;

LcRegion otherwise.
(8)

As a combination of soft and hard selection strategy,

AMS enables a more flexible dynamic integration of both

gradient-based activation maps and region-based activation

maps, dynamically adapting to different input characteristics.

The βDenosing and βRegion first softly select the denoising

map and region map for integration, which sometimes can

introduce noise signals, thus blurring the decision-making

process. Compensatorily, Equation 8 offers a hard selection to

alleviate this issue, promoting the model to make more reliable

decisions, which enhances this dynamic adaptability by more

effectively capturing activation regions that are beneficial to the

decision-making process.

4 Experiments

In this section, we conduct experiments to evaluate the

effectiveness of the proposed interpretation method. First, we

provide a basic description of the datasets and data preprocessing

for the experiments in Section 4.1. Second, in Section 4.2, we

quantitatively evaluate UnionCAM against other mainstream class

activation map methods using established evaluation metrics.

Then, we qualitatively evaluate our method with visualizations on

the ILSVRC2012 (Russakovsky et al., 2015) in Section 4.3. Finally,

in Section 4.4, we assess the effectiveness of each module proposed

in this paper through ablation experiments.

4.1 Experimental setup

Experiments are performed on commonly used computer

vision datasets, including the validation set of ILSVRC2012

(Russakovsky et al., 2015) and the VOC2007 test set (Everingham

et al., 2015), as shown in Figure 3. For both datasets, all images were

resized to 3× 224× 224, then converted to tensors, and normalized

to the range [0,1]. No additional preprocessing was applied.

We utilize the pretrained torchvision model VGG16 (Simonyan

and Zisserman, 2014) as the base classifier model. Unless stated

otherwise, the θ parameter in UnionCAM is set to 10. To ensure
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FIGURE 3

Examples from the ILSVRC2012 and VOC2007 datasets.

a fair comparison, all activation maps are upsampled to 224 × 224

by using bilinear interpolation.

4.2 Quantitative evaluation of evaluation
indicators

We initially evaluate the confidence of the activation maps

generated by UnionCAM for the object recognition task employed

in Chattopadhay et al. (2018). The original input activates specified

regions in the given image through point-wise multiplication with

activation maps to observe score changes in the target class. We

adopt the metric from Chattopadhay et al. (2018), where the

average drop is formulated as:
∑N

i=1
max(0,yci−o

c
i )

yci
× 100, and the

average increase is formulated as:
∑N

i=1
Sign(yci<oci )

N × 100. Here, yci
denotes the score of category c predicted after inputting the original

image into the network, and oci denotes the score predicted after the

activation map activates certain parts of the original image. Sign

is an indicator function that returns 1 if the input condition is

true. Experiments are performed on the ImageNet (ILSVRC2012)

validation set with 2,000 images randomly selected. Our algorithm

consumes 2.22 GB of memory during operation, and the average

processing time per image is 1.16 s, which is evaluated on an

NVIDIA RTX A6000 GPU. The results are summarized in Table 1.

Similarly, the experimental results on the VOC2007 test set are

shown in Table 2.

As shown in Table 1, the average drop rate and average increase

rate of UnionCAM are 43.15 and 28.95%, respectively, which

are superior to the previous methods. Good performance on

recognition tasks shows that UnionCAM is able to successfully find

the most recognizable regions of the target object, not just what

humans consider important. Experimental results on recognition

tasks show that UnionCAM can more realistically reveal the

decision-making process of the original CNN model than previous

methods.

In addition, tomore fully explain the superiority of ourmethod,

we also evaluate the deletion and insertion metrics mentioned in

Petsiuk et al. (2018). This metric is in addition to the Average

Decline and Increase metrics. The removal metric measures the

decreasing trend of the predicted category score by removing more

and more important pixels from the original image using the

activationmap as amask. A sharp drop will cause the area under the

curve to become smaller, and the smaller the area under the curve,

the better the interpretation of the activation map. The insertion

metric is just the opposite, as more and more pixels are inserted

into the input image, the predicted class score rises. The larger the

area under the curve, the better the interpretation of the activation

map.

There are several methods (Dabkowski and Gal, 2017) for

removing pixels from an image, all of which have different

advantages and disadvantages. We took the same approach as

Zhang et al. (2021a). We calculate the AUC of the classification

score after Softmax as a quantitative measure. In addition, we

calculated the over-all score composite evaluation deletion and

insertion results, calculated as AUC(insertion)—AUC(deletion).

The sample pictures are shown in Figure 4, and the average results

calculated by randomly selecting 2,000 pictures on the ImageNet

(ILSVRC2012) validation set are shown in Table 3. Our method

achieves the best results.

4.3 Visual qualitative evaluation

We qualitatively compare the activation maps generated by

our method with those from other state-of-the-art models. Our

method produces activation maps that are relatively complete and

exhibit less noise compared to those generated by GroupCAM and

ScoreCAM. As shown in Figure 5, GradCAM sometimes focuses

on irrelevant regions, leading to confusion in identifying key

regions, such as the table area in the first row and the sky area

in the second row. In contrast, GradCAM++ aims to concentrate

more on relevant areas, but it may inadvertently neglect some

meaningful regions, resulting in incomplete interpretations. For

instance, in the fourth row, GradCAM++ has poor performance in

capturing the meaningful area of the train. ScoreCAM occasionally

has limited emphasis on target regions, as seen in the third

row, potentially overlooking significant areas that contribute to
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TABLE 1 Recognition evaluation results on the ILSVRC2012 dataset (the smaller the average drop, the better, and the larger the average increase, the

better).

Method GradCAM GradCAM++ ScoreCAM GroupCAM UnionCAM

Average drop (%) 72.30 67.62 56.11 63.46 43.15

Average increase (%) 19.45 16.35 22.7 21.4 28.95

The bold values indicate evaluation metric of the activation maps confidence.

TABLE 2 Recognition evaluation results on the VOC2007 dataset (the smaller the average drop, the better, and the larger the average increase, the

better).

Method GradCAM GradCAM++ ScoreCAM GroupCAM UnionCAM

Average Drop(%) 53.07 39.51 18.88 32.33 15.77

Average Increase(%) 22.15 10.72 27.41 25.62 28.57

The bold values indicate evaluation metric of the activation maps confidence.

FIGURE 4

GradCAM++, ScoreCAM, and UnionCAM (ours) generate activation maps for representative images, respectively. And generate deletion and insertion

curves according to the activation map, in the insertion curve, the prediction score grows faster, and in the deletion curve, the classification

confidence decreases faster, which is a better explanation.

TABLE 3 In the ImageNet (ILSVRC2012) validation set, comparisons are made in terms of deletion (lower is better), insertion (higher is better) scores and

over-all (higher is better) evaluation metrics.

Method GradCAM GradCAM++ ScoreCAM GroupCAM UnionCAM

Insertion (%) 53.5 50.0 55.1 56.8 57.2

Deletion (%) 13.3 14.8 11.5 12.3 11.9

Over-all (%) 40.2 35.2 43.6 44.5 45.3

The best results are marked in bold. The best results are marked in bold.

the overall understanding of the model’s decisions. GroupCAM

sometimes fails to effectively focus on the target object, and its

attention on large areas can dilute the focus on meaningful regions.

In contrast, our method can often not only enhance the clarity

of the activation maps but also ensure a more balanced focus

on both relevant and meaningful regions. Our method effectively

integrates useful information from different maps through a

combination of soft and hard fusion techniques. This adaptive

integration mechanism allows for a dynamic refinement of the

activationmaps, ensuring that the relevant and informative features

are retained.

We further examine whether UnionCAM can distinguish

between different classes. As shown in Figure 6, when VGG16 is

used to classify the input as “bulldog” and “tabby cat,” UnionCAM

provides distinct and accurate localization for each category,

despite different confidence levels. As shown in Figure 6, VGG16
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FIGURE 5

Visualization results of GradCAM, GradCAM++, ScoreCAM, GorupCAM, and UnionCAM.

classifies the input as “bulldog” (47.08% confidence) and “tabby

cat” (41% confidence). Although the confidence of the latter is

lower than that of the former, UnionCAM can correctly provide

the explanation positions corresponding to the two categories.

UnionCAM not only accurately localizes single objects but

also excels in identifying multiple objects within the same

scene (two birds are located), outperforming previous methods.

Figure 7 illustrates the superior multi-target detection capability

of UnionCAM compared to GradCAM and ScoreCAM. However,

the activation map generated by UnionCAM is more complete and

focused compared to ScoreCAM.

4.4 Ablations

We conduct ablation experiments on the ImageNet

(ILSVRC2012) validation set to deeply investigate the effects

of the denoising threshold θ and the activation map union

weights βDenoising and βRegion on the results. The experimental

results are shown in Figure 8 and Table 3. The baseline at this

stage is the network with only the Activation Map Selection

(AMS) module added, and the Activation Map Union (AMU)

module directly sums the two activation maps without any

weighting.
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FIGURE 6

Category discrimination results. The middle graph is generated based on the input category of “bulldog,” and the graph on the right is generated

based on the input category of “tabby cat.”

FIGURE 7

Multi-target detection results. From the results, GradCAM can usually locate only one object, while both ScoreCAM and UnionCAM can locate

multiple objects, and UnionCAM is more interpretable.

From Figure 8, we can see that the threshold θ has a significant

impact on the UnionCAM results. The overall score is calculated

as Average Drop − Average Increase, so a lower value indicates

better performance. When θ is relatively small, the overall score

decreases. However, when θ > 10, the overall score begins to

increase sharply. To obtain better activation map quality, we set the

default value of θ to 10.

We also experimented with adding weights βDenoising and

βRegion to combine the two activation maps in the AMU module,

and compared the results with the baseline. The results show that

both Average Drop and Average Increase have achieved better

performance than the baseline after adding weights. The aggregated

results are shown in Table 4.

5 Conclusions

In this paper, we propose a novel visual interpretation

method called UnionCAM for explaining the decision-making

process of deep convolutional neural networks. UnionCAM

addresses the limitations of existing methods by introducing a

“denoising-union-selection” strategy to generate class activation

maps (CAMs). The proposedmethod consists of three keymodules:

(1) an Activation Map Denoising (AMD) module to remove

meaningless background noise from the gradient-based CAMs;

(2) an Activation Map Union (AMU) module to combine the

denoised CAMs with region-based CAMs using a learnable weight;

and (3) an Activation Map Selection (AMS) module to adaptively
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FIGURE 8

In the ImageNet (ILSVRC2012) validation set, the ablation experiments on the filter threshold θ are evaluated in terms of average drop (lower is

better), average increase (higher is better), and over-all (lower is better) evaluation metrics performance.

TABLE 4 In the ImageNet (ILSVRC2012) validation set, comparisons are

made in terms of deletion (lower is better), insertion (higher is better)

scores, and overall (higher is better) evaluation metrics.

Method Average
drop

Average
increase

Overall

Base (%) 45.21 28.20 17.01

Base + de-noising

10 (%)

44.64 28.85 15.79

Base + Weight (%) 43.71 28.75 14.96

Base + de-no +

Weight (%)

43.15 28.95 14.20

The best results are marked in bold.

select the most informative CAM for visual interpretation. We

evaluate the proposed UnionCAM on two benchmark datasets,

ILSVRC2012 and VOC2007, using four widely-used evaluation

metrics: insertion, deletion, average drop, and average increase.

The extensive experimental results demonstrate that UnionCAM

outperforms the state-of-the-art methods by a significant margin.

In particular, UnionCAM achieves a better balance between

removing irrelevant background noise and preserving the complete

object activation region, resulting in more accurate and human-

interpretable visual explanations.

The proposed UnionCAM provides a novel perspective on

interpreting the behavior of deep neural networks. By combining

the strengths of both gradient-based and region-based methods,

UnionCAM offers a more comprehensive and reliable approach

to generate visual explanations. We believe that the insights

gained from this work can facilitate the development of more

transparent and trustworthy deep learning models, especially in

critical domains such as healthcare and autonomous driving.

While UnionCAM presents significant advantages, such as

enhanced interpretability and improved activation map quality,

it is important to also consider its limitations that may impact

its effectiveness in various applications. The weighted fusion

strategy, although effective, may struggle with complex scenes

or overlapping objects, potentially leading to less accurate

activation maps. This highlights the need for further refinement

of the fusion mechanism to handle diverse visual challenges. In

addition, The quality of region-based activation maps sometimes

can impact the performance of the algorithm. Consequently,

enhancing the quality of these maps is crucial for improving

not only the interpretability but also the overall effectiveness of

the algorithm.

In future work, we plan to extend UnionCAM to other

types of neural networks, such as recurrent neural networks

and graph neural networks, to provide a unified framework

for interpretable deep learning. We will also explore the

potential of integrating UnionCAM with other explanation

techniques, such as feature visualization and concept activation

vectors, to further enhance the interpretability of deep

neural networks.
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